A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Subjects
2.2. Clinical Parameters
2.3. Next Generation Sequence Analysis of Gut Microbiota
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
3.1. Participants’ Characteristics
3.2. Comparison of Gut Microbiota by Differential Intake of Water-Soluble Dietary Fiber in 2017
3.3. Comparison of Water-Soluble Dietary Fiber Intake and Gut Microbiota in 2017 and 2018
3.4. Correlation between Changes in Water-Soluble Dietary Fiber and Relative Abundance of Butyric Acid-Producing Bacteria
3.5. Association of the Changes in Water-Soluble Dietary Fiber Intake and Relative Abundance of Butyric Acid-Producing Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trowell, H.; Southgate, D.A.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Jenkins, D.J. Letter: Dietary fibre redefined. Lancet 1976, 1, 967. [Google Scholar] [CrossRef]
- Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Marques, F.Z.; Mackay, C.R.; Kaye, D.M. Beyond gut feelings: How the gut microbiota regulates blood pressure. Nat. Rev. Cardiol. 2018, 15, 20–32. [Google Scholar] [CrossRef]
- Alva-Murillo, N.; Ochoa-Zarzosa, A.; López-Meza, J.E. Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet. Microbiol. 2012, 155, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.W.; Yu, E.Z.; Feng, Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef]
- Thomson, C.; Garcia, A.L.; Edwards, C.A. Interactions between dietary fibre and the gut microbiota. Proc. Nutr. Soc. 2021, 80, 398–408. [Google Scholar] [CrossRef]
- Cuervo, A.; Salazar, N.; Ruas-Madiedo, P.; Gueimonde, M.; González, S. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res. 2013, 33, 811–816. [Google Scholar] [CrossRef]
- Guerin-Deremaux, L.; Ringard, F.; Desailly, F.; Wils, D. Effects of a soluble dietary fibre NUTRIOSE® on colonic fermentation and excretion rates in rats. Nutr. Res. Pract. 2010, 4, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host. Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed]
- Scheppach, W.; Weiler, F. The butyrate story: Old wine in new bottles? Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Fung, K.Y.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 2012, 108, 820–831. [Google Scholar] [CrossRef]
- Tyagi, A.M.; Yu, M.; Darby, T.M.; Vaccaro, C.; Li, J.Y.; Owens, J.A.; Hsu, E.; Adams, J.; Weitzmann, M.N.; Jones, R.M.; et al. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity 2018, 49, 1116–1131.e1117. [Google Scholar] [CrossRef]
- Duncan, S.H.; Holtrop, G.; Lobley, G.E.; Calder, A.G.; Stewart, C.S.; Flint, H.J. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 2004, 91, 915–923. [Google Scholar] [CrossRef]
- Iino, C.; Shimoyama, T.; Chinda, D.; Sakuraba, H.; Fukuda, S.; Nakaji, S. Influence of Helicobacter pylori Infection and Atrophic Gastritis on the Gut Microbiota in a Japanese Population. Digestion 2020, 101, 422–432. [Google Scholar] [CrossRef]
- Gui, X.; Yang, Z.; Li, M.D. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front. Physiol. 2021, 12, 673341. [Google Scholar] [CrossRef]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-administered diet history questionnaire developed for health education: A relative validation of the test-version by comparison with 3-day diet record in women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; I’Anson, K.; Gibson, G.R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: A randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, P.; Gaudier, E.; Bingham, M.; van Bruggen, P.; Tuohy, K.M.; Gibson, G.R. Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: A human intervention study. Br. J. Nutr. 2010, 104, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.T.; Green-Johnson, J.M.; Brooks, S.P.; Ramdath, D.D.; Bercik, P.; Avila, C.; Inglis, G.D.; Green, J.; Yanke, L.J.; Selinger, L.B.; et al. β2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: Results from a double-blinded, randomised, cross-over study in healthy adults. Br. J. Nutr. 2016, 115, 1748–1759. [Google Scholar] [CrossRef]
- Beards, E.; Tuohy, K.; Gibson, G. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. Br. J. Nutr. 2010, 104, 701–708. [Google Scholar] [CrossRef]
- Gopal, P.K.; Prasad, J.; Gill, H.S. Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects. Nutr. Res. 2003, 23, 1313–1328. [Google Scholar] [CrossRef]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Lettink-Wissink, M.L.; Katan, M.B.; van der Meer, R. Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J. Nutr. 2006, 136, 70–74. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, S.; Mu, G.; Zeng, X.; Zhou, X. Effects of whole grain-bean mixed staple food on intestinal microecology and metabolic parameters of obese people. Chin. J. Clin. Nutr. 2015, 23, 27–34. [Google Scholar]
- Finegold, S.M.; Li, Z.; Summanen, P.H.; Downes, J.; Thames, G.; Corbett, K.; Dowd, S.; Krak, M.; Heber, D. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct. 2014, 5, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Newburg, D.S.; Kelly, C.P. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: A randomized clinical trial. Gut Microbes 2014, 5, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Tap, J.; Furet, J.P.; Bensaada, M.; Philippe, C.; Roth, H.; Rabot, S.; Lakhdari, O.; Lombard, V.; Henrissat, B.; Corthier, G.; et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ. Microbiol. 2015, 17, 4954–4964. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Watanabe, S.; Yamasaki, H.; Sakuma, H.; Takeda, A.K.; Yamashita, T.; Hirata, K.I. Average gut flora in healthy Japanese subjects stratified by age and body mass index. Biosci. Microbiota Food Health 2022, 41, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Low Intake (n = 322) | High Intake (n = 321) | p-Value | |
---|---|---|---|
Males:Females | 134:188 | 135:186 | 0.936 |
Age (years) | 50.0 (38.0–60.8) | 59.0 (45.0–67.0) | <0.001 |
BMI (kg/m2) | 22.3 (20.2–24.3) | 23.0 (20.5–25.3) | 0.007 |
Total dietary fiber intake (g/day) | 8.06 (6.40–9.54) | 13.50 (11.90–16.00) | <0.001 |
Water-soluble dietary fiber intake (g/day) | 1.93 (1.48–2.28) | 3.40 (2.97–4.08) | <0.001 |
Water-insoluble dietary fiber intake (g/day) | 5.93 (4.77–6.97) | 9.58 (8.42–11.50) | <0.001 |
Group L1 (n = 260) | Group H1 (n = 260) | p-Value | |
---|---|---|---|
Males:Females | 112:148 | 107:153 | 0.722 |
Age (years) | 53.0 (43.0–63.0) | 55.0 (43.0–63.0) | 0.847 |
BMI (kg/m2) | 22.5 (20.9–24.8) | 22.8 (20.4–25.0) | 0.966 |
Total dietary fiber intake (g/day) | 8.06 (6.36–9.60) | 12.97 (11.60–15.54) | <0.001 |
Water-soluble dietary fiber intake (g/day) | 1.91 (1.46–2.28) | 3.30 (2.94–3.93) | <0.002 |
Water-insoluble dietary fiber intake (g/day) | 5.95 (4.77–7.00) | 9.30 (8.22–11.26) | <0.003 |
Males (n = 107) | Females (n = 153) | p-Value | |
---|---|---|---|
Age (years) | 51.0 (42.0–61.0) | 55.0 (47.0–63.0) | 0.080 |
BMI (kg/m2) | 23.3 (21.5–25.2) | 22.1 (19.9–23.9) | <0.001 |
Total dietary fiber intake (g/day) | 7.73 (6.34–9.49) | 8.16 (6.52–9.66) | 0.512 |
Water-soluble dietary fiber intake (g/day) | 1.77 (1.39–2.25) | 2.02 (1.49–2.30) | 0.045 |
Water-insoluble dietary fiber intake (g/day) | 5.65 (4.79–7.03) | 6.34 (4.72–6.97) | 0.985 |
Males (n = 112) | Females (n = 148) | p-Value | |
---|---|---|---|
Age (years) | 52.0 (39.0–63.0) | 57.0 (45.0–63.0) | 0.092 |
BMI (kg/m2) | 24.0 (22.1–26.1) | 21.6 (19.3–23.8) | <0.001 |
Total dietary fiber intake (g/day) | 14.18 (12.19–17.12) | 12.55 (11.25–14.70) | <0.001 |
Water-soluble dietary fiber intake (g/day) | 3.47 (3.07–4.28) | 3.22 (2.86–3.77) | <0.001 |
Water-insoluble dietary fiber intake (g/day) | 9.96 (8.60–12.33) | 8.96 (8.09–10.45) | <0.001 |
2017 | 2018 | p-Value # | |
---|---|---|---|
L1-L2 | 1.80 (1.40–2.19) | 1.83 (1.38–2.18) | 0.462 |
L1-H2 | 2.25 (1.84–2.40) | 3.06 (2.88–3.44) | <0.001 |
H1-L2 | 2.91 (2.79–3.17) | 2.28 (1.92–2.50) | <0.001 |
H1-H2 | 3.47 (3.12–4.15) | 3.54 (3.16–4.22) | 0.446 |
p-value † | <0.001 | <0.001 |
L1-L2 | L1-H2 | H1-L2 | H1-H2 | |||||
---|---|---|---|---|---|---|---|---|
ρ | q | ρ | q | ρ | q | ρ | q | |
Class | ||||||||
Clostridia | 0.001 | 0.988 | −0.020 | 0.983 | 0.162 | 0.839 | −0.096 | 0.410 |
Order | ||||||||
Clostridiales | 0.001 | 0.988 | −0.020 | 0.983 | 0.162 | 0.839 | −0.096 | 0.410 |
Family | ||||||||
Lachnospiraceae | 0.074 | 0.988 | 0.040 | 0.983 | 0.031 | 0.950 | −0.070 | 0.500 |
Ruminococcaceae | −0.051 | 0.988 | −0.013 | 0.983 | 0.113 | 0.839 | −0.107 | 0.410 |
Genus | ||||||||
Anaerostipes | 0.126 | 0.720 | −0.081 | 0.983 | 0.124 | 0.839 | −0.124 | 0.410 |
Blautia | 0.018 | 0.988 | −0.003 | 0.983 | −0.008 | 0.950 | −0.020 | 0.845 |
Lachnospiracea incertae sedis | −0.051 | 0.988 | 0.230 | 0.306 | −0.029 | 0.950 | −0.014 | 0.845 |
Roseburia | −0.025 | 0.988 | 0.238 | 0.306 | −0.011 | 0.950 | 0.075 | 0.500 |
Faecalibacterium | −0.028 | 0.988 | 0.077 | 0.983 | 0.058 | 0.950 | 0.053 | 0.597 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, S.; Chinda, D.; Shimoyama, T.; Iino, C.; Kudo, S.; Sawada, K.; Mikami, T.; Nakaji, S.; Sakuraba, H.; Fukuda, S. A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region. Microorganisms 2022, 10, 1813. https://doi.org/10.3390/microorganisms10091813
Sato S, Chinda D, Shimoyama T, Iino C, Kudo S, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region. Microorganisms. 2022; 10(9):1813. https://doi.org/10.3390/microorganisms10091813
Chicago/Turabian StyleSato, Satoshi, Daisuke Chinda, Tadashi Shimoyama, Chikara Iino, Sae Kudo, Kaori Sawada, Tatsuya Mikami, Shigeyuki Nakaji, Hirotake Sakuraba, and Shinsaku Fukuda. 2022. "A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region" Microorganisms 10, no. 9: 1813. https://doi.org/10.3390/microorganisms10091813
APA StyleSato, S., Chinda, D., Shimoyama, T., Iino, C., Kudo, S., Sawada, K., Mikami, T., Nakaji, S., Sakuraba, H., & Fukuda, S. (2022). A Cohort Study of the Effects of Daily-Diet Water-Soluble Dietary Fiber on Butyric Acid-Producing Gut Microbiota in Middle-Aged and Older Adults in a Rural Region. Microorganisms, 10(9), 1813. https://doi.org/10.3390/microorganisms10091813