Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Identification and Label-Free Quantification
2.2. Statistical Analysis
2.3. Extraction of Proteomics Data Associated with the 28 F. alocis EV Proteins
2.4. Data Clustering and Heat Maps for Regulated Proteins
2.5. In Silico Functional Analysis for Identified EV Proteins
2.6. Image Procession
2.7. Ethical Considerations
3. Results
3.1. Identification of the EV Proteins in Ten Different F. alocis Strains
3.2. Predicted Protein–Protein Interactions of the EV Proteins
3.3. Quantification of the EV Proteins from Different F. alocis Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deatherage, B.L.; Cookson, B.T. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect. Immun. 2012, 80, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Oscarsson, J.; Wai, S.N. Delivery of Virulence Factors by Bacterial Membrane Vesicles to Mammalian Host Cells. In Bacterial Membrane Vesicles; Kaparakis-Liaskos, M., Kufer, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 131–158. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, H. Characterization and function of membrane vesicles in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 2021, 105, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Kieselbach, T.; Zijnge, V.; Granström, E.; Oscarsson, J. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles. PLoS ONE 2015, 10, e0138591. [Google Scholar] [CrossRef] [PubMed]
- Schorey, J.S.; Cheng, Y.; McManus, W.R. Bacteria- and host-derived extracellular vesicles—two sides of the same coin? J. Cell Sci. 2021, 134, jcs256628. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef]
- Aruni, W.; Chioma, O.; Fletcher, H.M. Filifactor alocis: The Newly Discovered Kid on the Block with Special Talents. J. Dent. Res. 2014, 93, 725–732. [Google Scholar] [CrossRef]
- Greenwood, D.; Afacan, B.; Emingil, G.; Bostanci, N.; Belibasakis, G.N. Salivary Microbiome Shifts in Response to Periodontal Treatment Outcome. Proteom. Clin. Appl. 2020, 14, e2000011. [Google Scholar] [CrossRef]
- Aja, E.; Mangar, M.; Fletcher, H.M.; Mishra, A. Filifactor alocis: Recent Insights and Advances. J. Dent. Res. 2021, 100, 790–797. [Google Scholar] [CrossRef]
- Schlafer, S.; Riep, B.; Griffen, A.L.; Petrich, A.; Hubner, J.; Berning, M.; Friedmann, A.; Gobel, U.B.; Moter, A. Filifactor alocis—involvement in periodontal biofilms. BMC Microbiol. 2010, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Martin, I.; Doolittle-Hall, J.; Teles, R.P.; Patel, M.; Belibasakis, G.N.; Hammerle, C.H.F.; Jung, R.E.; Teles, F.R.F. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J. Clin. Periodontol. 2017, 44, 1274–1284. [Google Scholar] [CrossRef]
- Gomes, B.; Louzada, L.M.; Almeida-Gomes, R.F.; Pinheiro, E.T.; Sousa, E.L.R.; Jacinto, R.C.; Arruda-Vasconcelos, R. Investigation of Filifactor alocis in primary and in secondary endodontic infections: A molecular study. Arch. Oral Biol. 2020, 118, 104826. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Rechenberg, D.K.; Thurnheer, T.; Luthi-Schaller, H.; Belibasakis, G.N. FISHing for gutta-percha-adhered biofilms in purulent post-treatment apical periodontitis. Mol. Oral Microbiol. 2017, 32, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Miralda, I.; Uriarte, S.M. Periodontal Pathogens’ strategies disarm neutrophils to promote dysregulated inflammation. Mol. Oral Microbiol. 2021, 36, 103–120. [Google Scholar] [CrossRef]
- Miralda, I.; Vashishta, A.; Rogers, M.N.; Lamont, R.J.; Uriarte, S.M. The emerging oral pathogen, Filifactor alocis, extends the functional lifespan of human neutrophils. Mol. Microbiol. 2022, 117, 1340–1351. [Google Scholar] [CrossRef]
- Uriarte, S.M.; Edmisson, J.S.; Jimenez-Flores, E. Human neutrophils and oral microbiota: A constant tug-of-war between a harmonious and a discordant coexistence. Immunol. Rev. 2016, 273, 282–298. [Google Scholar] [CrossRef]
- Armstrong, C.L.; Klaes, C.K.; Vashishta, A.; Lamont, R.J.; Uriarte, S.M. Filifactor alocis manipulates human neutrophils affecting their ability to release neutrophil extracellular traps induced by PMA. Innate Immun. 2018, 24, 210–220. [Google Scholar] [CrossRef]
- Edmisson, J.S.; Tian, S.; Armstrong, C.L.; Vashishta, A.; Klaes, C.K.; Miralda, I.; Jimenez-Flores, E.; Le, J.; Wang, Q.; Lamont, R.J.; et al. Filifactor alocis modulates human neutrophil antimicrobial functional responses. Cell Microbiol. 2018, 20, e12829. [Google Scholar] [CrossRef]
- Miralda, I.; Vashishta, A.; Uriarte, S.M. Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. Adv. Exp. Med. Biol. 2019, 1197, 165–178. [Google Scholar] [CrossRef]
- Nogueira, A.V.B.; Nokhbehsaim, M.; Damanaki, A.; Eick, S.; Kirschneck, C.; Schroder, A.; Jantsch, J.; Deschner, J. Filifactor alocis and Tumor Necrosis Factor-Alpha Stimulate Synthesis of Visfatin by Human Macrophages. Int. J. Mol. Sci. 2021, 22, 1235. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lim, Y.; An, S.J.; Choi, B.K. Characterization and immunostimulatory activity of extracellular vesicles from Filifactor alocis. Mol. Oral Microbiol. 2020, 35, 1–9. [Google Scholar] [CrossRef]
- Oscarsson, J.; Claesson, R.; Bao, K.; Brundin, M.; Belibasakis, G.N. Phylogenetic Analysis of Filifactor alocis Strains Isolated from Several Oral Infections Identified a Novel RTX Toxin, FtxA. Toxins 2020, 12, 687. [Google Scholar] [CrossRef] [PubMed]
- Song, M.K.; Kim, H.Y.; Choi, B.K.; Kim, H.H. Filifactor alocis-derived extracellular vesicles inhibit osteogenesis through TLR2 signaling. Mol. Oral Microbiol. 2020, 35, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Song, M.K.; Gho, Y.S.; Kim, H.H.; Choi, B.K. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2. J. Extracell. Vesicles 2021, 10, e12157. [Google Scholar] [CrossRef]
- Bao, K.; Claesson, R.; Gehrig, P.; Grossmann, J.; Oscarsson, J.; Belibasakis, G.N. Proteomic Characterization of the Oral Pathogen Filifactor alocis Reveals Key Inter-Protein Interactions of Its RTX Toxin: FtxA. Pathogens 2022, 11, 590. [Google Scholar] [CrossRef]
- Bao, K.; Bostanci, N.; Thurnheer, T.; Belibasakis, G.N. Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci. Rep. 2017, 7, 4409. [Google Scholar] [CrossRef]
- Owji, H.; Nezafat, N.; Negahdaripour, M.; Hajiebrahimi, A.; Ghasemi, Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur. J. Cell Biol. 2018, 97, 422–441. [Google Scholar] [CrossRef]
- Ozuna, H.; Snider, I.; Belibasakis, G.N.; Oscarsson, J.; Johansson, A.; Uriarte, S.M. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. Front. Oral Health 2022, 3, 981343. [Google Scholar] [CrossRef]
- Schmidt, A.; Forne, I.; Imhof, A. Bioinformatic analysis of proteomics data. BMC Syst. Biol. 2014, 8 (Suppl. S2), S3. [Google Scholar] [CrossRef]
- Yang, X.Y.; Lu, J.; Sun, X.; He, Q.Y. Application of subproteomics in the characterization of Gram-positive bacteria. J. Proteom. 2012, 75, 2803–2810. [Google Scholar] [CrossRef]
- Kieselbach, T.; Oscarsson, J. Dataset of the proteome of purified outer membrane vesicles from the human pathogen Aggregatibacter actinomycetemcomintans. Data Brief 2017, 10, 426–431. [Google Scholar] [CrossRef]
- Aruni, A.W.; Roy, F.; Sandberg, L.; Fletcher, H.M. Proteome variation among Filifactor alocis strains. Proteomics 2012, 12, 3343–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accession | ATCC 35896 | 854G-16U | 117A-17U | 149A-17U | 624B-08U | 10E-17U | 373F-17U | 6B-17U | 413B3-17U | 148B-17U | Detection Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
EFE27936.1 | Yes | No | No | Yes | No | No | No | No | No | No | 2 of 10 |
EFE28939.1 | Yes | No | No | No | No | No | Yes | No | No | No | 2 of 10 |
EFE27713.1 | No | No | No | No | Yes | No | No | Yes | Yes | Yes | 4 of 10 |
ADW16141.1 | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No | 6 of 10 |
EFE28478.1 | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | 8 of 10 |
EFE29027.1 | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | No | 8 of 10 |
EFE27649.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE27651.2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE27691.2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE27826.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE27857.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE27973.2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28170.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28360.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28380.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28455.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28784.2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28789.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28823.2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28824.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28882.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28913.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28918.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE28922.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
EFE29086.1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | 10 of 10 |
F. alocis Strain | All 24 Proteins | 16 Regulated Proteins | ||
---|---|---|---|---|
Most Abundant | Least Abundant | Most Abundant | Least Abundant | |
10E-17U | 3 | 4 | 2 | 2 |
117A-17U | 0 | 1 | 0 | 0 |
148B-17U | 0 | 3 | 0 | 2 |
149A-17U | 3 | 1 | 2 | 0 |
373F-17U | 3 | 3 | 1 | 3 |
413B3-17U | 1 | 5 | 1 | 4 |
624B-08U | 3 | 0 | 1 | 0 |
6B-17U | 1 | 4 | 1 | 4 |
854G-16U | 5 | 1 | 3 | 1 |
ATCC 35896 | 5 | 2 | 5 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, K.; Claesson, R.; Belibasakis, G.N.; Oscarsson, J. Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates. Microorganisms 2022, 10, 1826. https://doi.org/10.3390/microorganisms10091826
Bao K, Claesson R, Belibasakis GN, Oscarsson J. Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates. Microorganisms. 2022; 10(9):1826. https://doi.org/10.3390/microorganisms10091826
Chicago/Turabian StyleBao, Kai, Rolf Claesson, Georgios N. Belibasakis, and Jan Oscarsson. 2022. "Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates" Microorganisms 10, no. 9: 1826. https://doi.org/10.3390/microorganisms10091826
APA StyleBao, K., Claesson, R., Belibasakis, G. N., & Oscarsson, J. (2022). Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates. Microorganisms, 10(9), 1826. https://doi.org/10.3390/microorganisms10091826