In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites
2.2. Sampling
2.3. Measurement of the Soil Properties
2.4. DNA Extraction and Sequencing
2.5. Statistics
3. Results
3.1. The Variation in the Soil Nutrients
3.2. The Variation in the AMF Community
3.3. The Economic Analysis of Sarcandra Glabra In-Forest Planting
4. Discussion
4.1. The Influences of Sarcandra Glabra Cultivation on Soil Nutrients
4.2. The Influences of Sarcandra Glabra Cultivation on the AMF of Cunninghamia lanceolata
4.3. The Income from Sarcandra Glabra In-Forest Planting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- David, S. Agroforestry: New hope for subsistence farmers. Nature 1979, 280, 533–534. [Google Scholar] [CrossRef]
- Mukhlis, I.; Rizaludin, M.S.; Hidayah, I. Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. Forests 2022, 13, 556. [Google Scholar] [CrossRef]
- Bank, W. Sustaining Forests: A Development Strategy; World Bank Publications: Washington, DC, USA, 2004. [Google Scholar]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, S.; Murthy, I.K.; Kadaverugu, R.; Dasgupta, R.; Kumar, M.; Adesh Gadpayle, K. Agroforestry to Achieve Global Climate Adaptation and Mitigation Targets: Are South Asian Countries Sufficiently Prepared? Forests 2021, 12, 303. [Google Scholar] [CrossRef]
- Kaoma, H.; Shackleton, C.M. The direct-use value of urban tree non-timber forest products to household income in poorer suburbs in South African towns. For. Policy Econ. 2015, 61, 104–112. [Google Scholar] [CrossRef]
- Lebmeister, A.; Heubach, K.; Lykke, A.M.; Thiombiano, A.; Wittig, R.; Hahn, K. The contribution of non-timber forest products (NTFPs) to rural household revenues in two villages in south-eastern Burkina Faso. Agrofor. Syst. 2018, 92, 139–155. [Google Scholar] [CrossRef]
- Agathokleous, E.; Barceló, D.; Rinklebe, J.; Sonne, C.; Calabrese, E.J.; Koike, T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. Sci. Total Environ. 2022, 820, 153116. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Ravi Kanth Reddy, P.; Obaisi, A.I.; Elghandour, M.M.M.Y.; Oyebamiji, K.J.; Salem, A.Z.M.; Morakinyo-Fasipe, O.T.; Cipriano-Salazar, M.; Camacho-Díaz, L.M. Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations—An overview. J. Clean. Prod. 2020, 242, 118319. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Mader, P.; Dubois, D.; Ineichen, K.; Boller, T.; Wiemken, A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 2004, 138, 574–583. [Google Scholar] [CrossRef]
- Gillespie, A.R. Modelling nutrient flux and interspecies root competition in agroforestry interplantings. Agrofor. Syst. 1989, 8, 257–265. [Google Scholar] [CrossRef]
- Huang, L.; Wang, B.; Niu, X.; Gao, P.; Song, Q. Changes in ecosystem services and an analysis of driving factors for China’s Natural Forest Conservation Program. Ecol. Evol. 2019, 9, 3700–3716. [Google Scholar] [CrossRef]
- Qin, W. The agroforestry Sarcandra glabra cultivation technology. Mod. Agrotechnology 2019, 2019, 64–65. (In Chinese) [Google Scholar]
- Lan, S.; Ma, L.; Huang, S.; Lu, F.; Meng, W. The organic agroforestry Sarcandra glabra cultivation technologies. Mod. Agrotechnol. 2022, 2022, 42–44. (In Chinese) [Google Scholar] [CrossRef]
- Urcelay, C.; Díaz, S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol. Lett. 2010, 6, 388–391. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Cruz, A.; Ishii, T. Arbuscular mycorrhizal fungus spores host bacteria and their biofilm efficient in nutrient biodynamics and soil-borne plant pathogen suppression. Nat. Preced. 2011, 18, 1–13. [Google Scholar] [CrossRef]
- Wang, W.; Shi, J.; Xie, Q.; Jiang, Y.; Yu, N.; Wang, E. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Mol. Plant 2017, 10, 1147–1158. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.-S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef]
- Gollotte, A.; Tuinen, D.V.; Atkinson, D. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 2004, 14, 111–117. [Google Scholar] [CrossRef]
- Guo, H.; Ye, C.; Zhang, H.; Pan, S.; Ji, Y.; Li, Z.; Liu, M.; Zhou, X.; Du, G.; Hu, F. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol. Biochem. 2017, 113, 26–34. [Google Scholar]
- Darunsontaya, T.; Suddhiprakarn, A.; Kheoruenromne, I.; Prakongkep, N.; Gilkes, R.J. The forms and availability to plants of soil potassium as related to mineralogy for upland Oxisols and Ultisols from Thailand. Geoderma 2012, 170, 11–24. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, A.; Liu, G.; Zhou, X.; Yin, J.; Liang, Y.; Wang, F.; Zhuang, G. Reduced interactivity during microbial community degradation leads to the extinction of Tricholomas matsutake. Land Degrad. Dev. 2021, 32, 5118–5128. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Opik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, U.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Liu, C.-L.; Zhang, X.; Liu, J.; Wang, Y.; Sukhova, G.K.; Wojtkiewicz, G.R.; Liu, T.; Tang, R.; Achilefu, S.; Nahrendorf, M.; et al. Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat. Commun. 2019, 10, 3978. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Yang, G.; Peng, Y.; Abbott, B.W.; Biasi, C.; Wei, B.; Zhang, D.; Wang, J.; Yu, J.; Li, F.; Wang, G.; et al. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Glob. Change Biol. 2021, 27, 5818–5830. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Tao, Y.; Fang, N.; Yang, G.; Cai, J.; Jiang, Y.; Han, X.; Yu, F.-H.; Li, M.-H. Beneficial effects of nitrogen deposition on carbon and nitrogen accumulation in grasses over other species in Inner Mongolian grasslands. Glob. Ecol. Conserv. 2021, 26, e01507. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Zhao, L.; Kuzyakov, Y. Shrubs magnify soil phosphorus depletion in Tibetan meadows: Conclusions from C:N:P stoichiometry and deep soil profiles. Sci. Total Environ. 2021, 785, 147320. [Google Scholar] [CrossRef]
- Spohn, M.; Zavišić, A.; Nassal, P.; Bergkemper, F.; Schulz, S.; Marhan, S.; Schloter, M.; Kandeler, E.; Polle, A. Temporal variations of phosphorus uptake by soil microbial biomass and young beech trees in two forest soils with contrasting phosphorus stocks. Soil Biol. Biochem. 2018, 117, 191–202. [Google Scholar] [CrossRef]
- Canfield, D.E.; Kristensen, E.; Thamdrup, B. The Phosphorus Cycle. Adv. Mar. Biol. 2005, 48, 419–440. [Google Scholar]
- Bradbury, I.K.; Malcolm, D. The effect of phosphorus and potassium on transpiration, leaf diffusive resistance and water-use efficiency in Sitka spruce (Picea sitchensis) seedlings. J. Appl. Ecol. 1977, 14, 631–641. [Google Scholar] [CrossRef]
- Bohacz, J.; Korniłłowicz-Kowalska, T.; Rybczyńska-Tkaczyk, K.; Andruszczak, S. Impact of the Cultivation System and Plant Cultivar on Arbuscular Mycorrhizal Fungi of Spelt (Triticum aestivum ssp. Spelta L.) in a Short-Term Monoculture. Pathogens 2022, 11, 844. [Google Scholar]
- Baert, J.M.; De Laender, F.; Sabbe, K.; Janssen, C.R. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology 2016, 97, 3433–3440. [Google Scholar] [CrossRef]
- Damore, J.A.; Gore, J. Understanding microbial cooperation. J. Theor. Biol. 2012, 299, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chu, C.; Myers, J.A.; Gilbert, G.S.; Lutz, J.A.; Stillhard, J.; Zhu, K.; Thompson, J.; Baltzer, J.L.; He, F.; et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 2021, 12, 3137. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.-X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Shi, W.; Min, J.; Gao, N.; Zhang, H.; Yin, R.; He, X. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 2010, 337, 137–150. [Google Scholar] [CrossRef]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef]
- Kaldorf, M.; Kuhn, A.J.; Schröder, W.H.; Hildebrandt, U.; Bothe, H. Selective Element Deposits in Maize Colonized by a Heavy Metal Tolerance Conferring Arbuscular Mycorrhizal Fungus. J. Plant Physiol. 1999, 154, 718–728. [Google Scholar] [CrossRef]
- Perner, H.; Schwarz, D.; Bruns, C.; Mäder, P.; George, E. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 2007, 17, 469–474. [Google Scholar] [CrossRef]
- Baslam, M.; Garmendia, I.; Goicoechea, N. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci. Hortic. 2013, 164, 145–154. [Google Scholar] [CrossRef]
- Voets, L.; Declerck, P.S. Glomeraceae and Gigasporaceae Differ in Their Ability to Form Hyphal Networks. New Phytol. 2006, 172, 185–188. [Google Scholar] [CrossRef]
- Treseder, K.K.; Turner, K.M.; Mack, M.C. Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: Potential consequences for soil carbon storage. Glob. Change Biol. 2007, 13, 78–88. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhou, L.; Zhao, M.; Li, L. Anji Zhejiang: Clear waters and green mountains are as good as mountains of gold and silver. Chin. Financ. 2021, 2021, 43–46. [Google Scholar] [CrossRef]
- Huang, R. Insist on “clear waters and green mountains are as good as mountains of gold and silver” theory and promote comprehensive green transformation of economic and social development. Learn. Times 2021, 2, 2. [Google Scholar]
- Li, S.; Liu, X.; Zhou, G.; Tu, Z.; Zhang, W.; Liu, P.; Zhang, R.; Wang, X.; Liao, Y.; Guo, Y.; et al. Present situation analysis and thinking prospect of non-timber forest based economy development in Jiangxi Province. South China For. Sci. 2020, 48, 69–73. (In Chinese) [Google Scholar] [CrossRef]
- Wu, N.; Zhang, L.; Guo, C.; Hu, D.; Du, T. The Advantages and Strategies of Developing Understory Vegetation Based Forestry Economy in Jiangxi. Ecol. Econ. 2009, 64, 125–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Ouyang, T.; Liu, L.; Xia, S.; Jia, Q. In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata. Microorganisms 2022, 10, 1844. https://doi.org/10.3390/microorganisms10091844
Zhou H, Ouyang T, Liu L, Xia S, Jia Q. In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata. Microorganisms. 2022; 10(9):1844. https://doi.org/10.3390/microorganisms10091844
Chicago/Turabian StyleZhou, Hanchang, Tianlin Ouyang, Liting Liu, Shiqi Xia, and Quanquan Jia. 2022. "In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata" Microorganisms 10, no. 9: 1844. https://doi.org/10.3390/microorganisms10091844
APA StyleZhou, H., Ouyang, T., Liu, L., Xia, S., & Jia, Q. (2022). In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata. Microorganisms, 10(9), 1844. https://doi.org/10.3390/microorganisms10091844