Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collections of Plant Samples
2.2. Isolation of Endophytes
2.3. Preliminary Screening of Bioactive Properties of Fungal Isolates
2.4. Antifungal Activity
2.5. Fungal Metabolites Extraction
2.6. Phytochemical Screening
2.7. Large-Scale Cultivation
2.8. Genotypic Identification
2.9. Biological Activity
2.10. Cytotoxic Assay
2.11. DNA Protection Assay
2.12. FT-IR Analysis
2.13. Identification of Bioactive Constituents by GC-MS
2.14. Statistical Analysis
3. Results
3.1. Isolation and Morphological Identification of Endophytic Fungi
3.2. Preliminary Screening for Antifungal Activity
3.3. Production and Extraction of Secondary Metabolites
3.4. Qualitative Screening for Secondary Metabolites
3.5. Molecular Identification of Endophytic Fungus
3.6. Bioactivity Analysis
3.6.1. Antioxidant
3.6.2. Cytotoxic Activity
3.7. DNA Protection Ability
3.8. FT-IR
3.9. Detection of Bioactive Compounds by GC-MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aladesanmi, A.J.; Iwalewa, E.O.; Adebajo, A.C.; Akinkunmi, E.O.; Taiwo, B.J.; Olorunmola, F.O.; Lamikanra, A. Antimicrobial and antioxidant activities of some Nigerian medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2006, 4, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, Q.; Lu, X.; Okane, I.; Kakishima, M. Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol. Prog. 2011, 11, 781–790. [Google Scholar] [CrossRef]
- Liu, C.; Liu, T.; Yuan, F.; Gu, Y. Isolating endophytic fungi from evergreen plants and determining their antifungal activities. Afr. J. Microbiol. Res. 2010, 4, 2243–2248. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, M.; Gupta, P.; Pareek, A.; Singh, D.P.; et al. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Alhakmani, F.; Khan, S.A.; Ahmad, A. Determination of total phenol, in-vitro antioxidant and anti-inflammatory activity of seeds and fruits of Zizyphus spina christi grown in Oman. Asian Pac. J. Trop. Biomed. 2014, 4, S656–S660. [Google Scholar] [CrossRef] [Green Version]
- Wise, R. The worldwide threat of antimicrobial resistance. Curr. Sci. 2008, 95, 181–187. [Google Scholar]
- Khalil, A.M.A.; Abdelaziz, A.M.; Khaleil, M.M.; Hashem, A.H. Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol. 2021, 72, 263–274. [Google Scholar] [CrossRef]
- Sharaf, M.H.; Abdelaziz, A.M.; Kalaba, M.H.; Radwan, A.A.; Hashem, A.H. Antimicrobial, antioxidant, cytotoxic, activities and phytochemical analysis of fungal endophytes isolated from Ocimum Basilicum. Appl. Biochem. Biotechnol. 2022, 194, 1271–1289. [Google Scholar] [CrossRef]
- Maharachchikumbura, S.S.N.; Guo, L.D.; Chukeatirote, E.; Bahkali, A.H.; Hyde, K.D. Pestalotiopsis morphology, phylogeny, biochemistry and diversity. Fungal Divers. 2011, 50, 167–187. [Google Scholar] [CrossRef]
- Sharma, D.; Pramanik, A.; Agrawal, P.K. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 2016, 6, 210. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Kim, H.J.; Hur, B.K. Taxol-producing [corrected] fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidate. J. Biosci. Bioeng. 2010, 110, 541–546. [Google Scholar] [CrossRef]
- Deyrup, S.T.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T. Caryophyllene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis disseminata. J. Nat. Prod. 2006, 69, 608–611. [Google Scholar] [CrossRef]
- Ding, G.; Liu, S.; Guo, L.; Zhou, Y.; Che, Y. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J. Nat. Prod. 2008, 71, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Elsabea, A.M.R. An economic study of processing problems for the main important varieties of dates in Saudi Arabia. Ann. Agric. Sci. 2012, 57, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Almadini, A.M.; Ismail, A.I.H.; Ameen, F.A. Assessment of farmers practices to date palm soil fertilization and its impact on productivity at Al-Hassa oasis of KSA. Saudi J. Biol. Sci. 2021, 28, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Musselman, L.J. Handbook of arabian medicinal plants. Shahina A. Ghazanfar. Econ. Bot. 1995, 49, 422. [Google Scholar] [CrossRef]
- Hawar, S.N. Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as medicinal plant. Int. J. Biomater. 2022, 2022, 2135927. [Google Scholar] [CrossRef]
- Dobranic, J.K.; Johnson, J.A.; Alikhan, Q.R. Isolation of endophytic fungi from eastern larch (Larix lancina) leaves from New Brunswick, Canada. Can. J. Microbiol. 1995, 41, 194–198. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi; APS Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Seifert, K.A. Compendium of soil fungi-by Domsch, K.H.; Gams, W.; Anderson, T.H. Eur. J. Soil Sci. 2008, 59, 1007. [Google Scholar] [CrossRef]
- Verma, V.C.; Kharwar, R.N.; Strobel, G.A. Chemical and functional diversity of natural products from plant associated endophytic fungi. Nat. Prod. Commun. 2009, 4, 1511–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, K.; Futai, K. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Canad. J. Bot. 1995, 73, 384–390. [Google Scholar] [CrossRef]
- Kumar, D.S.S.; Hyde, K.D. Biodiversity and tissue recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers. 2004, 17, 69–90. [Google Scholar]
- Lu, L.; Karunarathna, S.C.; Hyde, K.D.; Suwannarach, N.; Elgorban, A.M.; Stephenson, S.L.; Al-Rejaie, S.; Jayawardena, R.S.; Tibpromma, S. Endophytic fungi associated with coffee leaves in China exhibited in vitro antagonism against fungal and bacterial pathogens. J. Fungi 2022, 8, 698. [Google Scholar] [CrossRef]
- Kokate, C.K.; Purohit, A.P.; Gokhale, S.B. Pharmacognosy; Nirali Prakashan: Pune, India, 2005. [Google Scholar]
- Maobe, M.A.G.; Gatebe, E.; Gitu, L.; Rotich, H. Preliminary phytochemical screening of eight selected medicinal herbs used for the treatment of diabetes, malaria and pneumonia in Kisii region, Southwest Kenya. Eur. J. Appl. Sci. 2013, 5, 1–6. [Google Scholar] [CrossRef]
- Plaza, G.A.; Upchurch, R.; Brigmon, R.L.; Whitman, W.B.; Ulfig, K. Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Pol. J. Environ. Stud. 2004, 13, 315–318. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Yehia, R.S. Evaluation of the biological activities of β-glucan isolated from Lentinula edodes. Lett. Appl. Microbiol. 2022, 75, 317–329. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Ullah, F.; Wadood, A.; Sadiq, A.; Shareef, A.; Ayaz, M. Cytotoxicity, anti-angiogenic, anti-tumor and molecular docking studies on phytochemicals isolated from Polygonum hydropiper L. BMC Complement. Med. Ther. 2021, 21, 239. [Google Scholar] [CrossRef]
- Ghanta, S.; Banerjee, A.; Poddar, A.; Chattopadhyay, S. Oxidative DNA damage preventive activity and antioxidant potential of Stevia rebaudiana (Bertoni) Bertoni, a natural sweetener. J. Agric. Food Chem. 2007, 55, 10962–10967. [Google Scholar] [CrossRef]
- Dar, R.A.; Rather, S.A.; Mushtaq, S.; Qazi, P.H. Purification and characterization of endophytic fungal strains from four different high value medicinal plants of Kashmir valley. Int. J. Phytopharm. 2015, 5, 8–11. [Google Scholar] [CrossRef]
- Boyle, C.; Gotz, M.; Dammann-Tugend, U.; Schulz, B. Endophyte-host interaction III. Local vs. Systemic colonization. Symbiosis 2001, 31, 259–281. [Google Scholar]
- Carroll, M.C. The complement system in regulation of adaptive immunity. Nat. Immunol. 2004, 5, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.E.; Maynard, Z.; Gilbert, G.S.; Coley, P.D.; Kursar, T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 2000, 3, 267–274. [Google Scholar] [CrossRef]
- Davis, E.C.; Franklin, J.B.; Shaw, A.J.; Vilgalys, R. Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: Phylogenetics, distribution, and symbiosis. Am. J. Bot. 2003, 90, 1661–1667. [Google Scholar] [CrossRef]
- Demers, J.E.; Gugino, B.K.; Jiménez-Gasco, M.M. Highly diverse endophytic and soil Fusarium oxysporum populations associated with field-grown tomato plants. Appl. Environ. Microbiol. 2015, 81, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjer, J.; Wray, V.; Edrada-Ebel, R.; Ebel, R.; Pretsch, A.; Lin, W.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J. Nat. Prod. 2009, 72, 2053–2057. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Liu, Z.; Lu, Y.; Xia, G.; Liu, H.; He, L.; She, Z. Bioactive metabolites from mangrove endophytic fungus Aspergillus sp. 16-5B. Mar. Drugs 2015, 13, 3091–3102. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.L.; Huang, L.; Li, H.Y.; Yang, D.F.; Li, Z.Z. Two new compounds from the plant endophytic fungus Pestalotiopsis versicolor. J. Asian Nat. Prod. Res. 2015, 17, 333–337. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Qin, J.; Qu, X.; Liu, J.; Li, X.; Pan, H. Antifungal metabolites produced by Chaetomium globosum No. 04, an endophytic fungus isolated from Ginkgo biloba. Ind. J. Microbiol. 2013, 53, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Sharma, D.; Jodan, N.; Agrawal, P.K. Antimicrobial and phytochemical screening of endophytic fungi isolated from spikes of Pinus rouxburghii. Arch. Clin. Microbiol. 2015, 6, 1. [Google Scholar]
- Tan, X.M.; Zhou, Y.Q.; Zhou, X.L.; Xia, X.H.; Wei, Y.; He, L.L.; Tang, H.Z.; Yu, Y. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci. Rep. 2018, 8, 5929. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.K.; Dai, C.C.; Liu, X.Z. Mechanisms of fungal endophytes in plant protection against pathogens. Afr. J. Microbiol. Res. 2010, 4, 1346–1351. [Google Scholar]
- Muhaj, F.F.; George, S.J.; Nguyen, C.D.; Tyring, S.K. Antimicrobials and resistance part II: Antifungals, antivirals, and antiparasitics. J. Am. Acad. Dermatol. 2022, 86, 1207–1226. [Google Scholar] [CrossRef]
- Tejesvi, M.V.; Kini, K.R.; Prakash, H.S.; Subbiah, V.; Shetty, H.S. Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers. 2007, 24, 37. [Google Scholar]
- Phongpaichit, S.; Rungjindamai, N.; Rukachaisirikul, V.; Sakayaroj, J. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol. Med. Microbiol. 2006, 48, 367–372. [Google Scholar] [CrossRef]
- Suryanarayanan, T.S. Repository of fungal endophytes at Vinstrom, Chennai: Waiting to be harnessed. Curr. Sci. 2019, 117, 1469. [Google Scholar] [CrossRef]
- Sudha, V.; Govindaraj, R.; Baskar, K.; Al-Dhabi, N.A.; Duraipandiyan, V. Biological properties of endophytic fungi. Braz. Arch. Biol. Technol. 2016, 59. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Gao, J.; Munir, I.; Zhang, M.; Liu, Y.; Moe, T.S.; Xue, J.; Zhang, X. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. Biomed. Res. Int. 2021, 2021, 9930210. [Google Scholar] [CrossRef]
- Gopiesh, k.V.; Kannabiran, K. Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata. World J. Microbiol Biotechnol. 2008, 24, 2737–2740. [Google Scholar] [CrossRef]
- Selim, S.A.; El-Alfy, S.; Al-Ruwaili, M.; Abdo, A.; Al-Jaouni, S. Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol. 2011, 11, 416–422. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006, 78, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Hajdú, Z.; Hohmann, J.; Forgo, P.; Martinek, T.; Dervarics, M.; Zupkó, I.; Falkay, G.; Cossuta, D.; Máthé, I. Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents. Phytother. Res. 2007, 21, 391–394. [Google Scholar] [CrossRef]
- Tran, H.B.Q.; Mcrae, J.M.; Lynch, F.; Palombo, E.A. Identification and bioactive properties of endophytic fungi isolated from phyllodes of Acacia species. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; Volume 1, pp. 377–382. [Google Scholar]
- Muthukrishnan, S.D.; Subramaniyan, A. Phytochemical constituents of Gloriosa superb seed, tuber and leaves. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 111–117. [Google Scholar]
- Devi, N.N.; Prabakaran, J.J.; Wahab, F. Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac. J. Trop. Med. 2012, 2, S1280–S1284. [Google Scholar] [CrossRef]
- Wei, J.G.; Tong, X.; Liang-Dong, G.; Liu, A.R.; Ying, Z.; Pan, X.H. Endophytic Pestalotiopsis species from southern China. Mycosystema 2005, 24, 481–493. [Google Scholar]
- Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg. Med. Chem. 2008, 16, 7894–7899. [Google Scholar] [CrossRef]
- Garcia, A.; Rhoden, S.A.; Bernardi-Wenzel, J.; Orlandelli, R.C.; Azevedo, J.L.; Pamphile, J.A. Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria L. J. Appl. Pharm. Sci. 2012, 2, 35–40. [Google Scholar] [CrossRef]
- Scholz, E.; Rimpler, H. Proanthocyanidins from Krameria triandra root. Planta Med. 1989, 55, 379–384. [Google Scholar] [CrossRef]
- Sri-Harsha, P.S.C.; Khan, M.I.; Prabhakar, P.; Giridhar, P. Cyanidin-3-glucoside, nutritionally important constituents and in vitro antioxidant activities of Santalum album L. berries. Int. Food Res. J. 2013, 50, 275–281. [Google Scholar] [CrossRef]
- Chandra, P.; Arora, D.S. Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. J. Appl. Nat. Sci. 2009, 1, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Song, T.Y.; Yen, G.C. Antioxidant properties of Antrodia camphorata in submerged culture. J. Agric. Food Chem. 2002, 50, 3322–3327. [Google Scholar] [CrossRef]
- Gebhardt, P.; Dornberger, K.; Gollmick, F.A.; Gräfe, U.; Härtl, A.; Görls, H.; Schlegel, B.; Hertweck, C. Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill). Bioorg. Med. Chem. Lett. 2007, 17, 2558–2560. [Google Scholar] [CrossRef] [PubMed]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Güder, A.; Korkmaz, H. Evaluation of in vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran J. Pharm. Res. 2012, 11, 913–923. [Google Scholar] [PubMed]
- Zhou, X.; Chan, K.; Yeung, J.H. Herb-drug interactions with Danshen (Salvia miltiorrhiza): A review on the role of cytochrome P450 enzymes. Drug Metabol. Drug Interact. 2012, 27, 9–18. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, L.; Wang, J.; Shan, T.; Zhong, L.; Liu, X.; Gao, X.Y. Endophytic fungi for producing bioactive compounds originally from their host plants. In Current Research, Technology and education Topics in Applied Microbiology and Microbial Biotechnology; Méndez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2010; Volume 1, p. 567576. [Google Scholar]
- Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep. 2011, 28, 1208–1228. [Google Scholar] [CrossRef]
- Kusari, S.; Pandey, S.P.; Spiteller, M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 2013, 91, 81–87. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Q.Y.; Jia, M.; Qian-Liang, M.; Yue, W.; Rahman, K.; Lu-Ping, Q.; Han, T. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit. Rev. Microbiol. 2016, 42, 454–473. [Google Scholar] [CrossRef]
- Cui, J.L.; Guo, S.X.; Xiao, P.G. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J. Zhejiang Univ. Sci. B 2011, 12, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Burns, A.M.; Liu, M.X.; Faeth, S.H.; Gunatilaka, A.A. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J. Nat. Prod. 2007, 70, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, A.M.; Conti, R.; Turatti, I.C.C.; Cavalcanti, B.C.; Costa-Lotufo, L.V.; Pessoa, C.; de Moraes, M.O.; Manfrim, V.; Toledo, J.S.; Toledo, J.S.; et al. Bioactive extracts and chemical constituents of two endophytic strains of Fusarium oxysporum. Rev. Bras. Farmacogn. 2012, 22, 1276–1281. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Kim, H.R.; Kim, J.; Jang, Y.S. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J. Agric. Food Chem. 2002, 50, 6490–6496. [Google Scholar] [CrossRef]
- Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms 2021, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef] [PubMed]
- Ragavendran, P.; Sophia, D.; Arul Raj, C.; Gopalakrishnan, V.K. Functional group analysis of various extracts of Aerva lanata (L.,) by FTIR spectrum. Pharmacologyonline 2011, 1, 358–364. [Google Scholar]
- Pednekar, P.A.; Raman, B. Antimicrobial and antioxidant potential with FTIR analysis of Ampelocissus latifolia (roxb.) Planch. Leaves. Asian J. Pharm. Clin. Res. 2013, 6, 67–73. [Google Scholar]
- Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev. 2011, 111, 6984–7034. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M. Biologically active pyrazole derivatives. New J. Chem. 2017, 41, 16–41. [Google Scholar] [CrossRef]
- Ali, S.M.; Khan, A.A.; Ahmed, I.; Musaddiq, M.; Ahmed, K.S.; Polasa, H.; Rao, L.V.; Habibullah, C.M.; Sechi, L.A.; Ahmed, N. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob. 2005, 4, 20. [Google Scholar] [CrossRef]
- Pinto, E.; Vale-Silva, L.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2009, 58, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Chen, H.; Fan, Y.; Shi, Z. Antifungal activity of eugenol against Botrytis cinerea. Trop. Plant Pathol. 2010, 35, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, H.; Raimondi, M.; Svetaz, L.; Liberto, M.D.; Rodriguez, M.V.; Espinoza, L.; Madrid, A.; Zacchino, S. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules 2012, 17, 1002–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, M.; Hoshi, M.; Urano, S.; Endo, T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem. Pharm. Bull. 2000, 48, 1467–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.Q.; Kenney, P.M.; Lam, L.K. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J. Nat. Prod. 1992, 55, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Song, R.Q.; Yang, L.B.; Deng, X. Isolation, purification, and structural identification of an antifungal compound from a Trichoderma strain. J. Microbiol. Biotechnol. 2015, 25, 1257–1264. [Google Scholar] [CrossRef]
- Habib, M.R.; Karim, M.R. Antimicrobial and cytotoxic activity of Di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) Flower. Mycobiology 2009, 37, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Lotfy, M.M.; Hassan, H.M.; Hetta, M.H.; El-Gendy, A.O.; Mohammed, R. Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 263–269. [Google Scholar] [CrossRef]
- McBain, A.J.; Ledder, R.G.; Moore, L.E.; Catrenich, C.E.; Gilbert, P. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 2004, 70, 3449–3456. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.; Hess, W.; Ford, E.; Sidhu, R.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. 1996, 17, 417–423. [Google Scholar] [CrossRef]
- Demain, A.L.; Zhang, L. Natural products and drug discovery. Nat. Prod. 2005, 3–29. [Google Scholar] [CrossRef]
Endophytic Fungi | No. | *CF% | *DF% | ||
---|---|---|---|---|---|
Genus | Species | Isolate Code | |||
Penicillium | 24 | ||||
P. chrysogenum | YH-1 | 13 | 3.4 | 6.8 | |
P. citrinum | YH-2 | 7 | 1.8 | 3.6 | |
P. corylophilum | YH-3 | 4 | 1.1 | 2.2 | |
Chaetomium | 23 | ||||
C. globosum | YH-4 | 19 | 5.0 | 9.9 | |
C. gracile | YH-5 | 2 | 0.5 | 1.0 | |
C. elatum | YH-6 | 2 | 0.5 | 1.0 | |
Aspergillus | 28 | ||||
A. versicolor | YH-7 | 4 | 1.1 | 2.2 | |
A. terreus | YH-8 | 1 | 0.3 | 0.6 | |
A. ochraceus | YH-9 | 7 | 1.8 | 3.6 | |
A. flavus | YH-10 | 16 | 4.2 | 8.3 | |
Colletotrichum | 9 | ||||
C. magnum | YH-11 | 6 | 1.6 | 3.2 | |
C. gloeosporioides | YH-12 | 3 | 0.8 | 1.6 | |
Periconia | 8 | ||||
P. macrospinosa | YH-13 | 8 | 2.1 | 4.2 | |
Xylaria | 12 | ||||
X. bambusicola | YH-14 | 3 | 0.8 | 0.6 | |
X. hypoxylon | YH-15 | 9 | 2.4 | 4.8 | |
Acremonium | 18 | ||||
A. cyanophagus | YH-16 | 18 | 4.7 | 9.3 | |
Alternaria | 5 | ||||
Alt. alternata | YH-17 | 4 | 1.1 | 2.2 | |
Alt. tenuissima | YH-18 | 1 | 0.3 | 0.6 | |
Fusarium | 19 | ||||
F. oxysporum | YH-19 | 13 | 3.4 | 6.8 | |
F. subglutinans | YH-20 | 3 | 0.8 | 1.6 | |
F. culmorumF. solani | YH-21YH-22 | 12 | 0.30.5 | 0.61.0 | |
Cladosporium | 16 | ||||
C. tenuissimum | YH-23 | 2 | 0.5 | 1.0 | |
C. nigrellam | YH-24 | 2 | 0.5 | 1.0 | |
C. cladosporioides | YH-25 | 12 | 3.2 | 6.4 | |
Pestalotiopsis | 29 | ||||
P. neglecta | YH-26 | 29 | 7.6 | 15.1 | |
Total | 191 | 50.3 |
Pathogenic Fungi | Fungal Endophytes | |||
---|---|---|---|---|
P. neglecta | A. cyanophagus | A. flavus | C. globosum | |
Alt. alternata | +++ | − | + | ++ |
C. albicans | ++ | + | ++ | + |
F. oxysporum | +++ | +++ | − | + |
B. cinerea | +++ | − | +++ | +++ |
P. ultimum | +++ | ++ | ++ | + |
Endophytic Fungi | Alkaloids | Phenols | Flavonoids | Saponins | Steroids | Terpenoids | Tannins |
---|---|---|---|---|---|---|---|
P. neglecta | + | + | + | + | + | + | + |
A. cyanophagus | + | − | − | + | + | − | − |
A. flavus | − | + | + | − | + | − | + |
C. globosum | + | + | − | − | − | + | + |
S. no. | Retention Time | Peak Area | Compound Name (IUPAC) | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
1 | 3.029 | 2.458 | Tolycaine | C15H22N2O3 | 278 |
2 | 16.071 | 56371 | 1H-Pyrazol, 1,3,5-trimethyl- | C6H10N2 | 110 |
3 | 17.792 | 99222 | Eugenol | C10H12O2 | 164 |
4 | 24.559 | 383248 | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethyl)- | C14H20O2 | 220 |
5 | 30.249 | 1.662 | Bis(2-ethylhexyl) phthalate | C24H38O4 | 390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almustafa, H.I.; Yehia, R.S. Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant. Microorganisms 2023, 11, 117. https://doi.org/10.3390/microorganisms11010117
Almustafa HI, Yehia RS. Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant. Microorganisms. 2023; 11(1):117. https://doi.org/10.3390/microorganisms11010117
Chicago/Turabian StyleAlmustafa, Hibah I., and Ramy S. Yehia. 2023. "Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant" Microorganisms 11, no. 1: 117. https://doi.org/10.3390/microorganisms11010117
APA StyleAlmustafa, H. I., & Yehia, R. S. (2023). Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant. Microorganisms, 11(1), 117. https://doi.org/10.3390/microorganisms11010117