Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host
Abstract
:1. What Are Metchnikovellids?
2. Four Hyperparasites for One Super-Host: Metchnikovellids Inhabiting Gregarines from the Gut of the Polychaete Pygospio elegans
3. Distribution and Prevalence of Four Metchnikovellid Species in the Host–Parasite System “Pygospio elegans—Gregarines”
4. Co-Occurring Metchnikovellid Infections within Gregarine Infrapopulations Inhabiting One Super-Host: Variations of Developmental Strategies
5. Impact of the Metchnikovellids on Gregarines
6. The Impact of Metchnikovellids on the Host–Parasite System “Pygospio elegans—Gregarines” with Notes on Hypothetical Life Cycle of Metchnikovellids and Presumable Ways of Transmission
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galindo, L.J.; Torruella, G.; López-García, P.; Ciobanu, M.; Gutiérrez-Preciado, A.; Karpov, S.A.; Moreira, D. Phylogenomics supports the monophyly of aphelids and fungi and identifies new molecular synapomorphies. Syst. Biol. 2022, syac054. [Google Scholar] [CrossRef]
- Karpov, S.A.; Mamkaeva, M.A.; Aleoshin, V.V.; Nassonova, E.; Lilje, O.; Gleason, F.H. Morphology, phylogeny, and ecology of the Aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front. Microbiol. 2014, 5, 112. [Google Scholar] [CrossRef] [Green Version]
- Jaroenlak, P.; Cammer, M.; Davydov, A.; Sall, J.; Usmani, M.; Liang, F.-X.; Ekiert, D.C.; Bhabha, G. 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog. 2020, 16, e1008738. [Google Scholar] [CrossRef]
- Vávra, J.; Ronny Larsson, J.I. Structure of Microsporidia. In Microsporidia; Weiss, L.M., Becnel, J.J., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2014; pp. 1–70. ISBN 978-1-118-39526-4. [Google Scholar]
- Vivier, E. Étude au microscope électronique, de la spore de Metchnikovella hovassei n. sp.; appartenance des Metchnikovellidae aux Microsporidies. C R. Acad. Sci. Paris 1965, 272, 6982–6984. [Google Scholar]
- Vivier, E.; Schrével, J. Étude en microscopie photonique et électronique de différents stades du cycle de Metchnikovella hovassei et observations sur la position systématique des Metchnikovellidae. Protistologica 1973, 9, 95–118. [Google Scholar]
- Larsson, R.J.I.; Køie, M. The ultrastructure and reproduction of Amphiamblys capitellides (Microspora, Metchnikovellidae), a parasite of the gregarine Ancora sagittata (Apicomplexa, Lecudinidae), with redescription of the species and comments on the taxonomy. Eur. J. Protistol. 2006, 42, 233–248. [Google Scholar] [CrossRef]
- Vivier, E. The Microsporidia of the Protozoa. Protistologica 1975, 11, 345–361. [Google Scholar]
- Larsson, R.J.I. The Primitive Microsporidia. In Microsporidia; Weiss, L.M., Becnel, J.J., Eds.; John Wiley & Sons, Inc.: Chichester, UK, 2014; pp. 605–634. ISBN 978-1-118-39526-4. [Google Scholar]
- Mikhailov, K.V.; Simdyanov, T.G.; Aleoshin, V.V. Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol. Evol. 2016, 9, 454–467. [Google Scholar] [CrossRef] [Green Version]
- Galindo, L.J.; Torruella, G.; Moreira, D.; Timpano, H.; Paskerova, G.; Smirnov, A.; Nassonova, E.; López-García, P. Evolutionary genomics of Metchnikovella incurvata (Metchnikovellidae): An early branching microsporidium. Genome Biol. Evol. 2018, 10, 2736–2748. [Google Scholar] [CrossRef] [Green Version]
- Nassonova, E.S.; Bondarenko, N.I.; Paskerova, G.G.; Kováčiková, M.; Frolova, E.V.; Smirnov, A.V. Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis. Parasitol. Res. 2021, 120, 525–534. [Google Scholar] [CrossRef]
- Caullery, M.; Mesnil, F. Sur les Metchnikovellidæ et autres Protistes parasites des Grégarines d’Annélides. C R. Séances. Soc. Biol. 1914, 2, 527–532. [Google Scholar]
- Caullery, M.; Mesnil, F. Metchnikovellidæ et autres Protistes parasites des Grégarines d’ Annélides. Ann. Inst. Pasteur. 1919, 4, 209–240. [Google Scholar]
- Parratt, S.R.; Laine, A.-L. The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 2016, 10, 1815–1822. [Google Scholar] [CrossRef] [Green Version]
- Gleason, F.H.; Lilje, O.; Marano, A.V.; Sime-Ngando, T.; Sullivan, B.K.; Kirchmair, M.; Neuhauser, S. Ecological functions of zoosporic hyperparasites. Front. Microbiol. 2014, 5, 244. [Google Scholar] [CrossRef] [Green Version]
- de Groot, M.D.; Dumolein, I.; Hiller, T.; Sándor, A.D.; Szentiványi, T.; Schilthuizen, M.; Aime, M.C.; Verbeken, A.; Haelewaters, D. On the fly: Tritrophic associations of bats, bat flies, and fungi. JoF 2020, 6, 361. [Google Scholar] [CrossRef]
- Longshaw, M.; Shinn, A.P. Diseases of platyhelminths, acanthocephalans, and nematodes. In Invertebrate Pathology; Oxford University Press: Oxford, UK, 2022; pp. 123–162. ISBN 978-0-19-885375-6. [Google Scholar]
- Sokolova, Y.Y.; Overstreet, R.M. Hyperparasitic spore-forming eukaryotes (Microsporidia, Haplosporidia, and Myxozoa) parasitizing trematodes (Platyhelminthes). Invert. Zool. 2020, 17, 93–117. Available online: https://kmkjournals.com/upload/PDF/IZ/IZ%20Vol%2017/invert17_2_093_117_Sokolova_Overstreet_for_Inet.pdf (accessed on 26 June 2020). [CrossRef]
- Sokolova, Y.Y.; Overstreet, R.M.; Heard, R.W.; Isakova, N.P. Two new species of Unikaryon (Microsporidia) hyperparasitic in microphallid metacercariae (Digenea) from Florida intertidal crabs. J. Invertebr. Pathol. 2021, 182, 107582. [Google Scholar] [CrossRef]
- Miquel, J.; Kacem, H.; Baz-González, E.; Foronda, P.; Marchand, B. Ultrastructural and molecular study of the microsporidian Toguebayea baccigeri n. gen., n. sp., a hyperparasite of the digenean trematode Bacciger israelensis (Faustulidae), a parasite of Boops boops (Teleostei, Sparidae). Parasite 2022, 29, 2. [Google Scholar] [CrossRef]
- Cable, J.; Tinsley, R.C. Unique ultrastructural adaptations of Pseudodiplorchis americanus (Polystomatidae: Monogenea) to a sequence of hostile conditions following host infection. Parasitology 1992, 105, 229–241. [Google Scholar] [CrossRef]
- Dissanaike, A.S. On protozoa hyper-parasitic in helminths, with some observations on Nosema helminthorum Moniez, 1887. J. Helminthol. 1957, 31, 47–64. [Google Scholar] [CrossRef]
- Bulla, L.A.; Cheng, T.C. Comparative Pathobiology: Volume 2 Systematics of the Microsporidia; Springer US: Boston, MA, USA, 1977; ISBN 978-1-4613-4207-6. [Google Scholar] [CrossRef]
- Loubes, C.; Maurand, J.; de Buron, I. Premières observations sur deux Microsporidies hyperparasites d’Acanthocéphales de Poissons marins et lagunaires. Parasitol. Res. 1988, 74, 344–351. [Google Scholar] [CrossRef]
- Dyková, I.; Lom, J. Nosema notabilis (Microsporidia), its ultrastructure and effect on the myxosporean host Ortholinea polymorpha. Dis. Aquat. Org. 1999, 35, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.J.; Freeman, M.A. Hyperparasitism has wide-ranging implications for studies on the invertebrate phase of myxosporean (Myxozoa) life cycles. Int. J. Parasitol. 2010, 40, 357–369. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Ramilo, A.; Abollo, E.; Kerr, R.; Bateman, K.S.; Feist, S.W.; Bass, D.; Villalba, A. Hyperspora aquatica n.gn., n.sp. (Microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa. Parasitology 2017, 144, 186–199. [Google Scholar] [CrossRef]
- Sokolova, Y.Y.; Paskerova, G.G.; Rotari, Y.M.; Nassonova, E.S.; Smirnov, A.V. Description of Metchnikovella spiralis sp. n. (Microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology 2014, 141, 1108–1122. [Google Scholar] [CrossRef]
- Sokolova, Y.Y.; Paskerova, G.G.; Rotari, Y.M.; Nassonova, E.S.; Smirnov, A.V. Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (Microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 2013, 140, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Paskerova, G.G.; Frolova, E.V.; Kováčiková, M.; Panfilkina, T.S.; Mesentsev, E.S. Metchnikovella dogieli sp. n. (Microsporidia: Metchnikovellida), a parasite of archigregarines Selenidium sp. from polychaetes Pygospio elegans. Protistology 2016, 10, 148–157. [Google Scholar] [CrossRef]
- Frolova, E.V.; Paskerova, G.G.; Smirnov, A.V.; Nassonova, E.S. Metchnikovella dobrovolskiji sp. nov. (Microsporidia: Metchnikovellida), a parasite of archigregarines Selenidium pygospionis from the polychaete Pygospio elegans. Protistology 2022, 16, 226–235. [Google Scholar]
- Frolova, E.V.; Paskerova, G.G.; Smirnov, A.V.; Nassonova, E.S. Molecular phylogeny and new light microscopic data of Metchnikovella spiralis (Microsporidia: Metchnikovellidae), a hyperparasite of eugregarine Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 2021, 148, 779–786. [Google Scholar] [CrossRef]
- Rotari, Y.M.; Paskerova, G.G.; Sokolova, Y.Y. Diversity of metchnikovellids (Metchnikovellidae, Rudimicrosporea), hyperparasites of bristle worms (Annelida, Polychaeta) from the White Sea. Protistology 2015, 9, 50–59. [Google Scholar]
- Williams, G.R.; Shutler, D.; Burgher-MacLellan, K.L.; Rogers, R.E.L. Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts. PLoS ONE 2014, 9, e99465. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.E.; Cigliano, M.M. Rare case of microsporidia co-infection in the grasshopper Dichroplus elongatus (Orthoptera: Acrididae: Melanoplinae). Protistology 2019, 13, 14–18. [Google Scholar] [CrossRef]
- Solter, L.F.; Siegel, J.P.; Pilarska, D.K.; Higgs, M.C. The impact of mixed infection of three species of microsporidia isolated from the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 2002, 81, 103–113. [Google Scholar] [CrossRef]
- Weigl, S.; Körner, H.; Petrusek, A.; Seda, J.; Wolinska, J. Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology 2012, 139, 870–880. [Google Scholar] [CrossRef]
- Natsopoulou, M.E.; Doublet, V.; Paxton, R.J. European isolates of the microsporidia Nosema apis and Nosema ceranae have similar virulence in laboratory tests on European worker honey bees. Apidologie 2016, 47, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Trzebny, A.; Slodkowicz-Kowalska, A.; Becnel, J.J.; Sanscrainte, N.; Dabert, M. A new method of metabarcoding microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae). Mol. Ecol. Resour. 2020, 20, 1486–1504. [Google Scholar] [CrossRef]
- Duncan, A.B.; Agnew, P.; Noel, V.; Michalakis, Y. The consequences of co-infections for parasite transmission in the mosquito Aedes aegypti. J. Anim. Ecol. 2015, 84, 498–508. [Google Scholar] [CrossRef]
- Frolova, E.F.; Bondarenko, N.I.; Rayko, M.P.; Nassonova, E.S. Metagenomic approach to the estimation of metchnikovellid prevalence in the infrapopulation of gregarines within one super-host. Inst. Cytol. RAS, 2022; manuscript in preparation. [Google Scholar]
- Frolova, E.F.; Bondarenko, N.I.; Rayko, M.P.; Nassonova, E.S. Diversity of metchnikovellids: (meta)genomic approach. Inst. Cytol. RAS, 2022; manuscript in preparation. [Google Scholar]
- Desportes, I.; Théodoridès, J. Étude ultrastructurale d‘Amphiamblys laubieri n. sp. (Microsporidie, Metchnikovellidae) parasite d’un Grégarine (Lecudina sp.) d’un Echiurien abyssal. Protistologica 1979, 15, 435–457. [Google Scholar]
- Sandhu, S.K.; Morozov, A.Y.; Holt, R.D.; Barfield, M. Revisiting the role of hyperparasitism in the evolution of virulence. Am. Nat. 2021, 197, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Rueckert, S.; Betts, E.L.; Tsaousis, A.D. The symbiotic spectrum: Where do the gregarines fit? Trends Parasitol. 2019, 35, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGladdery, S.E.; Bower, S.M.; Getchell, R.G. Chapter 11 Diseases and parasites of scallops. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 35, pp. 595–650. ISBN 978-0-444-50482-1. [Google Scholar]
- Marden, J.H.; Cobb, J.R. Territorial and mating success of dragonflies that vary in muscle power output and presence of gregarine gut parasites. Anim. Behav. 2004, 68, 857–865. [Google Scholar] [CrossRef]
- Lantova, L.; Svobodova, M.; Volf, P. Effects of Psychodiella sergenti (Apicomplexa, Eugregarinorida) on its natural host Phlebotomus sergenti (Diptera, Psychodidae). J. Med. Entomol. 2011, 48, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, M.E.; Jara-F, A.; Briones, R.C.; Dubey, A.K.; Slamovits, C.H. Gregarine infection accelerates larval development of the cat flea Ctenocephalides felis (Bouché). Parasitology 2017, 144, 419–425. [Google Scholar] [CrossRef]
- Arcila, F.; Meunier, J. Friend or foe? The apparent benefits of gregarine (Apicomplexa: Sporozoa) infection in the European earwig. Int. J. Parasitol. 2020, 50, 461–469. [Google Scholar] [CrossRef]
- Bollatti, F.; Ceballos, A. Effect of gregarines (Apicomplexa: Sporozoa) on survival and weight loss of Victorwithius similis (Arachnida: Pseudoscorpiones). J. Invertebr. Pathol. 2014, 117, 13–18. [Google Scholar] [CrossRef]
- Sumner, R. Relation of gregarines to growth and longevity in the mealworm Tenebrio molitor L. Ann. Entomol. Soc. Am. 1936, 29, 645–648. [Google Scholar] [CrossRef]
- Peoples, R.C.; Randhawa, H.S.; Poulin, R. Parasites of polychaetes and their impact on host survival in Otago Harbour, New Zealand. J. Mar. Biol. Ass. 2012, 92, 449–455. [Google Scholar] [CrossRef]
- Paskerova, G.G.; Miroliubova, T.S.; Diakin, A.; Kováčiková, M.; Valigurová, A.; Guillou, L.; Aleoshin, V.V.; Simdyanov, T.G. Fine structure and molecular phylogenetic position of two marine gregarines, Selenidium pygospionis sp. n. and S. pherusae sp. n., with notes on the phylogeny of Archigregarinida (Apicomplexa). Protist 2018, 169, 826–852. [Google Scholar] [CrossRef]
- Paskerova, G.G.; Miroliubova, T.S.; Valigurová, A.; Janouškovec, J.; Kováčiková, M.; Diakin, A.; Sokolova, Y.Y.; Mikhailov, K.V.; Aleoshin, V.V.; Simdyanov, T.G. Evidence from the resurrected family Polyrhabdinidae Kamm, 1922 (Apicomplexa: Gregarinomorpha) supports the epimerite, an attachment organelle, as a major eugregarine innovation. PeerJ 2021, 9, e11912. [Google Scholar] [CrossRef] [PubMed]
- Hiillos, A.; Rony, I.; Rueckert, S.; Knott, K.E. Coinfection patterns of two marine apicomplexans are not associated with genetic diversity of their polychaete host. J. Eukaryot. Microbiol. 2022, e12932. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Takvorian, P.M.; Weiss, L.M. Invasion of host cells by microsporidia. Front. Microbiol. 2020, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Karpov, S.A.; Paskerova, G.G. The aphelids, intracellular parasitoids of algae, consume the host cytoplasm “from the inside”. Protistology 2020, 14, 258–263. [Google Scholar] [CrossRef]
Hyperparasite | Metchnikovella incurvata | Metchnikovella spiralis | Metchnikovella dogieli | Metchnikovella dobrovolskiji |
---|---|---|---|---|
Secondary host | Polyrhabdina pygospionis | Polyrhabdina pygospionis | Selenidium pygospionis | Selenidium pygospionis |
Size 1 of spore sacs, μm | 22–27 × 4–5 | 10.3–16.5 × 5.4–7.1 | 9.5–34 × 4.8–9.2 | 5.6–9.2 × 3.3–5 |
Form of spore sac | boomerang-shaped | oval | oval, sometimes bent | oval or pear-shaped |
Number of polar plugs | two | one | one | one |
Number of spore sacs per host cell | about 30 in one focal plate | 20 | up to 24 | up to 41 |
Sac-bound spores (number per sac; morphology; size 1, μm) | up to 16; oval or ovoid; 3.6 × 1.8 | 8; oval; 2.4–3.5 × 2.4–2.9 | 7–18 (often 12–14); oval; 2.2–3.0 × 1.4–2.9 | up to 12; oval; 1.3–2.4 × 0.9–1.6 |
Free spores (morphology; size 1, μm) | oval or ovoid; 3.7 × 1.8 | rounded or oval, slightly angular at the top of the polar cap; 2.5–3.5 × 2.1–2.3 | oval or ovoid, sometimes with a small bulge on one side; 2.2–3.3 × 1.3–3.7 | oval; 1.2–3.1 × 1.1–1.7 |
Spore sac enclosed in the individual vacuoles | no | yes | no | yes |
Free spores enclosed in the vacuoles | no | yes | no | yes |
GenBank | OK155996 | MW344837 | OK155994 | OP225322 |
References | [11,30] | [29,33] | [12,31] | [32] |
Site | Year | N | with P | with S | Mix. P + S | Mi | Ms | St. P | Md | Mj | St. S | Mi + Ms | Mi + Md | Ms + Md | Ms + Mj | Mj+ Ms+Mi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
White Sea | ||||||||||||||||
Levin | 2018 | 220 | 112 | 67 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | |||||
2019 | 34 | 31 | 16 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
B. Gorelyi | 2018 | 18 | 15 | 16 | 15 | 0 | 0 | 0 | 0 | 0 | 1 | |||||
2019 | 85 | 76 | 59 | 44 | 1 | 0 | 2 | 1 | 1 | 0 | ||||||
Kruglaya Bay | 2019 | 115 | 87 | 90 | 85 | 3 | 0 | 6 | 0 | 4 | 5 | 1 * | ||||
2020 | 26 | 16 | 7 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | ||||||
2021 | 10 | 9 | 9 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
Podpahta | 2019 | 98 | 87 | 81 | 71 | 11 | 2 | 13 | 4 | 0 | 7 | 1 | 2 | |||
Solovki | 2021 | 16 | 15 | 14 | 13 | 0 | 1 | 3 | 5 | 2 | 5 | 1 | ||||
WSBS | 2021 | 5 | 5 | 5 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | |||||
Barents Sea | ||||||||||||||||
Dalnyi plyazh | 2020 | 8 | 8 | 7 | 7 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | ||||
2021 | 136 | 121 | 132 | 117 | 3 | 4 | 19 | 7 | 15 | 40 | 1 | |||||
2022 | 66 | 55 | 51 | 46 | 0 | 0 | 0 | 2 | 1 | 29 | ||||||
Oscar Bay | 2021 | 71 | 70 | 55 | 51 | 2 | 2 | 3 | 2 | 13 | 6 | 1 | ||||
2022 | 32 | 28 | 26 | 24 | 0 | 0 | 0 | 0 | 0 | 5 | ||||||
Teriberka | 2021 | 17 | 15 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolova, E.V.; Paskerova, G.G.; Smirnov, A.V.; Nassonova, E.S. Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host. Microorganisms 2023, 11, 152. https://doi.org/10.3390/microorganisms11010152
Frolova EV, Paskerova GG, Smirnov AV, Nassonova ES. Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host. Microorganisms. 2023; 11(1):152. https://doi.org/10.3390/microorganisms11010152
Chicago/Turabian StyleFrolova, Ekaterina V., Gita G. Paskerova, Alexey V. Smirnov, and Elena S. Nassonova. 2023. "Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host" Microorganisms 11, no. 1: 152. https://doi.org/10.3390/microorganisms11010152
APA StyleFrolova, E. V., Paskerova, G. G., Smirnov, A. V., & Nassonova, E. S. (2023). Diversity, Distribution, and Development of Hyperparasitic Microsporidia in Gregarines within One Super-Host. Microorganisms, 11(1), 152. https://doi.org/10.3390/microorganisms11010152