Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sampling and Processing
2.2. RT-qPCR Analysis
2.3. COVID-19 Cases Information from the Surrounding City
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, N.; Bautista, M.A.; Hollman, J.; McCalder, J.; Beaudet, A.B.; Man, L.; Waddell, B.J.; Chen, J.; Li, C.; Kuzma, D.; et al. A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. Water Res. 2021, 201, 117369. [Google Scholar] [CrossRef]
- Karami, C.; Dargahi, A.; Vosoughi, M.; Normohammadi, A.; Jeddi, F.; Asghariazar, V.; Mokhtari, A.; Sedigh, A.; Zandian, H.; Alighadri, M. SARS-CoV-2 in municipal wastewater treatment plant, collection network, and hospital wastewater. Environ. Sci. Pollut. Res. Int. 2022, 29, 85577–85585. [Google Scholar] [CrossRef]
- Zhang, D.; Ling, H.; Huang, X.; Li, J.; Li, W.; Yi, C.; Zhang, T.; Jiang, Y.; He, Y.; Deng, S.; et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 2020, 741, 140445. [Google Scholar] [CrossRef]
- Gonçalves, J.; Koritnik, T.; Mioč, V.; Trkov, M.; Bolješič, M.; Berginc, N.; Prosenc, K.; Kotar, T.; Paragi, M. Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Sci. Total Environ. 2021, 755, 143226. [Google Scholar] [CrossRef]
- Jakariya, M.; Ahmed, F.; Islam, M.A.; Al Marzan, A.; Hasan, M.N.; Hossain, M.; Ahmed, T.; Hossain, A.; Reza, H.M.; Hossen, F.; et al. Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. Environ. Pollut. 2022, 311, 119679. [Google Scholar] [CrossRef]
- Weidhaas, J.; Aanderud, Z.T.; Roper, D.K.; VanDerslice, J.; Gaddis, E.B.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y.; et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci. Total Environ. 2021, 775, 145790. [Google Scholar] [CrossRef]
- Sangsanont, J.; Rattanakul, S.; Kongprajug, A.; Chyerochana, N.; Sresung, M.; Sriporatana, N.; Wanlapakorn, N.; Poovorawan, Y.; Mongkolsuk, S.; Sirikanchana, K. SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. Sci. Total Environ. 2022, 809, 151169. [Google Scholar] [CrossRef]
- Vadde, K.K.; Al-Duroobi, H.; Phan, D.C.; Jafarzadeh, A.; Moghadam, S.V.; Matta, A.; Kapoor, V. Assessment of Concentration, Recovery, and Normalization of SARS-COV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS EST Water 2022, 11, 2060–2069. [Google Scholar] [CrossRef]
- Pang, X.; Gao, T.; Ellehoj, E.; Li, Q.; Qiu, Y.; Maal-Bared, R.; Sikora, C.; Tipples, G.; Diggle, M.; Hinshaw, D.; et al. Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS EST Water 2022, 2, 2243–2254. [Google Scholar] [CrossRef]
- Gavriluță, N.; Grecu, S.P.; Chiriac, H.C. Sustainability and Employability in the Time of COVID-19. Youth, Education and Entrepreneurship in EU Countries. Sustainability 2022, 14, 1589. [Google Scholar] [CrossRef]
- Abbass, K.; Begum, H.; Alam, A.S.; Awang, A.H.; Abdelsalam, M.K.; Egdair, I.M.; Wahid, R. Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustainability 2022, 14, 1054. [Google Scholar] [CrossRef]
- Donaldson, C.; Mitton, C. Health economics and emergence from COVID-19 lockdown: The great big marginal analysis. Health Econ. Policy Law. 2022, 17, 227–231. [Google Scholar] [CrossRef]
- Walshe, N.; Fennelly, M.; Hellebust, S.; Wenger, J.; Sodeau, J.; Prentice, M.; Grice, C.; Jordan, V.; Comerford, J.; Downey, V.; et al. Assessment of Environmental and Occupational Risk Factors for the Mitigation and Containment of a COVID-19 Outbreak in a Meat Processing Plant. Front Public Health. 2021, 9, 769238. [Google Scholar] [CrossRef]
- Fabreau, G.E.; Holdbrook, L.; Peters, C.E.; Ronksley, P.E.; Attaran, A.; McBrien, K.; Pottie, K. Vaccines alone will not prevent COVID-19 outbreaks among migrant workers-the example of meat processing plants. Clin. Microbiol. Infect. 2022, 28, 773–778. [Google Scholar] [CrossRef]
- Mallet, Y.; Pivette, M.; Revest, M.; Angot, E.; Valence, M.; Dupin, C.; Picard, N.; Brelivet, G.; Seyler, T.; Ballet, S.; et al. Identification of Workers at Increased Risk of Infection During a COVID-19 Outbreak in a Meat Processing Plant, France, May 2020. Food Environ. Virol. 2021, 13, 535–543. [Google Scholar] [CrossRef]
- Pokora, R.; Kutschbach, S.; Weigl, M.; Braun, D.; Epple, A.; Lorenz, E.; Grund, S.; Hecht, J.; Hollich, H.; Rietschel, P.; et al. Investigation of superspreading COVID-19 outbreak events in meat and poultry processing plants in Germany: A cross-sectional study. PLoS ONE 2021, 16, e0242456. [Google Scholar] [CrossRef]
- Dyal, J.W.; Grant, M.P.; Broadwater, K.; Bjork, A.; Waltenburg, M.A.; Gibbins, J.D.; Hale, C.; Silver, M.; Fischer, M.; Steinberg, J.; et al. COVID-19 Among Workers in Meat and Poultry Processing Facilities-19 States, April 2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 69, 18. [Google Scholar] [CrossRef]
- Herstein, J.J.; Degarege, A.; Stover, D.; Austin, C.; Schwedhelm, M.M.; Lawler, J.V.; Lowe, J.J.; Ramos, A.K.; Donahue, M. Characteristics of SARS-CoV-2 Transmission among Meat Processing Workers in Nebraska, USA, and Effectiveness of Risk Mitigation Measures. Emerg. Infect Dis. 2021, 27, 1032–1038. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Foster, E.R.; Nikolov, Z.L.; Fernando, S.D.; King, M.D. Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Sci. Rep. 2022, 12, 789. [Google Scholar] [CrossRef]
- Kitamura, K.; Sadamasu, K.; Muramatsu, M.; Yoshida, H. Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater. Sci. Total Environ. 2021, 763, 144587. [Google Scholar] [CrossRef]
- Qiu, Y.; Yu, J.; Pabbaraju, K.; Lee, B.E.; Gao, T.; Ashbolt, N.J.; Hrudey, S.E.; Diggle, M.; Tipples, G.; Maal-Bared, R.; et al. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater. Sci. Total Environ. 2022, 812, 151434. [Google Scholar] [CrossRef]
- Kumar, M.; Joshi, M.; Shah, A.V.; Srivastava, V.; Dave, S. Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. Sci. Total Environ. 2021, 792, 148367. [Google Scholar] [CrossRef]
- Martins, R.M.; Carvalho, T.; Bittar, C.; Quevedo, D.M.; Miceli, R.N.; Nogueira, M.L.; Ferreira, H.L.; Costa, P.I.; Araújo, J.P., Jr.; Spilki, F.R.; et al. Long-Term Wastewater Surveillance for SARS-CoV-2: One-Year Study in Brazil. Viruses 2022, 14, 2333. [Google Scholar] [CrossRef]
- Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. Build Environ. 2021, 200, 107926. [Google Scholar] [CrossRef]
- Picon, R.V.; Carreno, I.; da Silva, A.A.; Mossmann, M.; Laste, G.; Domingues, G.C.; Heringer, L.F.F.; Gheno, B.R.; Alvarenga, L.L.; Conte, M. Coronavirus disease 2019 population-based prevalence, risk factors, hospitalization, and fatality rates in southern Brazil. Int. J. Infect Dis. 2020, 100, 402–410. [Google Scholar] [CrossRef]
- Liu, H.; Fei, C.; Chen, Y.; Luo, S.; Yang, T.; Yang, L.; Liu, J.; Ji, X.; Wu, W.; Song, J. Investigating SARS-CoV-2 persistent contamination in different indoor environments. Environ. Res. 2021, 202, 111763. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, H.D.; Kennedy, L.C.; Hinkle, A.; Whitney, O.N.; Fan, V.B.; Crits-Christoph, A.; Harris-Lovett, S.; Flamholz, A.I.; Al-Shayeb, B.; Liao, L.D.; et al. Tools for Interpretation of Wastewater SARS-COV-2 Temporal and Spatial Trends Demonstrated with Data Collected in the San Francisco Bay Area. Water Res. X. 2021, 12, 100111. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.E.; Loeb, S.K.; Wolfe, M.K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K.M.; Sassoubre, L.M.; Mendoza Grijalva, L.M.; Roldan-Hernandez, L.; et al. SARS-COV-2 RNA in wastewater settled solids is associated with covid-19 cases in a large urban sewershed. Environ. Sci. Technol. 2021, 55, 488–498. [Google Scholar] [CrossRef]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167. [Google Scholar] [CrossRef]
- Li, B.; Di, D.Y.W.; Saingam, P.; Jeon, M.K.; Yan, T. Fine-Scale Temporal Dynamics of SARS-CoV-2 RNA Abundance in Wastewater during A COVID-19 Lockdown. Water Res. 2021, 197, 117093. [Google Scholar] [CrossRef]
- Ye, Y.; Ellenberg, R.M.; Graham, K.E.; Wigginton, K.R. Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environ. Sci. Technol. 2016, 50, 5077–5085. [Google Scholar] [CrossRef] [PubMed]
Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
---|---|---|---|---|---|---|
11 Jan | 12 Jan | 13 Jan | 14 Jan | 15 Jan | ||
− | − | − | − | − | ||
16 Jan | 17 Jan | 18 Jan | 19 Jan | 20 Jan | 21 Jan | 22 Jan |
− | − | − | − | − | − | − |
23 Jan | 24 Jan | 25 Jan | 26 Jan | 27 Jan | 28 Jan | 29 Jan |
NS | − | − | − | NS | − | NS |
30 Jan | 31 Jan | 1 Feb | 2 Feb | 3 Feb | 4 Feb | 5 Feb |
− | − | − | − | − | − | − |
6 Feb | 7 Feb | 8 Feb | 9 Feb | 10 Feb | 11 Feb | 12 Feb |
− | − | − | + | + | − | + |
13 Feb | 14 Feb | 15 Feb | 16 Feb | 17 Feb | 18 Feb | 19 Feb |
+ | + | − | − | − | − | − |
20 Feb | 21 Feb | 22 Feb | 23 Feb | 24 Feb | 25 Feb | 26 Feb |
+ | NS | − | − | − | NS | NS |
27 Feb | 28 Feb | 1 Mar | 2 Mar | 3 Mar | 4 Mar | 5 Mar |
− | − | − | − | − | − | − |
6 Mar | 7 Mar | 8 Mar | 9 Mar | 10 Mar | 11 Mar | 12 Mar |
− | NS | NS | NS | NS | NS | NS |
13 Mar | 14 Mar | 15 Mar | 16 Mar | 17 Mar | 18 Mar | 19 Mar |
NS | NS | NS | NS | + | + | + |
20 Mar | 21 Mar | 22 Mar | 23 Mar | 24 Mar | 25 Mar | 26 Mar |
+ | NS | NS | NS | NS | NS | NS |
27 Mar | 28 Mar | 29 Mar | 30 Mar | 31 Mar | 1 Apr | 2 Apr |
NS | NS | NS | NS | − | − | − |
3 Apr | ||||||
− |
Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
---|---|---|---|---|---|---|
11 Jan | 12 Jan | 13 Jan | 14 Jan | 15 Jan | ||
+ | + | + | + | − | ||
16 Jan | 17 Jan | 18 Jan | 19 Jan | 20 Jan | 21 Jan | 22 Jan |
− | − | − | + | − | + | − |
23 Jan | 24 Jan | 25 Jan | 26 Jan | 27 Jan | 28 Jan | 29 Jan |
NS | − | − | − | NS | − | NS |
30 Jan | 31 Jan | 1 Feb | 2 Feb | 3 Feb | 4 Feb | 5 Feb |
− | + | + | + | + | − | − |
6 Feb | 7 Feb | 8 Feb | 9 Feb | 10 Feb | 11 Feb | 12 Feb |
− | + | + | − | − | − | + |
13 Feb | 14 Feb | 15 Feb | 16 Feb | 17 Feb | 18 Feb | 19 Feb |
+ | + | + | + | + | + | + |
20 Feb | 21 Feb | 22 Feb | 23 Feb | 24 Feb | 25 Feb | 26 Feb |
+ | NS | + | + | − | NS | NS |
27 Feb | 28 Feb | 1 Mar | 2 Mar | 3 Mar | 4 Mar | 5 Mar |
+ | − | + | + | + | − | − |
6 Mar | 7 Mar | 8 Mar | 9 Mar | 10 Mar | 11 Mar | 12 Mar |
− | NS | NS | NS | NS | NS | NS |
13 Mar | 14 Mar | 15 Mar | 16 Mar | 17 Mar | 18 Mar | 19 Mar |
NS | NS | NS | NS | + | + | + |
20 Mar | 21 Mar | 22 Mar | 23 Mar | 24 Mar | 25 Mar | 26 Mar |
+ | NS | NS | NS | NS | NS | NS |
27 Mar | 28 Mar | 29 Mar | 30 Mar | 31 Mar | 1 Apr | 2 Apr |
NS | NS | NS | NS | − | − | − |
3 Apr | ||||||
− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; King, M.D. Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms 2023, 11, 174. https://doi.org/10.3390/microorganisms11010174
Zhang M, King MD. Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms. 2023; 11(1):174. https://doi.org/10.3390/microorganisms11010174
Chicago/Turabian StyleZhang, Meiyi, and Maria D. King. 2023. "Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant" Microorganisms 11, no. 1: 174. https://doi.org/10.3390/microorganisms11010174
APA StyleZhang, M., & King, M. D. (2023). Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms, 11(1), 174. https://doi.org/10.3390/microorganisms11010174