Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. The Mating Procedure and Generation of a PCL1760 (ΔrsfS) Mutant
2.2.1. Amplification of rsfS Gene Fragments with Flanking Sequences
2.2.2. The Insertion of Target Gene Fragments with Flanking Sequences into the pUC19 Vector
2.2.3. Deletion of the rsfS Gene in the pUC19: fl-rsfS Vector
2.2.4. The Insertion of Target Gene Fragments with flΔrsfS Flanking Sequences into the pK18mobsacB Vector
2.2.5. Transformation of Plasmid Vectors
2.2.6. Conjugative Transfer of Plasmid Vectors from E. coli S17-1 to P. putida Strains
2.3. Mating Procedure and Generation of the SB9 (pJeM2:rsfS) Mutant
2.4. Generation of Persister Cells of P. putida
2.4.1. Preparation of Suspension Culture in Exponential Growth Cell Generation
2.4.2. Induction of the rsfS Gene expression of PCL1760, SB9, and SB9’
2.4.3. The Persister Cells Generation
2.5. Comparison of rsfS Gene Expression Profiles during Plant Root Colonization
2.5.1. Bacterial Suspension Preparation
2.5.2. Plant Growth Condition
2.5.3. Quantification of rsfS Gene Expression
2.6. Growth Rate Comparison of P. putida SB9 with PCL1760
2.7. Comparison of the Colonization Ability of PCL1760 and Mutant SB9
2.7.1. Colonization Ability of PCL1760 and Mutant SB9 as a Single Inoculum
2.7.2. Colonization Ability of PCL1760 and Mutant SB9 in Inoculum Combination
2.8. Biocontrol Properties of P. putida SB9 on the Tomato Plant against Forl ZUM2407
2.8.1. Preparation of Conidial Suspension of Forl ZUM2407
2.8.2. Biocontrol Ability of PCL1760 and Mutant SB9
3. Results
3.1. Construction of Chromosomal rsfS Gene Deletion in P. putida PCL1760
3.2. Comparison of rsfS Gene Expression Profiles during Plant Root Colonization
3.3. Growth Rate Comparison of P. putida SB9 with PCL1760
3.4. A Comparison of the Colonization Ability of PCL1760 and Mutant SB9
3.5. The Generation of Persister Cells of P. putida
3.6. Biocontrol Properties of P. putida SB9
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azizbekyan, R.R. Biological preparations for the protection of agricultural plants (Review). Appl. Biochem. Microbiol. 2019, 55, 816–823. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Santoyo, G. Action mechanisms, biodiversity, and omics approaches in biocontrol and plant growth-promoting Pseudomonas: An updated review. Biocontrol Sci. Technol. 2022, 32, 527–550. [Google Scholar] [CrossRef]
- Lugtenberg, B.; Kamilova, F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009, 63, 541–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamilova, F.; Validov, S.; Azarova, T.; Mulders, I.; Lugtenberg, B. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 2005, 7, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Validov, S.; Kamilova, F.; Qi, S.; Stephan, D.; Wang, J.J.; Makarova, N.; Lugtenberg, B. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J. Appl. Microbiol. 2007, 102, 461–471. [Google Scholar] [CrossRef]
- Validov, S. Biological Control of Tomato Foot and Root Rot by Pseudomonasbacteria in Stonewool; Leiden University: Leiden, The Netherlands, 2007. [Google Scholar]
- Cho, S.T.; Chang, H.H.; Egamberdieva, D.; Kamilova, F.; Lugtenberg, B.; Kuo, C.H. Genome analysis of Pseudomonas fluorescens PCL1751: A rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE 2015, 10, e0140231. [Google Scholar] [CrossRef]
- Afordoanyi, D.M.; Diabankana, R.G.C.; Miftakhov, A.K.; Kuchaev, E.S.; Validov, S.Z. Genomic Features of Pseudomonas putida PCL1760: A Biocontrol Agent Acting via Competition for Nutrient and Niche. Appl. Microbiol. 2022, 2, 749–765. [Google Scholar] [CrossRef]
- Validov, S.Z.; Kamilova, F.; Lugtenberg, B.J. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol. Control 2009, 48, 6–11. [Google Scholar] [CrossRef]
- Wilson, D.N.; Nierhaus, K.H. The weird and wonderful world of bacterial ribosome regulation. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 187–219. [Google Scholar] [CrossRef]
- McKay, S.L.; Portnoy, D.A. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob. Agents Chemother. 2015, 59, 6992–6999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usachev, K.S.; Yusupov, M.M.; Validov, S.Z. Hibernation as a stage of ribosome functioning. Biochemistry 2020, 85, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Häuser, R.; Pech, M.; Kijek, J.; Yamamoto, H.; Titz, B.; Naeve, F.; Tovchigrechko, A.; Yamamoto, K.; Szaflarski, W.; Takeuchi, N.; et al. RsfA (YbeB) Proteins Are Conserved Ribosomal Silencing Factors. PLoS Genet. 2012, 8, e1002815. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Sullivan, S.M.; Walker, A.K.; Strahler, J.R.; Andrews, P.C.; Maddock, J.R. Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. J. Bacteriol. 2007, 189, 3434–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatkhullin, B.F.; Gabdulkhakov, A.G.; Yusupov, M.M. Is RsfS a Hibernation Factor or a Ribosome Biogenesis Factor. Biochemistry 2022, 87, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M.; Abdallah, M.A. The Fluorescent Pigment of Pseudomonas fluorescens: Biosynthesis, Purification and Physicochemical Properties. J. Gen. Microbiol. 1978, 107, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Simon, R.; Priefer, U.; Pühler, A.A. Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat. Biotechnol. 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Bolwerk, A.; Lagopodi, A.L.; Lugtenberg, B.J.J.; Bloemberg, G.V. Visualization of Interactions Between a Pathogenic and a Beneficial Fusarium Strain During Biocontrol of Tomato Foot and Root Rot. MPMI 2005, 18, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Schafer, A.; Tauch, A.; Jager, W.; Kalinowski, J.; Thierbach, G.; Puhler, A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- Jeske, M.; Altenbuchner, J. The Escherichia coli rhamnose promoter rhaP BAD is in Pseudomonas putida KT2440 independent of Crp–cAMP activation. Appl. Microbiol. Biotechnol. 2010, 85, 1923–1933. [Google Scholar] [CrossRef]
- Wang, P.; Yu, Z.; Li, B.; Cai, X.; Zeng, Z.; Chen, X.; Wang, X. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominy, C.N.; Andrews, D.W. Site-directed mutagenesis by inverse PCR. Methods Mol. Biol. 2003, 235, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wood, T.K. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 2020, 523, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Simons, M.; Van Der Bij, A.J.; Brand, I.; De Weger, L.A.; Wijffelman, C.A.; Lugtenberg, B.J. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant Microbe Interact. 1996, 9, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinformat. Biomath. 2013, 3, 71. [Google Scholar]
- Afordoanyi, D.M.; Diabankana, R.G.C.; Akosah, Y.A.; Validov, S.Z. Are formae speciales pathogens really host specific? A broadened host specificity in Fusarium oxysporum f.sp. radicis-cucumerinum. Braz. J. Microbiol. 2022, 53, 1745–1759. [Google Scholar] [CrossRef]
- Altinok, H.H.; Dikilitas, M.; Yildiz, H.N. Potential of Pseudomonas and Bacillus isolates as biocontrol agents against fusarium wilt of eggplant. Biotechnol. Biotechnol. Equip. 2013, 27, 3952–3958. [Google Scholar] [CrossRef] [Green Version]
- Santoyo, G.; Orozco-Mosqueda, M.D.C.; Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Kamilova, F.; Kravchenko, L.V.; Shaposhnikov, A.I.; Azarova, T.; Makarova, N.; Lugtenberg, B. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 2006, 19, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Author Correction: Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2021, 19, 72. [Google Scholar] [CrossRef]
- Ancona, V.; Li, W.; Zhao, Y. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence. Mol. Plant Pathol. 2014, 15, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Williamson, K.S.; Franklin, M.J. Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor. Mol. Microbiol. 2018, 110, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Khusainov, I.; Fatkhullin, B.; Pellegrino, S.; Bikmullin, A.; Liu, W.T.; Gabdulkhakov, A.; Shebel, A.A.; Golubev, A.; Zeyer, D.; Trachtmann, N.; et al. Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat. Commun. 2020, 11, 1656. [Google Scholar] [CrossRef] [Green Version]
- Khaova, E.A.; Kashevarova, N.M.; Tkachenko, A.G. Ribosome Hibernation: Molecular Strategy of Bacterial Survival. Appl. Biochem. Microbiol. 2022, 58, 213–231. [Google Scholar] [CrossRef]
- Pimchan, T.; Maensiri, D.; Eumkeb, G. Synergy and mechanism of action of α-mangostin and ceftazidime against ceftazidime-resistant Acinetobacter baumannii. Lett. Appl. Microbiol. 2017, 65, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Kjelleberg, S. The role of RNA stability during bacterial stress responses and starvation: Minireview. Environ. Microbiol. 2000, 2, 355–365. [Google Scholar] [CrossRef]
- Dressaire, C.; Picard, F.; Redon, E.; Loubière, P.; Queinnec, I.; Girbal, L.; Cocaign-Bousquet, M. Role of mRNA stability during bacterial adaptation. PLoS ONE 2013, 8, e59059. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7121. [Google Scholar] [CrossRef]
Strain, Plasmid | Genotype/Phenotype/Description | Source, Reference |
---|---|---|
Strains | ||
E. coli DH5α | Invitrogen, Cat. No. 12297–016 | |
E. coli S17-1 | Simon et al. [18] | |
P. putida PCL1760 | Efficient root colonizer isolated from avocado rhizosphere | Validov et al. [7] |
P. putida SB9 | P. putida PCL1760 (ΔrsfS) obtained | This work |
P. putida SB9 (pJeM2:rsfS) | Mutant SB9, harbouring pJeM2: rsfS plasmid | This work |
Fusarium oxysporum f.sp. radices-lycopersici ZUM2407 | Tomato root rot pathogen | Bolwerk et al. [19] |
pK18SacBmob | KmR, integration vector for pseudomonads | Schafer et al. [20] |
Plasmids | ||
pK18SacBmob:flanks-ΔrsfS | This work | |
pJeM2 | Broad host range vector, Km | Jeske and Altenbuchner [21] |
pJeM2:rsfS | This work |
Purpose | Description | Primers | Sequence | Reference |
---|---|---|---|---|
The rsfS gene deletion of P. putida PCL1760 | The rsfS gene fragment with flanking sequences | fl-rsfS-f | CCGAAGCCGACTGGCACACG | In this study |
fl-rsfS-r | GTGTCGACCACGCCGTAATGGG | |||
Inverse rsfS gene primer (inv- rsfS) | inv-rsfS-f | CTACGACCTTGAGCGTCTGTGGC | In this study | |
inv-rsfS-r | GACTGCCACGGAGACCGCG | |||
rsfS gene | test-rsfS-f | AGCGGCAAATCGGTGAGGTTCCTG | In this study | |
test-rsfS-r | GTACTTATACGGTTCGCGGACGGG | |||
Quantification of the rsfS gene expression | Housekeeping genes | rpoC-f | CAAGCGTCTGAAGCTGATGGAAGC | In this study |
rpoC-r | GGAAGTCGCGAAACGGCCACC | |||
rsfS gene | QrsfS-f | GATGACCGCCGCTGCCCG | In this study | |
QrsfS-r | AGCGCTTTCCTTATTCGCGGTCTTTG | |||
Colonization Ability | Mutant of PCL1760 | delrsfS-f | GGTGCCTCTGGCGCCTACG | In this study |
QrsfS-r | AGCGCTTTCCTTATTCGCGGTCTTTG | |||
Wild type strain of PCL1760 | QrsfS-f | GATGACCGCCGCTGCCCG | In this study | |
QrsfS-r | AGCGCTTTCCTTATTCGCGGTCTTTG | |||
The rsfS gene cloning in pJeM2 | rsfS gene | rsfS-f | TTTTTTCATATGACCAAGCAGAAAATTTACGGCG | In this study |
rsfS-r | TTTTTTAAGCTTATTCGCGGTCTTTGAGCTTGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miftakhov, A.K.; Diabankana, R.G.C.; Frolov, M.; Yusupov, M.M.; Validov, S.Z.; Afordoanyi, D.M. Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760. Microorganisms 2023, 11, 19. https://doi.org/10.3390/microorganisms11010019
Miftakhov AK, Diabankana RGC, Frolov M, Yusupov MM, Validov SZ, Afordoanyi DM. Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760. Microorganisms. 2023; 11(1):19. https://doi.org/10.3390/microorganisms11010019
Chicago/Turabian StyleMiftakhov, Aynur Kamilevich, Roderic Gilles Claret Diabankana, Mikhail Frolov, Marat Miratovich Yusupov, Shamil Zavdatovich Validov, and Daniel Mawuena Afordoanyi. 2023. "Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760" Microorganisms 11, no. 1: 19. https://doi.org/10.3390/microorganisms11010019
APA StyleMiftakhov, A. K., Diabankana, R. G. C., Frolov, M., Yusupov, M. M., Validov, S. Z., & Afordoanyi, D. M. (2023). Persistence as a Constituent of a Biocontrol Mechanism (Competition for Nutrients and Niches) in Pseudomonas putida PCL1760. Microorganisms, 11(1), 19. https://doi.org/10.3390/microorganisms11010019