Next Article in Journal
Primate Simplexviruses Differ in Tropism for Macaque Cells
Next Article in Special Issue
Molecular and Source-Specific Profiling of Hospital Staphylococcus aureus Reveal Dominance of Skin Infection and Age-Specific Selections in Pediatrics and Geriatrics
Previous Article in Journal
Candida albicans Strains Adapted to Caspofungin Due to Aneuploidy Become Highly Tolerant under Continued Drug Pressure
Previous Article in Special Issue
Nocardia Infections in the Immunocompromised Host: A Case Series and Literature Review
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Vancomycin Resistance in Enterococcus and Staphylococcus aureus

School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
*
Author to whom correspondence should be addressed.
Microorganisms 2023, 11(1), 24; https://doi.org/10.3390/microorganisms11010024
Submission received: 2 December 2022 / Revised: 19 December 2022 / Accepted: 19 December 2022 / Published: 21 December 2022
(This article belongs to the Special Issue Multi-Drug Resistant (MDR) Gram-Positive Bacterial Infections)

Abstract

:
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.

1. Introduction

1.1. Enterococcus faecalis and Enterococcus faecium

The genus Enterococcus are Gram-positive, facultative anaerobic cocci. These bacteria are common commensals of the human gastrointestinal [1] and vaginal tracts, oral cavity [2] and are ubiquitous in nature [3]. In healthy individuals, enterococci can comprise up to 1% of the total bacterial microbiota [4]. Currently, at least 73 different enterococcal species are known [5], with Enterococcus faecalis and E. faecium being the most common species in humans [4]. Enterococci are also opportunistic human pathogens, with E. faecalis and E. faecium demonstrating the highest prevalence of infection; up to 90% of human Enterococcus infections are caused by E. faecalis [6] and the remainder by E. faecium [2], although infections by other Enterococcus species do sporadically occur [7]. As such, E. faecalis and E. faecium will be the focus for this review.
Enterococci are intrinsically resistant to many antibiotic classes [8]. Mainly driven by selection pressures caused by inappropriate antibiotic stewardship practices [9], enterococci have acquired additional resistance determinants (Figure 1) through both horizontal gene transfer and spontaneous mutations (Table 1) [10]. E. faecalis and E. faecium are responsible for numerous nosocomial infections such as wound and soft-tissue infections, neonatal infections, urinary tract infections, meningitis, bacteremia, sepsis, biofilm-associated infections of medical devices and endocarditis [1,11,12]. In humans, E. faecalis is the species responsible for the majority of enterococcal infections [6] and has been associated with community-associated (CA) diseases of the oral cavity such as periodontitis, peri-implantitis, caries and endodontic infections [13,14,15] as well as bacteremia, while E. faecium is predominantly linked to healthcare-associated (HA) bacteremia [16]. The greater propensity of E. faecalis to cause infections can be attributed to its enhanced capability to acquire and express select virulence factors. In contrast, E. faecium is considered less virulent but with comparatively higher mortality rates in some HA infections such as bacteremia due to its greater disposition for antibiotic resistance [16,17,18,19,20], including vancomycin resistance [8,21,22,23]. This enhances the survivability and persistence of E. faecium within HA settings, allowing it to cause nosocomial infections despite its antibiotic-abundant environment [18,24,25,26,27,28].
Figure 1. Timeline of antibiotic introduction (above) and subsequent resistance emergence in Enterococcus spp (below) [29,30,31,32,33,34]. Abbreviations: GRE—Gentamicin-resistant Enterococcus; PRE—Penicillin-resistant Enterococcus; VRE—Vancomycin-resistant Enterococcus; LRE—Linezolid-resistant Enterococcus; DRE—Daptomycin-resistant Enterococcus.
Figure 1. Timeline of antibiotic introduction (above) and subsequent resistance emergence in Enterococcus spp (below) [29,30,31,32,33,34]. Abbreviations: GRE—Gentamicin-resistant Enterococcus; PRE—Penicillin-resistant Enterococcus; VRE—Vancomycin-resistant Enterococcus; LRE—Linezolid-resistant Enterococcus; DRE—Daptomycin-resistant Enterococcus.
Microorganisms 11 00024 g001
Table 1. Genetic basis of antibiotic resistance mechanisms in enterococci. There is significant overlap of the numerous different genes and gene mutations implicated in enterococcal and staphylococcal antibiotic resistance (Table 2). Many of these genes are also found on mobile genetic elements (MGEs), which can enable inter- and/or intra-species antibiotic resistance gene transfer [35]. In addition, bacteria can develop/acquire multiple methods of resistance against the same antibiotic class (e.g., mutations in DNA gyrase, topoisomerase IV or the expression of protective proteins or efflux pumps against quinolones). Finally, the expression of one gene may also confer resistance to multiple antibiotic classes (e.g., cfr, optrA).
Table 1. Genetic basis of antibiotic resistance mechanisms in enterococci. There is significant overlap of the numerous different genes and gene mutations implicated in enterococcal and staphylococcal antibiotic resistance (Table 2). Many of these genes are also found on mobile genetic elements (MGEs), which can enable inter- and/or intra-species antibiotic resistance gene transfer [35]. In addition, bacteria can develop/acquire multiple methods of resistance against the same antibiotic class (e.g., mutations in DNA gyrase, topoisomerase IV or the expression of protective proteins or efflux pumps against quinolones). Finally, the expression of one gene may also confer resistance to multiple antibiotic classes (e.g., cfr, optrA).
Antibiotic ClassResistance Gene(s), Family or OperonProtein(s) ProducedMechanism of ActionGene Location(s)Enterococcal Mobile Genetic Elements (MGEs)References
AminoglycosidesaacAcetyltransferaseAntibiotic modification and inactivationChromosome, plasmid, transposonPlasmids (P): pIP800, pJH1, pR538-1, pYN134, Inc. 18

Transposons (T): Tn1546, Tn4001, Tn5281, Tn5382, Tn5385
[36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]
aad,
ant
AdenylyltransferasePlasmid, transposon
aphPhosphotransferasePlasmid, transposon
efmMMethyltransferaseMethylation of 16S rRNA nucleotide; reduction of antibiotic target affinityChromosome-[56]
Bacitracin, cephalosporinscroRS systemPenicillin-binding protein 5 (PBP5) and othersCellular signaling in response to cell wall stress; deletion increases cellular susceptibility to antibiotics. Also involved in overexpression of PBP5Chromosome-[57]
β-lactamsblaZβ-lactamaseInactivation of β-lactam antibiotics through enzymatic hydrolysisChromosome, plasmid, transposonP: pBEM10
T: Tn5385, Tn552
[45,46,58,59,60,61,62]
Cephalosporin class β-lactamspbp5Penicillin-binding proteinReduced antibiotic affinity; enables cell wall cross-linking in the presence of β-lactamsChromosome, plasmid, transposonP: The possibility of plasmid-mediated pbp5 transfer has been mentioned. No pbp5-carrying plasmids have been described in E. faecalis or E. faecium, although it has been hypothesized.T: Conjugative transposon CTn5386[63,64,65,66,67,68,69]
IreK, irePIreK—Ser/Thr kinaseireP—protein phosphatasePart of a signaling transduction pathway that regulates cephalosporin resistanceChromosome-[70]
ChloramphenicolcatChloramphenicol
acetyltransferase
Enzymatic acetylation of chloramphenicol; antibiotic inactivationPlasmidP: pRE25, pRUM, pIP501[71,72,73,74]
Glycopeptides (e.g., vancomycin)
liaFSR, liaXYZliaFSR is a regulatory system, with liaXYZ proteins being effector proteinsModification of the cell membrane and envelope stress response. Modulates cell membrane localization or content, thus altering the antibiotic target siteChromosome-[75,76]
clsCardiolipin synthaseInvolved in cell membrane synthesis; increased cls expression led to membrane modification that impaired antibiotic penetration and activityChromosome-[77,78,79]
mprFBifunctional membrane enzyme involved in phospholipid synthesis and translocationIncreased positive charge of cell membrane and change of membrane fluidity that reduces antibiotic affinity; target modificationHomologs/paralogs described but not extensively studied—gene loci not reportedUnknown[80,81]
van operon (e.g., vanA)van operon proteins—refer to Section 2.3Reduction of antibiotic affinity through cell wall modificationChromosome, plasmid, transposonP: pHKK701, pHKK702, pHK703, pIP816, pIP964, pMG2200, pVEF1

T: Tn1546, Tn1547, Tn1549-like, Tn5482, Tn5506
[82,83,84,85,86,87,88,89,90,91]
Lincosamides
Oxazolidinones
Phenicols
Pleuromutilins
Streptogramin A
cfrrRNA methyltransferaseMethylation of A2503 bacterial 23S rRNA gene; reduced antibiotic affinity to methylated ribosomesChromosome,
plasmid, transposon
P: pEF-01

T: IS1216, Tn6218-like
[92,93,94]
optrA aABC-F proteinActive dislodgement of antibiotic from its ribosomal target siteChromosome, plasmid, transposonP: Inc18, pE349

T: Tn554, Tn6674
[95,96,97,98,99]
LinezolidG2576TPoint mutation in 23S rRNA geneRibosomal target modification, reduction of antibiotic affinityChromosome-[100]
Macrolides
Lincosamides
Streptogramins
ermRibosomal methylaseMethylation of bacterial 23S rRNA domain V; modification of target site and reduced antibiotic binding affinityPlasmid, transposonP: pLG2, pRUM-like

T: Tn916/Tn1545
[45,46,58,101,102,103,104,105,106,107,108]
lsaEfflux pumpAntibiotic effluxChromosome, plasmidP: pMG1-like, pXD4, pY13[109,110,111]
msrA bChromosome-[112,113]
Phosphonic Acid (e.g., fosfomycin)fosBFosfomycin inactivating enzymeMn2+-dependent enzymatic modification and inactivation of fosfomycinPlasmid, transposon, transferable extrachromosomal intermediateP: pEMA120
T: ISL3-like, Tn1546-like
[114,115,116,117]
QuinolonesemeAEfflux pumpAntibiotic effluxChromosome-[118]
gyrADNA gyrase mutationReduced antibiotic binding affinity[119,120,121,122]
parCMutation of topoisomerase IV [119,121,122]
qnrPentapeptide repeat proteinProtection of DNA gyrase against antibiotic mediated inhibition [123]
Streptogramin AvatAcetyltransferasesAntibiotic modification and inactivationPlasmidP: pAT15, pAT421[124,125,126,127,128,129,130]
vgaEfflux pumpAntibiotic effluxPlasmid c-[130]
TetracyclinestetM, tetO, tetSRibosome protection proteinBinding to bacterial ribosome; interference with tetracycline-ribosome bindingChromosome, plasmid, transposonP: pDO1–like

T: Tn916/Tn1545 family, Tn5397-like
[45,46,107,108,119,131,132,133,134,135]
tetK, tetLEfflux pumpAntibiotic efflux
a Confers resistance to oxazolidinones and phenicols only [99,136]. b Confers resistance to macrolides and streptogramins only [137]. c The authors did not designate a name for the plasmid from which the vga gene was identified from [130].
Table 2. Genetic basis of antibiotic resistance mechanisms in S. aureus.
Table 2. Genetic basis of antibiotic resistance mechanisms in S. aureus.
Antibiotic ClassResistance gene(s), Family or OperonProtein(s) producedMechanism of ActionGene Location(s) in S. aureusStaphylococcal MGEsReferences
AminoglycosidesaacAcetyltransferaseAntibiotic modification and inactivationChromosome, plasmid, transposonP: pETBTY825, pSK41, pUR1902, pUR2941

T: IS1181, IS1182, Tn4001, Tn5404, Tn5405 Tn554
[39,40,41,42,43,44,138,139,140,141,142,143,144,145,146,147,148]
aad, antAdenylyltransferase
aphPhosphotransferase
β-lactamsblaZβ-lactamaseInactivation of β-lactam antibiotics through enzymatic hydrolysisChromosome, plasmid, transposonP: pETBTY825, pI258, pI9789

T: Tn552
[58,59,145,149,150,151,152,153,154,155,156,157,158,159]
Cephalosporins,
methicillin
mecAPenicillin-binding protein 2a (PBP2a)Reduced antibiotic affinity; enables cell wall cross-linking in the presence of β-lactamsChromosome, pathogenicity island (PAI)PAI: SCCmec[149,160,161,162,163,164]
ChloramphenicolcatChloramphenicol
acetyltransferase
Enzymatic acetylation of chloramphenicol; antibiotic inactivationPlasmidP: pC194, pC221, pUB112[165,166,167,168,169,170]
Glycopeptides (e.g., vancomycin)clsCardiolipin synthaseInvolved in cell membrane synthesis; increased cls expression led to membrane modification that impaired antibiotic penetration and activityChromosome-[171,172,173]
mprFBifunctional membrane enzyme involved in phospholipid synthesis and translocationIncreased positive charge of cell membrane and change of membrane fluidity that reduces antibiotic affinity; target modification[174,175,176]
rpoBβ-subunit of bacterial RNA polymeraserpoB mutations are frequent in vancomycin-intermediate S. aureus (VISA) strains. They also lead to upregulation of capsule synthesis, attenuated virulence and immune evasion[177,178,179]
walKR (also known as yycFG)Inducible two-component regulator system consisting of a sensor kinase and response regulatorRegulation of cell wall synthesis (thickening), biofilm formation, virulence, immune evasion, autolysis[180,181,182,183]
vraS/vraR (vraSR)Stress sensing and regulatory system that overproduces protective enzymes such as penicillin-binding protein 2 (PBP2) and other cell wall biosynthesis genes in response to antibiotic activity[177,184,185,186,187,188]
van operon (e.g., vanA)van operon proteins—refer to Section 2.3.Reduction of antibiotic affinity through cell wall modificationPlasmid, transposonP: Inc18-like, pLW1043, pSK41-like

T: Tn1546
[82,189,190,191,192,193]
Fusidic acidfusAMutation to the EF-G ribosome complexAntibiotic target modification; reduced antibiotic affinityChromosome-[194]
fusBFusB proteinPrevention of antibiotic interaction with EF-G target site of bacterial ribosomeChromosome, plasmid, transposonP: pUB101

T: IS431/257
[194,195,196]
fusCFusC proteinChromosome, PAIPAI: SCC476, SCCmecN1, pseudo SCCmec-SCC-SCCCRISPR[194,197,198,199,200,201]
Lincosamides
Oxazolidinones
Phenicols
Pleuromutilins
Streptogramin A
cfrrRNA methyltransferaseMethylation of A2503 bacterial 23S rRNA gene; reduced antibiotic affinity to methylated ribosomesChromosome, plasmid, transposonP: pSCFS3-like, pSCFS7, pSM19035

T: IS21-558, Tn558
[202,203,204,205,206,207,208,209,210]
optrAaABC-F proteinActive dislodgement of antibiotics from the ribosomal target siteChromosome, transposonT: Tn6823[95,99,211]
LinezolidG2576TPoint mutation in 23S rRNA geneRibosomal target modification, reduction of antibiotic affinityChromosome-[212]
Macrolides
Lincosamides
Streptogramins
(MLS)
ermRibosomal methylaseMethylation of bacterial 23S rRNA domain V; modification of target site and reduced antibiotic binding affinityChromosome, plasmid, transposonP: pE194,
pUR1902, pUR2940, pUR2941

T: Tn551, Tn554
[148,213,214,215,216,217]
lsaEfflux pumpAntibiotic effluxChromosome, plasmid, transposonP: pV7037
T: Tn560
[110,218,219,220]
mdeAChromosome-[110,221]
msrA bPlasmidP: pETBTY825, pMS97[145,222]
MupirocinmupAProtein modificationTarget modification; reduced antibiotic affinityChromosome, plasmid,
transposon
P: pJ2947, pXU12

T: IS257
[223,224,225,226,227]
Phosphonic acid (e.g., Fosfomycin)fosBFosfomycin inactivating enzymeMn2+-dependent enzymatic modification and inactivation of fosfomycinChromosome, PAI, plasmid, transposonPAI: SsPI15305

P: pET28, pIP1842

T: IS257-like c
[117,228,229,230,231,232,233]
QuinolonesgyrA, gyrBDNA gyrase mutationReduced antibiotic binding affinity
Chromosome
-[213,234]
parC, parEMutation of topoisomerase IV[213,234]
norAEfflux pumpAntibiotic efflux[235]
qnrPentapeptide repeat proteinProtection of DNA gyrase against antibiotic mediated inhibitionPlasmid d-[236]
Streptogramin AvatAcetyltransferasesAntibiotic modification and inactivationChromosomally located conjugative elements, plasmid, transposonP: pIP524, pIP680, pIP1156, pIP1714

T: Tn5406
[126,127,128,129,213,237]
vgaEfflux pumpAntibiotic effluxChromosome, plasmid, transposonP: pSA-7,
pVGA, pUR2355, pUR4128, pUR3036, pUR3937

T: Tn5406, Tn5406-like, Tn6133
[144,237,238,239,240]
SulfonamidessulADihydropteroate synthaseEnzymatic overproduction of p-aminobenzoic acidChromosome-[213]
TetracyclinestetK, tetLEfflux pumpAntibiotic effluxChromosome, plasmid, transposonP: pT181, pUR1902, pUR2940, pUR2941, pUSA02

T: Tn1545, Tn5801-like (Tn6014), Tn916
[165,193,241,242,243,244,245,246]
tetM, tetO, tetS eRibosome protection proteinBinding to bacterial ribosome; interference with tetracycline-ribosome binding
TrimethoprimdfrADihydrofolate reductaseProduction of trimethroprim-resistant dihydrofolate reductaseChromosome, plasmid, transposonP: pSK1, pSK639

T: IS257, Tn4003
[245,247,248,249]
dfrBReduced antibiotic binding affinityChromosome-[250,251]
a Confers resistance to oxazolidinones and phenicols only [99,136]. b Confers resistance to macrolides and streptogramins only [137]. c The fosB5 gene was not part of the IS257-like transposon but merely surrounded by two copies of it [231]. d A Nigerian study revealed a very low prevalence of plasmid-mediated qnr genes amongst clinical S. aureus isolates. No plasmid designations were provided from the study [236]. Quinolone resistance is caused primarily in Gram-negative bacteria through chromosomal mutations [252]. e tetS is carried by staphylococci [246] but has not been explicitly found in S. aureus in the literature.
Vancomycin-resistant Enterococcus (VRE) is a frequent cause of clinical outbreaks worldwide [253,254]. An example of this is the VRE clonal sequence type 796 (ST796) which was first detected in 2011 in Australia, then quickly spread both nationwide and internationally to New Zealand [255] before also causing outbreaks in European hospitals beginning in December 2017 [256].
Globally, the prevalence of antibiotic-resistant enterococcal infections remains high and rising in many different countries around the world, with heavy burdens of disease in both developing and developed nations [257,258,259,260,261,262,263,264,265,266,267]. In 2019, E. faecalis and E. faecium were attributed to 100,000–250,000 fatalities associated with antimicrobial resistance (AMR) [268]. In the United States, VRE constituted 30% of all HA infections in 2017, resulting in approximately 54,500 hospitalizations and 5400 deaths [29]. A 2021 meta-analysis by Shrestha et al. showed the pooled prevalence of VRE in Asia to be 8.1%, higher than those reported from Europe [269] but lower than North America (21%) [260]. In 2020, the reported overall pooled prevalence of VRE in Africa was 26.8% [270], while Australia had an overall vancomycin resistance rate in E. faecium of 32.6% [271], with VRE constituting up to 64.2% of all bloodstream infections in some regions of the country that same year [272]. The overall prevalence of VRE in clinical enterococcal isolates in the South American nations of Columbia, Ecuador, Peru and Venezuela was 31% overall between 2006–2008 [273]. As such, VRE has been designated a “high priority” and “serious threat” pathogen by the World Health Organisation (WHO) [274] and the U.S. Centers for Disease Control and Prevention (CDC) [29], respectively.
The contrasting geographic burden of disease imposed by VRE across select countries has been shown to typically correlate with national antimicrobial stewardship and surveillance practices. In developed European nations with robust stewardship and surveillance programs [275,276], the prevalence of VRE is much lower than in other developed countries with comparatively modest levels of stewardship such as Australia [277,278]. The observation that lower and middle-income countries in Africa, Asia and South America can have comparable or lower prevalence of VRE to some developed nations such as Australia, despite their absence of quality stewardship and surveillance programs however can be explained by the lack of published epidemiological data from these regions [279,280,281,282,283,284,285]. Therefore, it is likely that the true burden of VRE in Africa, Asia and South America are much higher than the available figures provided from those countries. This assumption is consistent with the results of a 2022 study which showed that the overall burden of AMR in 2019 was highest in sub-Saharan Africa and higher amongst low- and middle-income countries than more developed nations in Australasia, Western Europe, and East Asia [268].
The global burden of VRE in food of animal origin was estimated to be 11.7% by Lawpidet et al., in 2021, thought to be driven by the use of avoparcin (a vancomycin analog) within livestock feed for growth promotion. Using meta-analysis, they reported the prevalence of VRE in animal foods to be: Africa (18.5%), Europe (12%), Asia (11.7%), South America (3%) and North America (0.3%). The finding that the frequency of VRE in European animal products was higher than Asia was surprising, and may be explained by the discrepancy in data availability in Asia, the types of studies included in the meta-analysis [286] as well the poor availability of antimicrobial consumption and AMR surveillance data in lower-income countries [287,288]. In addition, the prevalence levels of VRE in healthcare do not always correlate with levels observed in agriculture; in the United States, the prevalence of VRE in HA infections was 30% in 2017 [29], far exceeding the 0.3% figure in North American farms. This may be attributed to the fact that avoparcin was never approved for use in North America [286].
Given current trends, it is predicted that antimicrobial consumption—and by extension, prevalence of HA and agricultural VRE—will significantly increase in Africa, Asia (particularly South and Southeast Asia) and South America [289]. Although all continents are predicted to increase their future antimicrobial consumption [290], increases are expected to disproportionally affect developing regions due to their rapid growth, and potential lack of appropriate infection control and stewardship practices [290,291,292,293]. Therefore, future initiatives aimed at reducing antimicrobial use and enhancing antimicrobial stewardship, particularly in developing nations, will need to be balanced with the necessity to provide food security to these low- and middle-income countries [289].

1.2. Staphylococcus aureus

Staphylococcus aureus is a Gram-positive, facultative anaerobic bacterium [294]. Both a commensal as well as a significant pathogen of humans [295], S. aureus is prevalent in community, healthcare [296] and agricultural settings [297,298], asymptomatically colonising up to 30% of the human population [299].
As one of the most versatile and successful opportunistic human pathogens [296,300], S. aureus possesses a large variety of virulence factors [301] that enable host colonisation, tissue damage, immune evasion and progression of disease [301,302]. Consequently, S. aureus infections can be grouped into three general categories: (i) toxinoses such as scalded skin syndrome, food poisoning and toxic shock syndrome; (ii) benign and self-limiting conditions such as superficial skin and soft tissue infections; and (iii) systemic, life-threatening complications such as brain abscesses, meningitis, pneumonia, osteomyelitis, endocarditis, bacteremia, multi-organ failure and sepsis which carry high rates of morbidity and mortality [303,304].
S. aureus infections can be either HA or CA. The characteristics and virulence profiles of CA S. aureus typically differ to those of HA S. aureus [305,306]. HA infections of methicillin-resistant S. aureus (MRSA) were first reported in the 1960s [307], but rarely affected non-hospitalised healthy people and failed to spread efficiently within the community. This was generally attributed to the fitness cost imposed upon HA-MRSA through acquisition of antibiotic resistance elements [308], and is consistent with studies that reported HA-MRSA being generally more drug-resistant [305,309] and have reduced fitness and virulence [310] than CA-MRSA. Nevertheless, HA-MRSA clones remain a major cause of nosocomial infections globally [307].
The global emergence of CA-MRSA [311,312,313,314,315,316] began in the late 1980s [308], and was defined as a MRSA infection in the community whereby the infected persons exhibits no apparent nosocomial risk factors. This suggested that CA-MRSA evolved independently from lineages present in clinical settings. This hypothesis was further supported by the observation that CA-MRSA and HA-MRSA are epidemiologically, clinically, and microbiologically distinct [306,309]. Typically, CA-MRSA differ from HA-MRSA through the former exhibiting low-level susceptibility to non-β-lactam antibiotics, carriage of SCCmec types IV or V and production of Panton-Valentine leukocidins [308]. However, possible transmission between HA-MRSA to CA-MRSA may increase the overlap in similarities between the two MRSA sub-populations [306].
For HA-MRSA, ST239 was traditionally considered to be the dominant global hospital clone [317] and remains prevalent in Asia along with ST5 [318,319]. Elsewhere, the prevalence distribution of HA-MRSA clones will vary depending on geographical location: USA100 (North America) [320,321,322,323], CC5 (Latin America) [324,325], ST22 (United Kingdom), ST225 (central Europe) [319], ST22-IV [2B] (Australia) [326] and ST5 and ST239/241 (Africa) [327].
In the community, the dominant CA-MRSA clone also varies by geographical location: USA300—ST8-IV (North America), USA1100 and USA300-Latin American variant (South America), ST80-IV (Europe), ST93-IV (Australia), high heterogeneity in Asia (no dominant clone) and insufficient data for Africa [328]. Although traditionally considered a HA pathogen, the burden of CA-MRSA disease has been on the rise since its global emergence in the 1990s [329] and it began to appear within HA facilities in the 2000s [308]. Since then, many countries such as Australia [330], China [319], India [331], Kuwait [332], South Korea [333,334] Switzerland [335] United Arab Emirates [336], United Kingdom [337] and the United States [338,339,340] have reported the occurrences of persistence, dissemination, outbreaks and/or outright dominance of CA-MRSA clones within HA facilities which are attributed to the comparatively higher fitness of CA-MRSA through its carriage of smaller SCCmec variants and fewer, if any, other antibiotic resistance determinants [310].
The exact mechanisms driving the divergent evolution of MRSA clones, and reasons for the emergence and replacement or dominance of specific clones in different geographical locations remain unclear [307,311,341,342,343,344]. We hypothesise that factors such as the host population demographics, migration, environmental climate, presence of other microorganism communities (e.g., other bacteria and bacteriophages that can facilitate horizontal gene transfer), spontaneous gene mutations and level of antibiotic use and stewardship are all likely to play contributing roles. With such changing diversity in MRSA clones, rapid and accurate clinical diagnosis, combined with a tailored treatment regimen according to the resistance profile of the clonal type will be essential for effective patient care [328].
S. aureus has demonstrated a remarkable ability to rapidly acquire and develop antibiotic resistance (Figure 2), often achieved through horizontal gene transfer of mobile genetic elements (MGEs) and chromosomal mutations [343]. As a result, an extensive arsenal of resistance mechanisms has emerged in S. aureus that enables resistance to major antibiotic classes typically employed to treat infection (Table 2).
Like enterococci, the rapid emergence of resistance development in S. aureus has been attributed to the misuse and overuse of antibiotics in clinical and agricultural settings [9]. When combined with additional factors such as high rates of asymptomatic colonisation [299,347] and increased accessibility of international travel, S. aureus infections, particularly those caused by antibiotic resistant strains, have reached epidemic proportions in community and clinical settings worldwide [348]. Globally, S. aureus was responsible for more than 250,000 deaths associated with AMR in 2019 [268]. In the United States, S. aureus caused more than 119,000 bloodstream infections which led to nearly 20,000 deaths in 2017 [349]. As with VRE, antibiotic resistant S. aureus has also been designed as a “high priority” and “serious threat” pathogen by the WHO [274] and U.S. CDC [29] respectively.

2. Vancomycin

2.1. Discovery and History

Vancomycin is a tricyclic glycopeptide antibiotic first isolated in 1957 from the fungus Streptomyces orientalis. In vitro experiments showed that it had broad spectrum activity against Gram-positive bacteria, with no detected resistance in staphylococci following serial passages in media containing vancomycin. After showing promising efficacy and safety profiles in animal models, vancomycin (name derived from “vanquish”) entered human clinical trials [33,350]. During an initial clinical trial, vancomycin successfully treated 8 out of 9 patients with severe staphylococcal infection. Therapy failure occurred in one patient who was suffering from empyema, which prevented a therapeutic dose level of vancomycin from being administered [351]. In another human study, 5 out of 6 endocarditis patients who had already experienced antibiotic failure demonstrated resolution of disease indicators; the singular patient who experienced therapy failure had also presented with multiple conditions such as intractable heart failure and shock [352].
The culmination of positive data from these respective clinical trials subsequently resulted in the immediate approval of vancomycin by the U.S. Food and Drug Administration (FDA) in 1958. However, due to perceived nephrotoxicity [33,353,354], vancomycin was originally categorized as a last resort medication reserved for patients who were infected with bacteria that were resistant to frontline drugs or those patients with serious allergies to standard therapy [33]. Today, vancomycin is used as a first-line treatment for MRSA [355,356,357], and remains an important antibiotic used against serious Gram-positive bacterial infections [358,359].

2.2. Mechanism of Action

Vancomycin inhibits the cell wall synthesis of Gram-positive bacteria by binding to D-Ala-D-Ala dipeptide subunits of peptidoglycan monomers anchored to the sugar backbone of alternating N-acetylmuramic acid (MurNac) and N-acetylglucosamine (GlcNac) residues [360,361]. In susceptible bacteria, peptidoglycan monomers normally undergo transglycosylation and transpeptidation by the glycosyltransferase and transpeptidase activities of penicillin-binding proteins (PBPs), forming new peptidoglycan structures through pentaglycine cross-linkage [362,363]. Vancomycin, as a largely hydrophilic molecule, disrupts this process by forming hydrogen bonds to the D-Ala-D-Ala moiety through its aglycon subunit. As a result, this complex leads to a conformational change to the peptidoglycan which prevents subsequent transglycosylase and transpeptidase activity. Consequently, cell wall synthesis is inhibited as new peptidoglycan monomers are unable to be incorporated into the growing peptidoglycan skeleton, eventually leading to bacteriostasis in enterococci [350] or osmotic shock, cell lysis and death in S. aureus (Figure 3) [23,350,364,365].
Although adverse effects are still observed from prolonged administration or high concentrations of use, vancomycin’s toxicity has been significantly reduced since its first introduction. This was most likely achieved due to the removal of impurities present in early batches [350]. The improvement in vancomycin’s safety profile, in addition to the emergence of methicillin-resistant bacteria in the 1970s, subsequently lead to its mainstream adoption and use [34]. Today, vancomycin’s utility and importance in modern medicine is highlighted by its inclusion on the WHO’s model list of essential medicines [366].

2.3. Vancomycin Resistance in Enterococcus

The widespread use of vancomycin has predictably resulted in the rapid emergence and spread of vancomycin resistance amongst various Gram-positive bacteria [350]. In 1988, Uttley and colleagues published the first clinical outbreak of highly resistant VRE, with some isolates having minimum inhibitory concentrations (MICs) greater than 2000 µg/mL [367]. Today, the Clinical Laboratory Standards Institute (CLSI) classifies complete vancomycin resistance in Enterococcus with a MIC of ≥32 µg/mL, intermediate resistance as 8–16 µg/mL and susceptible as ≤4 µg/mL using broth microdilution testing [368]. This is consistent with the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) which define the MIC of vancomycin susceptible enterococci to be ≤4 µg/mL and vancomycin-resistant enterococci to be>4 µg/mL [369].
Vancomycin resistance in enterococci is centered around the modification of the vancomycin target site i.e., modification of the D-Ala-D-Ala terminal amino acids of dipeptide monomer subunits into either D-Ala-D-Lac or D-Ala-D-Ser (Figure 4). These mutations confer high- and low-level vancomycin resistant phenotypes respectively. This is because the binding affinity of vancomycin for D-Ala-D-Lac is reduced 1000-fold due to loss of a single hydrogen bond [370] compared to its modestly (6-fold) reduced affinity for D-Ala-D-Ser due to steric hindrance by the D-Ser hydroxyl group [371,372]. As the mechanism of resistance (D-Ala-D-Lac or D-Ala-D-Ser) is determined by different van cassettes, the degree of vancomycin resistance in enterococci will be dependent upon which van operon they express [371]. The different van operons, their respective genes, proteins, and mechanisms of action responsible for these variable resistance levels are summarised in Table 3.
Low-level vancomycin resistance mediated by D-Ala-D-Ser monomers follows the same principle as shown here [370,371,372]. Created with BioRender.com.
High level, D-Ala-D-Lac based vancomycin resistance is encoded by the vanA operon and its homologs vanB, vanD, vanF and vanM. The vanA, vanH, vanX, vanS and vanR genes collectively compose the “core” resistance cassette known as “VanA-type” vancomycin resistance (Figure 5). vanY and vanZ are considered “accessory” genes of the vanA cassette and are not strictly necessary for conferring resistance (Table 3). The naming of homologous genes in all VanA-type operons are identical to each other, with the exception of the ligase gene which is named after its operon i.e., the genes vanA, vanB, vanD, vanF and vanM encode for the ligase proteins in the vanA, vanB, vanD, vanF and vanM operons but the dehydrogenase gene in all five VanA-type resistance operons are named vanH [371]. The vanA genotype is the most common amongst VRE and vancomycin-resistant S. aureus (VRSA) worldwide [397,398].
The D-Ala-D-Ser type resistance encoded by the vanC cassette was discovered in the chromosomes of Enterococcus gallinarum, Enterococcus casseliflavus and Enterococcus flavescens, providing intrinsic, low-level vancomycin resistance [82,397,401,402,403,404,405,406]. Homologs of vanC; vanE, vanG, vanL and vanN were later found in E. faecalis [384,385,407,408], and these operons allow for production of D-Ala-D-Ser peptidoglycan terminals. These cassettes also contain similar genes to those of the VanA-resistance type in addition to two genes exclusive to the D-Ala-D-Ser resistance cassette: a vanT-encoded serine racemase and vanXY-encoded bifunctional dipeptidase/pentapeptidase (Table 3). The naming of homologous genes in VanC-type resistance cassettes follow the same nomenclature as VanA-type resistance operons [371].
The vanA, vanB, vanG, vanM and vanN operons are transferable between bacteria. The distribution of these van operons in enterococci has been reviewed by Ahmed and Baptiste [397]. For a detailed review on the van operons and genes involved in vancomycin resistance, refer to Stogios and Savchenko [371].
Although the acquisition of vancomycin resistance via MGEs has been shown to incur a high and immediate fitness cost in enterococci [409], the prevalence of VRE has continually increased globally since emergence in the 1980s [260,270,410,411]. However, even in the absence of vancomycin selection, van-carrying enterococcal MGEs have demonstrated high rates of intra-species conjugation, stability within the host [412], impose little to no fitness cost when uninduced [413,414] and rapidly mitigate biological costs upon growth and form beneficial host-plasmid associations [409]. Worryingly, this suggests that antibiotic stewardship and decreased use would be insufficient to reduce the prevalence of VRE in healthcare and community settings.
This is because of the known van operons, the most predominant (vanA, followed by vanB) are associated with MGEs [415,416] that can carry other multidrug-resistance elements [417]. Therefore, the clinical and community use of non-glycopeptide antibiotics can also co-select for vancomycin resistance in the absence of vancomycin therapy [418]. Antimicrobials are also used in enormous quantities within animal feed in agriculture for growth promotion and disease prevention in livestock [289]. This subsequently places additional resistance selection pressures on the commensal bacteria carried by animals as well as bacteria in the surrounding environment through waste dissemination [288,419]. The presence of environmental heavy metals and use of biocides in agriculture [420,421,422] could also expedite this process.
While reducing inappropriate and excessive antibiotic use through implementation of appropriate stewardship reforms has shown to deliver positive outcomes [278,423,424,425], in practice, antibiotic stewardship can be complex and difficult to carry out [426] due to a multitude of factors such as lack of available information systems, funding, staffing, resourcing, or competition from higher priority initiatives [427]. Depending on the type of stewardship program applied, it on occasion can lead to delayed diagnoses and reduced patient outcome [428].
Even with the appropriate stewardship practices however, there is evidence from the poultry industry that it would only reduce, not eliminate the burden of VRE in agricultural settings. In 1997, the use of avoparcin in farming was banned by the European Union. In 2019, a study by Simm et al. demonstrated that significant reductions in VRE in broilers can be achieved through abolishment of antimicrobials in animal feed in addition to stringent disinfection and cleaning practices [429]. Similar observations of a reduction in VRE burden were observed in other countries following the ban of avoparcin. However, all these measures failed to achieve complete elimination of VRE [430,431,432,433,434].
Several theories surrounding the persistence of VRE have been suggested, such as vancomycin resistance co-selection by other antibiotics [397,435] and heavy metals, as well as plasmid addiction systems that force bacteria to retain vanA-carrying MGEs [434]. Alongside these factors, we hypothesise that other reasons such as the commensal nature of Enterococcus within humans and animals [436,437], its ubiquitous presence in the natural environment [3] and the adaptability, stability and transferability of van-containing MGEs [438] also play contributing roles. From a human perspective, these studies suggest that antibiotic stewardship initiatives to reduce glycopeptide use in hospitals and communities would significantly reduce the burden of VRE in endemic areas but may make little difference in completely eliminating VRE in settings with already low VRE prevalence.
Prolonged vancomycin therapy can lead to the emergence of vancomycin-dependent E. faecium [439] and E. faecalis (VDE) [440], which was first reported in 1994 [441], whereby bacteria lose or inactivate their functional D-Ala-D-Ala production pathway and become reliant on the presence of vancomycin to stimulate van-mediated peptidoglycan synthesis [440,442]. Unfortunately, suspension of vancomycin treatment may be insufficient to cure VDE infections due to the rapid reversion of VDE to vancomycin-independent colonies in vitro [440], likely through further mutations that allow re-activation of D-Ala-D-Ala synthesis or constitutive activation of an alternative van pathway [82]. Although rare, VDE infections in human patients have been reported in the literature [439,440,441,443,444,445,446,447,448]. However, due to the infrequent nature of such infections, VDE are poorly studied and understood, while optimum treatment guidelines remain unclear [445].
More recently, vanA- or vanB-carrying enterococci [449] which appear vancomycin-susceptible in traditional phenotypic susceptibility tests [450], but can revert to a vancomycin-resistant phenotype upon vancomycin treatment [451,452] were reported for the first time in 2011 [453]. The ability of these strains, termed vancomycin-variable enterococci (VVE), to evade diagnostic tests and switch phenotypes during antibiotic therapy [452] is thought to be due to major deletions in the Tn1546 vanA operon [453] and/or inducible or constitutive vanHAX expression [454] which significantly compromises treatment success [452].
Compared to VRE, VVE infections are rare, although several outbreaks have been reported in Europe [455] and North America. To date, limited data is available for the overall prevalence of VVE [454], which may be attributed to the pathogens capacity to evade drug sensitivity screening tests [452]. Therefore, it is likely that current epidemiological estimates of VVE, particularly in developing countries, would be below its actual prevalence value. To combat this, molecular-based testing methods such as PCR are required [450], but the facilities and apparatus for these techniques may be limited in low- and middle-income regions.

2.4. Vancomycin Resistance in S. aureus

In 1996, MRSA which were clinically refractory to vancomycin treatment was reported for the first time in Japan [345]. These strains, named Mu3 and Mu50, had MICs of 3 µg/mL and 8 µg/mL respectively [456] and were later termed hetero-vancomycin-intermediate S. aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) respectively [457]. In 2002, complete VRSA was reported for the first time in the United States [458]. Today, CLSI defines S. aureus complete vancomycin resistance with a MIC of ≥16 µg/mL, intermediate resistance as 4–8 µg/mL and susceptible as ≤2 µg/mL with broth microdilution testing [368]. This is consistent with the breakpoints set by EUCAST which define the MIC of vancomycin susceptible S. aureus to be ≤2 µg/mL and vancomycin-resistant S. aureus to be >2µg/mL [369].
The conversion of vancomycin-susceptible S. aureus (VSSA) to VISA occurs through spontaneous mutations in genes such as walkR, rpoB, vraSR and mprF. Mutations in these genes are thought to confer the wide range of favorable phenotypic changes in VISA that allow for greater vancomycin resistance such as membrane charge modification, upregulation of cell wall biosynthesis genes, cell wall thickening, biofilm formation and modulation of key cellular processes such as immune evasion, virulence attenuation and reduced autolysis (Table 2) [174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,457].
hVISA is defined as the precursor to VISA, and in most cases emerges as a semi-resistant subpopulation of daughter cells from a previously susceptible but heterogenous VSSA population [457]. Following prolonged vancomycin exposure and selection pressure that favors their outgrowth, eventually a homogenous VISA population is achieved [459]. Interestingly, hVISA may also give rise to “slow” VISA (sVISA), a slower growing VISA subpopulation with similar phenotypes to extant “wild type” VISA but with longer doubling times, higher vancomycin MICs (≥6 µg/mL) and VISA phenotype instability (i.e., rapid reversion to hVISA in the absence of drug selection pressure) [457].
Despite the greater therapeutic difficulty in treating VISA infections, VISA appears to be less virulent than VSSA but with a greater ability to colonise and evade the host immune system [460,461]. Prior studies employing a mouse model of skin and soft tissue infection demonstrated that VISA had a much lower invasive capacity than VSSA; VISA also induced lower levels of innate immunity in persistent and chronic infections [461]. Proposed mechanisms for VISA’s virulence reduction include loss-of-activity mutations or dysfunction of the quorum-sensing, virulence regulator system agr [461]. Virulence factors under agr control include expression of the α-hemolysin encoded by hla [462], with mutant or dysfunctional agr VISA isolates found to produce up to 20-fold less α-toxin than VSSA and also less lethal in an in vivo murine bacteraemia model [460]. In addition, VISA had a comparatively higher capacity for biofilm formation than VISA, which are key contributors to S. aureus immune evasion and persistence. This was supported by the upregulation fnbB and sdrCDE genes which are associated with cell adhesion and immune evasion respectively [461].
However, there does appear to be a fitness cost with VISA phenotypes compared to VSSA [463,464]. The rapid rate of conversion between hVISA and sVISA also demonstrates the high adaptability of S. aureus; it can resist vancomycin treatment in the sVISA form and revert to hVISA after treatment to reinstate the infection [457]. Ultimately, the sacrifice of acute virulence for greater antibiotic tolerance and immune evasion in VISA allows for higher host tolerance of the bacteria. Clinically, this manifests as chronic S. aureus infections that persist despite recurring rounds of treatment [460,461].
The global epidemiology of sVISA has not been well studied, perhaps due to its relatively recent discovery and instability of its phenotype [464]. Contrastingly, one study by Katayama et al. detected sVISA prevalence at 15.6% amongst clinical MRSA isolates, with VISA at less than 1%. This suggests that the known rates of sVISA are likely underestimates of the true figure due to lack of testing [465]. The global burden of VISA and hVISA have been increasing in recent years, particularly in the American and Asian continents. In 2020, Shariati et al. reported the overall global prevalence of VISA and hVISA to be 1.2% and 4% amongst S. aureus isolates pre-2010 respectively, which rose 3.6- and 1.3-fold to 4.3% and 5.3% after 2010–2019 respectively. By continent, VISA was most common in Asia (2.1%), followed by Africa and Europe (1.8%), North and South America (1%) and Oceania (0.6%); hVISA was most frequent in Oceania (11.2%), followed by North and South America (5.2%), Asia (4.7%), Europe (4.4%) and Africa (4%) [466].
High level vancomycin resistance in S. aureus was first reported in 2002 [458] and was acquired through transmission of the vanA-containing transposon Tn1546 from E. faecalis plasmids [467], with an identical mechanism of resistance as previously described in Section 2.3 [304]. However, VRSA infections remain rare due to the fitness cost imposed [468] as well as other factors such as limited vanA transmission within S. aureus, instability of the Tn1546 transposon-carrying plasmid in S. aureus and good antibiotic stewardship [355]. In contrast, because only stepwise mutations are required for VISA conversion [469,470], VISA infections have a comparatively higher burden of disease [466]. Nevertheless, Foucault, Courvalin and Grillot-Courvalin found that VanA-type resistance in MRSA, although energetically expensive when induced, is only minimal in biological cost in the absence of induction. Therefore, the continued threat of increased dissemination and frequency of VRSA infections should not be discounted [468].
The global prevalence of VRSA has been increasing steadily over the past two decades [398,466]; 2% before 2006, 5% between 2006–2014 and 7% between 2015–2020 for a 3.5-fold increase between pre-2006 and 2020. The rate of VRSA among S. aureus isolates was 16% in Africa, 5% in Asia, 4% in North America, 3% in South America and 1% in Europe [398]. Infection rates of VRSA have been shown to mirror those of VRE and VISA. Higher burdens of VRSA disease in lower- and middle-income continents of Africa and Asia have been attributed to poorer hygiene, reduced implementation of antimicrobial stewardship and limitations in epidemiological surveillance [279,280,281,282,283,284,285,398]. There have been no reports of VRSA in Oceania [398,466].
Like enterococci, S. aureus are major causative agents of disease in livestock. Exemplified by diseases such as mastitis in goats and cattle, as well as “bumblefoot” in chickens [297], S. aureus outbreaks frequently result in significant economic losses [298]. Although VISA and VRSA strains have been isolated from livestock [471,472,473], reports of their incidence in the literature are rare compared to other vancomycin-sensitive strains such as MRSA [474,475]. One explanation for this is the comparatively higher fitness cost of VISA and VRSA lineages [463,468]. The global distribution of VRSA and VISA in agriculture is unknown, but presumably highest in developing nations due to their high quantity of antimicrobial consumption, high prevalence of intensive farming and lower levels of hygiene, antimicrobial stewardship and surveillance [279,280,281,282,283,284,285,289,398,476,477].

3. Alternative Treatment Options for Vancomycin Resistant Infections

Treatment options for VRE, VISA and VRSA are limited to several antibiotic classes. Clinically, linezolid is employed to treat VISA [478], VRSA and VRE [479]; tigecycline against VRE [480,481] and daptomycin against VRE and VRSA [355,482,483] (note: daptomycin is not FDA-approved for VRE, but has been used off-label against VRE infection [484]). Unfortunately, resistance to each of these antibiotics has emerged. As such, the use of modified glycopeptide derivatives such as dalbavancin, oritavancin, and telavancin, and/or combinational antibiotic therapy is typically exercised as a way to overcome AMR [485]. While there remains a limited supply of novel antibiotics in development [486,487,488,489], the emergence of resistance to future approved antibiotic treatment regimens is expected [490]. Although R&D pathways surrounding new-class antibiotics represent a possible path forward, these programs remain high risk, expensive, and time-consuming endeavors that many pharmaceutical companies have withdrawn from [9,491,492,493]. [226] Therefore, alternative approaches to treat drug-resistant Enterococcus and S. aureus infections are needed which may substitute/complement existing antibiotic therapy.

3.1. Antibiotic-Chemoattractant Conjugants

Antibiotic-chemoattractants consist of a formylated peptide (neutrophil chemoattractant) covalently linked to vancomycin. Vancomycin’s selective binding to the bacterial cell wall allows for targeted recruitment of neutrophils directly to the site of infection. Enhanced neutrophil recruitment, phagocytosis and killing of S. aureus was observed in vitro and mice in vivo in addition to potentiation of neutrophil activity through optimization of the formyl peptide sequence [494]. Vancomycin-lipopeptide conjugates with high antibacterial activity against VRE in vitro and cytocompatibility in Wistar rats in vivo have also been reported [495].

3.2. Antibody-Antibiotic Conjugants

Antibody-antibiotic conjugants (AACs) consist of an antibiotic payload linked to a pathogen-specific antibody for targeted delivery. AACs have been used successfully to clear intracellular S. aureus reservoirs in mice [496,497] where the bacteria are normally protected from conventional antibiotics which are poor at intracellular penetration and mostly inactive against dormant bacteria [497]. Conjugants can be optimally customized to the pathogen through use of alternative delivery systems (e.g., nanoparticles) and payloads (e.g., different antibiotics/antibacterial compounds) that increases target specificity, absorption and reduces off-site toxicity as appropriate [498,499].
As a proof of concept, antibody-conjugated nanocarrier-delivered rifampicin demonstrated superior antibacterial activity against S. aureus biofilms in vitro and in a mouse infection model compared to rifampicin in free form [499]. Rifamycin-class antibiotics covalently linked to the anti-S. aureus antibody THIOMAB were also superior to vancomycin in a murine of MRSA bacteremia [496]. In another study, a THIOMAB AAC, either as a monotherapy or in combination with vancomycin, demonstrated a more sustained and superior antibacterial activity in mice compared to vancomycin alone [500]; THIOMAB AAC also displayed favorable pharmacokinetic profiles in rats and monkeys [501,502]. In 2020, DSTA4637S, a THIOMAB AAC completed phase 1b clinical trials to treat S. aureus bacteremia [503,504]. Attempts at engineering antibody-antibiotic conjugants against VRE have not been reported in the literature.

3.3. Antimicrobial Peptides and Polymers

Antimicrobial peptides and polymers are natural and synthetic [505,506] compounds with broad-spectrum antibacterial activity [507]. Antimicrobial peptides are small (10–50 amino acids), amphiphilic and cationic molecules which facilitates their accumulation and formation of cytocidal pores on bacterial cell membranes [508]. Antimicrobial peptides with rapid bactericidal activity against multidrug-resistant organisms, including S. aureus and enterococci, have been reported in the literature [509,510,511].
For example, mesenchymal stem cells (MSC) possess direct antibacterial activity through the secretion of antimicrobial peptides. Against S. aureus, Yagi et al. showed that adipose-derived human MSC conditioned media significantly inhibited S. aureus growth in vitro even without continued adipose-derived human MSC presence, and antimicrobial peptide production, namely LL-37, could be enhanced with the addition of vitamin D. In vivo, Johnson, Webb and Dow demonstrated that MSC therapy also induced antimicrobial peptide production and enhanced antibiotic treatment against a chronic S. aureus biofilm infection in mice [512,513,514]. Non-human antimicrobial peptides, such as MPX from wasp venom have also demonstrated efficacy against S. aureus in vitro and in a mouse wound infection model [515]. The currently known antimicrobial peptides that have exclusively shown antibacterial activity against VISA and VRSA, and their possible mechanisms of action have been reviewed by Hernández-Aristizábal and Ocampo-Ibáñez [516].
Antimicrobial peptides active against Enterococcus include C16-KGGK [517], KP, L18R [518], buwchitin [519], Bip-P-113 [520], FK13-a1, FK13-a7 [521], AMP2 [522], WLBU2, LL-37 [523], SAAP-148 [524] and H4 [525]. However, as clinical trials show that most antimicrobial peptides are only effective topically [526], their use as direct antimicrobials may be limited to treating superficial wound infections only.
Antimicrobial peptides can be further modified into antimicrobial polymers [509] and designed based on their intended target pathogen(s) and desired sites/modes of action [507,527,528]. Due to their multimodal mechanisms of activity, antimicrobial peptides and polymers can also prevent bacterial resistance development [509,529]. As such, both antimicrobial peptides and polymers have a broad range of possible clinical applications from acting as direct antimicrobials, as an antibiotic synergist or maintaining sterility on medical device surfaces [509,526,530,531]. Antimicrobial polymers active against S. aureus include peptoid polymers [532], NP108 [533] and ammonium ethyl methacrylate homopolymers [534] while photo-antimicrobial polymers based on Rose Bengal (a singlet oxygen photosensitiser) and cationic polystyrene have demonstrated activity against both S. aureus and E. faecalis [535]. Antimicrobial peptides may also be formulated with antimicrobial polymers for enhanced efficacy; the peptide-synthetic polymer conjugate which consisted of the antimicrobial peptide C16-KGGK formulated with a biodegradable polymer exhibited strong and improved anti-E. faecalis activity compared to C16-KGGK alone [517].

3.4. Bacteriophage Therapy

AB-SA01 is a cocktail of three obligately lytic Staphylococcus myoviruses that killed 95% of 205 multidrug-resistant clinical S. aureus isolates in vitro including methicillin-resistant and vancomycin-intermediate strains. Resistance emergence was scarce (≤3 × 10−9), and bacterial resistance to one phage component could be abrogated by the activities of other component phages. In mice, AB-SA01 reduced lung S. aureus populations on par with vancomycin treatment and no adverse reactions were reported in human subjects upon administration [536,537]. AB-SA01 was demonstrated to be safe and well tolerated in two separate phase I clinical trials [536,538]. Other phages tested for anti-staphylococcal efficacy include PYOSa [539], JD419 [540], vB_SauH_2002 and phage 66 [541]. A recent 2022 review of the bacteriophage animal models, treatments and clinical trials used to treat S. aureus infections has been published by Plumet et al. [542].
Enterococcal bacteriophages include MDA1 and MDA2 [543], VPE25, VFW [544], phi phages [545], vB_EfaS-Zip, vB_EfaP-Max [546], vB_EfaS_HEf13 [547], vB_EfaS_efap05-1 [548], EF-P29 [549], Efv12-phi1, EFLK1, Ef11, EF-P10, PlyV12 [550], SSsP-1, GVEsP-1 [551], EFDG1 [552] and vB_EfaM-LG1 [553]. Currently, studies using lytic phages against Enterococcus are limited to in vitro and animal models only, with no clinical or single-arm trials conducted in recent times [550]. However, case reports detailing the clinical successes of phage therapy against E. faecalis [554,555] and E. faecium [556] infections suggests that bacteriophage therapy remains a viable alternative to antibiotics in the fight against AMR pathogens.

3.5. Centyrins

Centyrins are small globular proteins derived from the fibronectin type III-binding domains of human tenascin-C proteins. These biologic compounds are able to bind to S. aureus leukocidins with high affinity, preventing the destruction of human immune cells from toxin-mediated cytolysis. Centyrins proved effective in an in vivo model of murine intoxication as well as murine models of prophylactic and therapeutic treatments of systemic S. aureus infections [557]. Currently, there are no reported studies of centyrins against enterococcal infections in the literature. These results demonstrate the therapeutic potential of antimicrobials that focus on neutralising bacterial virulence factors in contrast to traditional therapies that primarily directly target the bacteria.

3.6. Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-Associated Genes (CRISPR/Cas)

CRISPR is a prokaryotic self-defense mechanism that is inversely correlated to the acquisition of antibiotic resistance in E. faecalis and E. faecium, suggesting that antibiotic selection indirectly selects against Enterococcus genomic integrity through loss of CRISPR. This is reinforced by in vivo experiments that demonstrated CRISPR-mediated inhibition of plasmid dissemination. In addition, maintenance of self-targeting, chromosome cleaving CRISPR in E. faecalis appeared to come at a fitness cost. Given that functional CRISPR systems are observed to be absent in multidrug-resistant E. faecalis [558], selective introduction and maintenance of CRISPR in virulent bacteria via physical (e.g., microinjection), biological (liposomes) or viral (e.g., adenoviruses) vectors [559] may be a viable method of selecting against horizontal gene transfer and fitness as a means of combatting antibiotic-resistant infections [558,560,561,562].
CRISPR/Cas is also present in clinical MRSA [563], and can be artificially engineered for genome editing in S. aureus through downregulation, mutation, insertion and/or deletion of key genes [564,565,566,567,568]. More, CRISPR/Cas can be exploited to specifically target virulent S. aureus sub-populations [569,570], destroy AMR-carrying MGEs, and “immunise” avirulent staphylococci to prevent uptake of resistance-conferring MGEs. The selective recognition of virulence genes in S. aureus by CRISPR/Cas may also serve as a useful tool in the detection and differentiation of clinical S. aureus strains [569,571].

3.7. Direct Lytic Agents (DLAs)

DLAs are novel antimicrobials that act through swift destabilization of bacterial cell walls and bacteriolysis, with the intended aim to synergise with and complement existing antibiotics without causing resistance development against DLAs. They encompass two classes of purified polypeptides—lysins (peptidoglycan hydrolase enzymes) and amurins (targeting outer membrane peptides). They are active against Gram-positive bacteria, with one of them, exebacase, having entered into Phase III clinical trials [572] against S. aureus bacteremia and right-sided endocarditis [573]—the first and only agent of the lysin-class to do so [572,574]. Lysins can also be secreted by bacteriophages as enzymes [575]. When administered intranasally, the anti-staphylococcal lysin SAL-200 protected mice from lethal S. aureus pneumonia [576] and progressed into a phase 2a clinical trial [577]. Another lysin, PlySs2, was protective against mixed MRSA and Streptococcus pyogenes bacteremia infection in mice with no bacterial resistance observed [578].
Lysins active against enterococci have also been reported [579], and lysins can be engineered to be active against both staphylococci and enterococci [580]. Both lysins and amurins are currently undergoing commercial development as therapeutics against AMR bacteria [581].

3.8. Fecal Microbiota Transplantation (FMT)/Probiotic Intervention

FMT describes the restoration process of a recipient’s gut microbiota to a normal composition through fecal transplantation from a healthy donor [582]. FMT and the probiotic Lactobacillus rapidly reduced gut VRE colonization and restored microbiota diversity in mice compared to control groups. Clinically, FMT has successfully helped cure patients of MRSA enteritis and restore microbiota balance [583], as well as decolonize VRE without adverse effects [584,585,586].

3.9. Drug Repurposing

The anti-inflammatory drug ebselen and the anticancer drugs adarotene, floxuridine and streptozotocin showed antibacterial activity against VISA and VRSA. Oral ebselen increased mice survival by 60% in a lethal septicemic MRSA model compared to control. Adarotene protected Caenorhabditis elegans from MRSA-induced death, while floxuridine protected human neutrophils from S. aureus killing, inhibited S. aureus growth and virulence regulation, and may cause bacterial DNA damage in a murine blood infection model. Streptozotocin displayed similar anti-staphylococcal efficacy compared to floxuridine, but was less effective at protecting neutrophils and did not inhibit the growth of S. aureus. Neither floxuridine nor streptozotocin showed noticeable side effects of abnormal blood cell counts or glucose levels at the experimental concentrations used in mice [587,588,589].
Against E. faecium and E. faecalis, the clinically approved antihelminthic drug bithionol showed significant antibacterial and antibiofilm effects in a dose-dependent manner in vitro and remarkably reduced bacterial burdens in mouse organs in combination with antibiotics in a peritonitis infection model [590]. Auranofin, a FDA-approved drug for rheumatoid arthritis, also demonstrated potent in vitro efficacy against enterococci, no resistance development over 14 passages, antibiofilm effects and superior in vivo activity in mice when compared to the clinical VRE antibiotic linezolid [591]. Given that drug repurposing focuses on using approved existing drugs, this concept holds promise for reduced time and cost of development, as well as swifter clinical trials than drug development de novo [592].

3.10. Host-Directed Therapy (HDT)

HDT focuses on the manipulation of host factors to the detriment of the pathogen in infection. This may be achieved through blocking host proteins or pathways required for pathogenesis and stimulation/reduction of immune responses as appropriate. Zhu et al. showed that use of the autophagy inhibitor 3-MA reduced MRSA autophagy by macrophages, reduced MRSA population size and potentiated macrophage phagocytosis of MRSA. Similar positive outcomes were reproducible an in vivo mouse model [593,594]. Clinically, HDT research can be applied to combat diseases such as septicemia through modulation of cytokine activity [593], a concept which has seen positive outcomes in clinical trials [595,596].

3.11. Nanoparticles

Tan et al., showed that lipid-polymer hybrid nanoparticles (LPNs) could effectively load and deliver ampicillin (Amp) to E. faecalis and its biofilm in a protozoa infection model. Protozoa receiving Amp-LPNs exhibited significantly reduced populations of E. faecium compared to free ampicillin treatment groups in simulated infection models of prophylaxis, acute and chronic infections. LPNs greatly potentiated ampicillin activity at late interventions, and Amp-LPNs boosted the survival of protozoa by almost 400% at 40 h post infection, with no viable protozoa remaining in any pure ampicillin treatment groups [597]. In the root canals of beagle dogs, nano-scale silver-zinc-calcium-silica particles showed strong preventative effects against E. faecalis infection [598]. Nanosilver has also shown antibacterial efficacy against S. aureus [599], and rifampicin-loaded nanoparticles were successful in treating MRSA at a reduced antibiotic dosage compared to free drug in a mice wound infection model [600].

3.12. Reversing Antibiotic Resistance

PBT2 is a safe-for-human-use zinc ionophore previously developed to treat neurodegenerative diseases, which has been shown to break resistance to multiple classes of antibiotics in a variety of animal models [601,602,603,604]. Bohlmann et al. showed that PBT2, in the presence of zinc, is bactericidal against MRSA and VRE. In addition, it also reverses acquired bacterial resistance to many clinical antibiotics including vancomycin at sub-inhibitory concentrations. The combination of PBT2 + zinc + vancomycin also significantly reduced VRE infection in a murine wound infection model. The authors were unable to select for mutants resistant to PBT2 + zinc treatment [601]. PBT2 and zinc was also able to break intrinsic polymyxin resistance in MRSA and VRE in vitro as demonstrated by De Oliveira et al. [603], highlighting the utility of PBT2 to reverse both intrinsic and acquired mechanisms of antibiotic resistance in bacteria. Other studies investigating the utility of using natural products [605], traditional medicines [606] and other existing non-antibiotic drugs [607,608] in reversing antibiotic resistance in S. aureus and/or enterococci have also been published.

3.13. Vaccination

Nontoxigenic protein A (SpA(KKAA)) is a mouse immunogen and stimulates humoral immune responses against the S. aureus surface protein staphylococcal protein A (SpA). SpA is a B cell superantigen that promotes B cell apoptosis and interferes with opsonophagocytosis. Kim et al. showed that vaccination of mice with monoclonal antibodies to SpA(KKAA) neutralized the ability of SpA to inhibit opsonophagocytosis, attenuated S. aureus virulence and potentiated antibacterial immunity. In another mouse model, Chen et al. demonstrated that systemic administration of a recombinant neutralizing antibody for SpA can promote IgA and IgG responses in addition to decolonization of S. aureus [609,610,611]. A SpA-targetting monoclonal antibody, 514G3, was safe and well tolerated in a phase I clinical trial [612] and a phase II clinical trial followed [613] with SpA vaccine optimisation efforts in progress [614]. Clinical trials involving other S. aureus vaccine candidates are ongoing [615,616], but no vaccines are currently approved for clinical use [616,617].
Enterococcal proteins and polysaccharides have been the targets of potential vaccine candidates. Antisera raised to enterococcal polysaccharides have been shown to promote opsonic killing in vitro and protect against enterococcal bacteremia in vivo, while vaccination with recombinant enterococcal virulence factors and antigens also proved to be opsonic in vitro and promoted bacterial clearance in mice [618]. Multi-epitope vaccines [619] and conjugated vaccines [620,621] have also demonstrated promising results. However, there are currently no Enterococcus vaccines in development, and none have been approved for clinical use [616,619].

4. Conclusions

E. faecalis, E. faecium and S. aureus are common human commensal organisms with potential to cause serious, life-threatening infections with exceptional intrinsic and acquired antibiotic resistance capabilities that have increased in prevalence globally in recent decades. This is enabled by the emergence and continued dissemination of mobile van resistance cassettes amongst staphylococci and enterococci through MGEs, which confer high-level vancomycin resistance through modification of the D-Ala-D-Ala peptidoglycan terminal ends in addition to endogenous, non-transferable mutations that give rise to intermediate-level resistance in S. aureus. Although other viable antibiotic combinations are still available for vancomycin resistant infections, novel antibiotics, in addition to alternative non-drug antimicrobial strategies will likely be needed to ensure treatment options remain for increasingly drug-resistant infections in the future.

Author Contributions

G.L. wrote the manuscript and both M.J.W. and D.M.P.D.O. reviewed and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by The University of Queensland Research Training Tuition Fee Offset and Research Training Stipend scholarships, and the National Health and Medical Research Council of Australia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

G.L. is supported by The University of Queensland Research Training Tuition Fee Offset and Research Training Stipend scholarships. The authors acknowledge the support of the National Health and Medical Research Council of Australia.

Conflicts of Interest

M.J.W. is a coinventor on a patent associated with the ionophore PBT2, entitled “Zinc ionophores and uses thereof,” described under patent number PCT/AU2018/051116. All other authors have no conflict of interest to declare. The funders had no role in the writing or editing of the manuscript; or in the decision to publish the manuscript.

References

  1. Anderson, A.C.; Jonas, D.; Huber, I.; Karygianni, L.; Wolber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Front. Microbiol. 2016, 6, 1534. [Google Scholar] [CrossRef] [Green Version]
  2. Jett, B.D.; Huycke, M.M.; Gilmore, M.S. Virulence of enterococci. Clin. Microbiol. Rev. 1994, 7, 462–478. [Google Scholar] [CrossRef] [PubMed]
  3. Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 2020, 10, 3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Sghir, A.; Gramet, G.; Suau, A.; Rochet, V.; Pochart, P.; Dore, J. Quantification of Bacterial Groups within Human Fecal Flora by Oligonucleotide Probe Hybridization. Appl. Environ. Microbiol. 2000, 66, 2263–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Parte, A.C.; Sarda Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Goker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
  6. Tannock, G.W.; Cook, G. Enterococci as Members of the Intestinal Microflora of Humans. In Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; Gilmore, M.S., Clewell, D.B., Courvalin, P., Dunny, G.M., Murray, B.E., Rice, L.B., Eds.; ASM Press: Washington, DC, USA, 2002; pp. 101–132. [Google Scholar] [CrossRef]
  7. Klein, G. Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int. J. Food. Microbiol. 2003, 88, 123–131. [Google Scholar] [CrossRef]
  8. Huycke, M.M.; Sahm, D.F.; Gilmore, M.S. Multiple-drug resistant Enterococci: The nature of the problem and an agenda for the future. Emerg. Infect. Dis. 1998, 4, 239–249. [Google Scholar] [CrossRef] [Green Version]
  9. Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
  10. Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–433. [Google Scholar] [CrossRef] [Green Version]
  11. Coombs, G.W.; Daley, D.A.; Yee, N.W.T.; Shoby, P.; Mowlaboccus, S. Australian Group on Antimicrobial Resistance (AGAR) Australian Enterococcal Sepsis Outcome Programme (AESOP) Annual Report 2020. Commun. Dis. Intell. 2022, 46. [Google Scholar] [CrossRef]
  12. Agudelo Higuita, N.I.; Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
  13. Kouidhi, B.; Zmantar, T.; Mahdouani, K.; Hentati, H.; Bakhrouf, A. Antibiotic resistance and adhesion properties of oral Enterococci associated to dental caries. BMC Microbiol. 2011, 11, 155. [Google Scholar] [CrossRef] [Green Version]
  14. Dahlén, G. Role of suspected periodontopathogens in microbiological monitoring of periodontitis. Adv. Dent. Res. 1993, 7, 163–174. [Google Scholar] [CrossRef]
  15. Rams, T.E.; Feik, D.; Mortensen, J.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic Susceptibility of Periodontal Enterococcus faecalis. J. Periodontol. 2013, 84, 1026–1033. [Google Scholar] [CrossRef]
  16. Pinholt, M.; Østergaard, C.; Arpi, M.; Bruun, N.E.; Schønheyder, H.C.; Gradel, K.O.; Søgaard, M.; Knudsen, J.D. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006–2009: A population-based cohort study. Clin. Microbiol. Infect. 2014, 20, 145–151. [Google Scholar] [CrossRef] [Green Version]
  17. Kao, P.H.N.; Kline, K.A. Jekyll and Mr. Hide: How Enterococcus faecalis Subverts the Host Immune Response to Cause Infection. J. Mol. Biol. 2019, 431, 2932–2945. [Google Scholar] [CrossRef]
  18. Cattoir, V.; Giard, J.C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Rev. Anti-Infect. Ther. 2014, 12, 239–248. [Google Scholar] [CrossRef]
  19. Hayakawa, K.; Marchaim, D.; Martin, E.T.; Tiwari, N.; Yousuf, A.; Sunkara, B.; Pulluru, H.; Kotra, H.; Hasan, A.; Bheemreddy, S.; et al. Comparison of the clinical characteristics and outcomes associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant E. faecium bacteremia. Antimicrob. Agents Chemother. 2012, 56, 2452–2458. [Google Scholar] [CrossRef] [Green Version]
  20. Garbutt, J.M.; Ventrapragada, M.; Littenberg, B.; Mundy, L.M. Association Between Resistance to Vancomycin and Death in Cases of Enterococcus faecium Bacteremia. Clin. Infect. Dis. 2000, 30, 466–472. [Google Scholar] [CrossRef]
  21. Giridhara Upadhyaya, P.M.; Ravikumar, K.L.; Umapathy, B.L. Review of virulence factors of Enterococcus: An emerging nosocomial pathogen. Indian J. Med. Microbiol. 2009, 27, 301–305. [Google Scholar] [CrossRef]
  22. Boneca, I.G.; Chiosis, G. Vancomycin resistance: Occurrence, mechanisms and strategies to combat it. Expert Opin. Ther. Targets 2003, 7, 311–328. [Google Scholar] [CrossRef]
  23. Dinu, V.; Lu, Y.D.; Weston, N.; Lithgo, R.; Coupe, H.; Channell, G.; Adams, G.G.; Gomez, A.T.; Sabater, C.; Mackie, A.; et al. The antibiotic vancomycin induces complexation and aggregation of gastrointestinal and submaxillary mucins. Sci. Rep. 2020, 10, 960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Treitman, A.N.; Yarnold, P.R.; Warren, J.; Noskin, G.A. Emerging incidence of Enterococcus faecium among hospital isolates (1993 to 2002). J. Clin. Microbiol. 2005, 43, 462–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Deshpande, L.M.; Fritsche, T.R.; Moet, G.J.; Biedenbach, D.J.; Jones, R.N. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: A report from the SENTRY antimicrobial surveillance program. Diagn. Microbiol. Infect. Dis. 2007, 58, 163–170. [Google Scholar] [CrossRef] [PubMed]
  26. Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Zhou, X.; Willems, R.J.L.; Friedrich, A.W.; Rossen, J.W.A.; Bathoorn, E. Enterococcus faecium: From microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 130. [Google Scholar] [CrossRef]
  28. Davis, E.; Hicks, L.; Ali, I.; Salzman, E.; Wang, J.; Snitkin, E.; Gibson, K.; Cassone, M.; Mody, L.; Foxman, B. Epidemiology of Vancomycin-Resistant Enterococcus faecium and Enterococcus faecalis Colonization in Nursing Facilities. Open Forum. Infect. Dis. 2020, 7, ofz553. [Google Scholar] [CrossRef] [Green Version]
  29. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019; p. 150.
  30. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2013; p. 114.
  31. Garcia-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [Green Version]
  32. Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn. Rev. 2017, 11, 57–72. [Google Scholar] [CrossRef] [Green Version]
  33. Levine, D.P. Vancomycin: A History. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S5–S12. [Google Scholar] [CrossRef]
  34. Moellering, R.C.; Krogstad, D.J.; Greenblatt, D.J. Vancomycin Therapy in Patients with Impaired Renal-Function: A Nomogram for Dosage. Ann. Intern. Med. 1981, 94, 343–346. [Google Scholar] [CrossRef]
  35. Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
  36. Chow, J.W. Aminoglycoside Resistance in Enterococci. Clin. Infect. Dis. 2000, 31, 586–589. [Google Scholar] [CrossRef] [Green Version]
  37. Costa, Y.; Galimand, M.; Leclercq, R.; Duval, J.; Courvalin, P. Characterization of the Chromosomal aac(6’)-Ii Gene-Specific for Enterococcus faecium. Antimicrob. Agents Chemother. 1993, 37, 1896–1903. [Google Scholar] [CrossRef] [Green Version]
  38. Draker, K.A.; Northrop, D.B.; Wright, G.D. Kinetic Mechanism of the GCN5-Related Chromosomal Aminoglycoside Acetyltransferase AAC(6′)-Ii from Enterococcus faecium: Evidence of Dimer Subunit Cooperativity. Biochemistry 2003, 42, 6565–6574. [Google Scholar] [CrossRef]
  39. Davies, J.; Wright, G.D. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997, 5, 234–240. [Google Scholar] [CrossRef]
  40. Sundstrom, L.; Radstrom, P.; Swedberg, G.; Skold, O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol. Gen. Genet. MGG 1988, 213, 191–201. [Google Scholar] [CrossRef]
  41. Fling, M.E.; Kopf, J.; Richards, C. Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3”(9)-O-nucleotidyltransferase. Nucleic Acids Res. 1985, 13, 7095–7106. [Google Scholar] [CrossRef]
  42. Hollingshead, S.; Vapnek, D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 1985, 13, 17–30. [Google Scholar] [CrossRef]
  43. Cameron, F.H.; Obbink, D.J.G.; Ackerman, V.P.; Hall, R.M. Nucleotide sequence of the AAD(2”) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrll inR388. Nucleic Acids Res. 1986, 14, 8625–8635. [Google Scholar] [CrossRef]
  44. Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug. Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef]
  45. Rice, L.B.; Carias, L.L. Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J. Bacteriol. 1998, 180, 714–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  46. Rice, L.B. Association of different mobile elements to generate novel integrative elements. Cell. Mol. Life Sci. 2002, 59, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
  47. Lascols, C.; Legrand, P.; Merens, A.; Leclercq, R.; Muller-Serieys, C.; Drugeon, H.B.; Kitzis, M.D.; Reverdy, M.E.; Roussel-Delvallez, M.; Moubareck, C.; et al. In vitro antibacterial activity of ceftobiprole against clinical isolates from French teaching hospitals: Proposition of zone diameter breakpoints. Int. J. Antimicrob. Agents 2011, 37, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Rice, L.B. Tn916 Family Conjugative Transposons and Dissemination of Antimicrobial Resistance Determinants. Antimicrob. Agents Chemother. 1998, 42, 1871–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Ono, S.; Muratani, T.; Matsumoto, T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob. Agents Chemother. 2005, 49, 2954–2958. [Google Scholar] [CrossRef] [Green Version]
  50. Chong, Y.P.; Lee, S.O.; Song, E.H.; Lee, E.J.; Jang, E.Y.; Kim, S.H.; Choi, S.H.; Kim, M.N.; Jeong, J.Y.; Woo, J.H.; et al. Quinupristin-dalfopristin versus linezolid for the treatment of vancomycin-resistant Enterococcus faecium bacteraemia: Efficacy and development of resistance. Scand. J. Infect. Dis. 2010, 42, 491–499. [Google Scholar] [CrossRef]
  51. Berenger, R.; Bourdon, N.; Auzou, M.; Leclercq, R.; Cattoir, V. In vitro activity of new antimicrobial agents against glycopeptide-resistant Enterococcus faecium clinical isolates from France between 2006 and 2008. Med. Mal. Infect. 2011, 41, 405–409. [Google Scholar] [CrossRef]
  52. Rice, L.B.; Bellais, S.; Carias, L.L.; Hutton-Thomas, R.; Bonomo, R.A.; Caspers, P.; Page, M.G.P.; Gutmann, L. Impact of Specific pbp5 Mutations on Expression of β-Lactam Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2004, 48, 3028–3032. [Google Scholar] [CrossRef] [Green Version]
  53. Arias, C.A.; Singh, K.V.; Panesso, D.; Murray, B.E. Evaluation of ceftobiprole medocaril against Enterococcus faecalis in a mouse peritonitis model. J. Antimicrob. Chemother. 2007, 60, 594–598. [Google Scholar] [CrossRef] [Green Version]
  54. Daikos, G.L.; Bamias, G.; Kattamis, C.; Zervos, M.J.; Chow, J.W.; Christakis, G.; Petrikkos, G.; Triantafyllopoulou, P.; Alexandrou, H.; Syriopoulou, V. Structures, Locations, and Transfer Frequencies of Genetic Elements Conferring High-Level Gentamicin Resistance in Enterococcus faecalis Isolates in Greece. Antimicrob. Agents Chemother. 2003, 47, 3950–3953. [Google Scholar] [CrossRef]
  55. Leelaporn, A.; Yodkamol, K.; Waywa, D.; Pattanachaiwit, S. A novel structure of Tn4001-truncated element, type V, in clinical enterococcal isolates and multiplex PCR for detecting aminoglycoside resistance genes. Int. J. Antimicrob. Agents 2008, 31, 250–254. [Google Scholar] [CrossRef]
  56. Galimand, M.; Schmitt, E.; Panvert, M.; Desmolaize, B.; Douthwaite, S.; Mechulam, Y.; Courvalin, P. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 2011, 17, 251–262. [Google Scholar] [CrossRef] [Green Version]
  57. Kellogg, S.L.; Little, J.L.; Hoff, J.S.; Kristich, C.J. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrob. Agents Chemother. 2017, 61, e02461-16. [Google Scholar] [CrossRef] [Green Version]
  58. Rice, L.B.; Marshall, S.H. Insertions of IS256-like element flanking the chromosomal β-lactamase gene of Enterococcus faecalis CX19. Antimicrob. Agents Chemother. 1994, 38, 693–701. [Google Scholar] [CrossRef] [Green Version]
  59. Smith, M.C.; Murray, B.E. Sequence analysis of the beta-lactamase repressor from Staphylococcus aureus and hybridization studies with two beta-lactamase-producing isolates of Enterococcus faecalis. Antimicrob. Agents Chemother. 1992, 36, 2265–2269. [Google Scholar] [CrossRef] [Green Version]
  60. Rice, L.B.; Marshall, S.H. Evidence of Incorporation of the Chromosomal Beta-Lactamase Gene of Enterococcus faecalis CH19 into a Transposon Derived from Staphylococci. Antimicrob. Agents Chemother. 1992, 36, 1843–1846. [Google Scholar] [CrossRef] [Green Version]
  61. Clewell, D.B.; Weaver, K.E.; Dunny, G.M.; Coque, T.M.; Francia, M.V.; Hayes, F. Extrachromosomal and Mobile Elements in Enterococci: Transmission, Maintenance, and Epidemiology. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
  62. Murray, B.E.; An, F.Y.; Clewell, D.B. Plasmids and Pheromone Response of the β-Lactamase Producer Streptococcus (Enterococcus) faecalis HH22. Antimicrob. Agents Chemother. 1988, 32, 547–551. [Google Scholar] [CrossRef] [Green Version]
  63. Arbeloa, A.; Segal, H.; Hugonnet, J.E.; Josseaume, N.; Dubost, L.; Brouard, J.P.; Gutmann, L.; Mengin-Lecreulx, D.; Arthur, M. Role of Class A Penicillin-Binding Proteins in PBP5-Mediated β-Lactam Resistance in Enterococcus faecalis. J. Bacteriol. 2004, 186, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
  64. Carias, L.L.; Rudin, S.D.; Donskey, C.J.; Rice, L.B. Genetic Linkage and Cotransfer of a Novel, vanB-Containing Transposon (Tn5382) and a Low-Affinity Penicillin-Binding Protein 5 Gene in a Clinical Vancomycin-Resistant Enterococcus faecium Isolate. J. Bacteriol. 1998, 180, 4426–4434. [Google Scholar] [CrossRef] [Green Version]
  65. Rice, L.B.; Carias, L.L.; Rudin, S.; Lakticova, V.; Wood, A.; Hutton-Thomas, R. Enterococcus faecium low-affinity pbp5 is a transferable determinant. Antimicrob. Agents Chemother. 2005, 49, 5007–5012. [Google Scholar] [CrossRef]
  66. Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.; Wortman, J.; et al. Comparative genomics of enterococci: Variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 2012, 3, e00318-11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  67. Garcia-Solache, M.; Lebreton, F.; McLaughlin, R.E.; Whiteaker, J.D.; Gilmore, M.S.; Rice, L.B. Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2016, 60, 5777–5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Novais, C.; Tedim, A.P.; Lanza, V.F.; Freitas, A.R.; Silveira, E.; Escada, R.; Roberts, A.P.; Al-Haroni, M.; Baguero, F.; Peixe, L.; et al. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Front. Microbiol. 2016, 7, 1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Raze, D.; Dardenne, O.; Hallut, S.; Martinez-Bueno, M.; Coyette, J.; Ghuysen, J.M. The gene encoding the low-affinity penicillin-binding protein 3r in Enterococcus hirae S185R is borne on a plasmid carrying other antibiotic resistance determinants. Antimicrob. Agents Chemother. 1998, 42, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Kristich, C.J.; Little, J.L.; Hall, C.L.; Hoff, J.S. Reciprocal Regulation of Cephalosporin Resistance in Enterococcus faecalis. mBio 2011, 2, e00199-11. [Google Scholar] [CrossRef] [Green Version]
  71. Schwarz, F.V.; Perreten, V.; Teuber, M. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 2001, 46, 170–187. [Google Scholar] [CrossRef]
  72. Grady, R.; Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol. 2003, 47, 1419–1432. [Google Scholar] [CrossRef]
  73. Trieu-Cuot, P.; de Cespédès, G.; Bentorcha, F.; Delbos, F.; Gaspar, E.; Horaud, T. Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: Characterization of a new CAT determinant. Antimicrob. Agents Chemother. 1993, 37, 2593–2598. [Google Scholar] [CrossRef] [Green Version]
  74. Trieu-Cuot, P.; de Cespedes, G.; Horaud, T. Nucleotide sequence of the chloramphenicol resistance determinant of the streptococcal plasmid pIP501. Plasmid 1992, 28, 272–276. [Google Scholar] [CrossRef]
  75. Munita, J.M.; Panesso, D.; Diaz, L.; Tran, T.T.; Reyes, J.; Wanger, A.; Murray, B.E.; Arias, C.A. Correlation between Mutations in liaFSR of Enterococcus faecium and MIC of Daptomycin: Revisiting Daptomycin Breakpoints. Antimicrob. Agents Chemother. 2012, 56, 4354–4359. [Google Scholar] [CrossRef]
  76. Khan, A.; Davlieva, M.; Panesso, D.; Rincon, S.; Miller, W.R.; Diaz, L.; Reyes, J.; Cruz, M.R.; Pemberton, O.; Nguyen, A.H.; et al. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis. Proc. Natl. Acad. Sci. USA 2019, 116, 26925–26932. [Google Scholar] [CrossRef] [Green Version]
  77. Palmer, K.L.; Daniel, A.; Hardy, C.; Silverman, J.; Gilmore, M.S. Genetic Basis for Daptomycin Resistance in Enterococci. Antimicrob. Agents Chemother. 2011, 55, 3345–3356. [Google Scholar] [CrossRef] [Green Version]
  78. Arias, C.A.; Panesso, D.; McGrath, D.M.; Qin, X.; Mojica, M.F.; Miller, C.; Diaz, L.; Tran, T.T.; Rincon, S.; Barbu, E.M.; et al. Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. N. Engl. J. Med. 2011, 365, 892–900. [Google Scholar] [CrossRef] [Green Version]
  79. Schlame, M. Thematic Review Series: Glycerolipids. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J. Lipid Res. 2008, 49, 1607–1620. [Google Scholar] [CrossRef] [Green Version]
  80. Ernst, C.M.; Staubitz, P.; Mishra, N.N.; Yang, S.J.; Hornig, G.; Kalbacher, H.; Bayer, A.S.; Kraus, D.; Peschel, A. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 2009, 5, e1000660. [Google Scholar] [CrossRef] [Green Version]
  81. Bao, Y.; Sakinc, T.; Laverde, D.; Wobser, D.; Benachour, A.; Theilacker, C.; Hartke, A.; Huebner, J. Role of mprF1 and mprF2 in the Pathogenicity of Enterococcus faecalis. PLoS ONE 2012, 7, e38458. [Google Scholar] [CrossRef]
  82. Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-Resistant Enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef]
  83. Quintiliani, R.; Courvalin, P. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 1996, 172, 1–8. [Google Scholar] [CrossRef]
  84. Handwerger, S.; Skoble, J. Identification of Chromosomal Mobile Element Conferring High-Level Vancomycin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 1995, 39, 2446–2453. [Google Scholar] [CrossRef] [Green Version]
  85. Heaton, M.P.; Discotto, L.F.; Pucci, M.J.; Handwerger, S. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 1996, 171, 9–17. [Google Scholar] [CrossRef]
  86. Quintiliani, R.; Courvalin, P. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol. Lett. 1994, 119, 359–363. [Google Scholar] [CrossRef] [PubMed]
  87. Arthur, M.; Molinas, C.; Depardieu, F.; Courvalin, P. Characterization of Tn1546, a Tn3-Related Transposon Conferring Glycopeptide Resistance by Synthesis of Depsipeptide Peptidoglycan Precursors in Enterococcus faecium BM4147. J. Bacteriol. 1993, 175, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. De Lencastre, H.; Brown, A.E.; Chung, M.; Armstrong, D.; Tomasz, A. Role of Transposon Tn5482 in the Epidemiology of Vancomycin-Resistant Enterococcus faecium in the Pediatric Oncology Unit of a New York City Hospital. Microb. Drug Resist. 1999, 5, 113–129. [Google Scholar] [CrossRef] [PubMed]
  89. Hung, W.C.; Takano, T.; Higuchi, W.; Iwao, Y.; Khokhlova, O.; Teng, L.J.; Yamamoto, T. Comparative Genomics of Community-Acquired ST59 Methicillin-Resistant Staphylococcus aureus in Taiwan: Novel Mobile Resistance Structures with IS1216V. PLoS ONE 2012, 7, e46987. [Google Scholar] [CrossRef] [PubMed]
  90. Leclercq, R.; Derlot, E.; Duval, J.; Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 1988, 319, 157–161. [Google Scholar] [CrossRef]
  91. Zheng, B.; Tomita, H.; Inoue, T.; Ike, Y. Isolation of VanB-Type Enterococcus faecalis Strains from Nosocomial Infections: First Report of the Isolation and Identification of the Pheromone-Responsive Plasmids pMG2200, Encoding VanB-Type Vancomycin Resistance and a Bac41-Type Bacteriocin, and pMG2201, Encoding Erythromycin Resistance and Cytolysin (Hly/Bac). Antimicrob. Agents Chemother. 2009, 53, 735–747. [Google Scholar] [CrossRef] [Green Version]
  92. Shen, J.Z.; Wang, Y.; Schwarz, S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 2013, 68, 1697–1706. [Google Scholar] [CrossRef]
  93. Liu, Y.; Wang, Y.; Wu, C.; Shen, Z.; Schwarz, S.; Du, X.D.; Dai, L.; Zhang, W.; Zhang, Q.; Shen, J. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob. Agents Chemother. 2012, 56, 1650–1654. [Google Scholar] [CrossRef] [Green Version]
  94. Kuroda, M.; Sekizuka, T.; Matsui, H.; Suzuki, K.; Seki, H.; Saito, M.; Hanaki, H. Complete Genome Sequence and Characterization of Linezolid-Resistant Enterococcus faecalis Clinical Isolate KUB3006 Carrying a cfr(B)-Transposon on Its Chromosome and optrA-Plasmid. Front. Microbiol. 2018, 9, 2576. [Google Scholar] [CrossRef] [Green Version]
  95. Ero, R.; Kumar, V.; Su, W.; Gao, Y.G. Ribosome protection by ABC-F proteins—Molecular mechanism and potential drug design. Protein Sci. 2019, 28, 684–693. [Google Scholar] [CrossRef]
  96. He, T.; Shen, Y.; Schwarz, S.; Cai, J.; Lv, Y.; Li, J.; Feßler, A.T.; Zhang, R.; Wu, C.; Shen, J.; et al. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J. Antimicrob. Chemother. 2016, 71, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
  97. Li, D.; Li, X.-Y.; Schwarz, S.; Yang, M.; Zhang, S.-M.; Hao, W.; Du, X.-D. Tn6674 Is a Novel Enterococcal optrA-Carrying Multiresistance Transposon of the Tn554 Family. Antimicrob. Agents Chemother. 2019, 63, e00809-19. [Google Scholar] [CrossRef] [Green Version]
  98. Almeida, L.M.; Gaca, A.; Bispo, P.M.; Lebreton, F.; Saavedra, J.T.; Silva, R.A.; Basílio-Júnior, I.D.; Zorzi, F.M.; Filsner, P.H.; Moreno, A.M.; et al. Coexistence of the Oxazolidinone Resistance–Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front. Public Health 2020, 8, 518. [Google Scholar] [CrossRef]
  99. Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
  100. Sinclair, A.; Arnold, C.; Woodford, N. Rapid detection and estimation by pyrosequencing of 23S rRNA genes with a single nucleotide polymorphism conferring linezolid resistance in Enterococci. Antimicrob. Agents Chemother. 2003, 47, 3620–3622. [Google Scholar] [CrossRef] [Green Version]
  101. Weisblum, B. Erythromycin Resistance by Ribosome Modification. Antimicrob. Agents Chemother. 1995, 39, 577–585. [Google Scholar] [CrossRef] [Green Version]
  102. Jensen, L.B.; Frimodt-Moller, N.; Aarestrup, F.M. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. Lett. 1999, 170, 151–158. [Google Scholar] [CrossRef]
  103. Cho, S.H.; Barrett, J.B.; Frye, J.G.; Jackson, C.R. Antimicrobial Resistance Gene Detection and Plasmid Typing Among Multidrug Resistant Enterococci Isolated from Freshwater Environment. Microorganisms 2020, 8, 1338. [Google Scholar] [CrossRef]
  104. Yao, W.M.; Xu, G.J.; Li, D.Y.; Bai, B.; Wang, H.Y.; Cheng, H.; Zheng, J.X.; Sun, X.; Lin, Z.W.; Deng, Q.W.; et al. Staphylococcus aureus with an erm-mediated constitutive macrolide-lincosamide-streptogramin B resistance phenotype has reduced susceptibility to the new ketolide, solithromycin. BMC Infect. Dis. 2019, 19, 175. [Google Scholar] [CrossRef] [Green Version]
  105. Bonafede, M.E.; Carias, L.L.; Rice, L.B. Enterococcal transposon Tn5384: Evolution of a composite transposon through cointegration of enterococcal and staphylococcal plasmids. Antimicrob. Agents Chemother. 1997, 41, 1854–1858. [Google Scholar] [CrossRef]
  106. Laverde Gomez, J.A.; Hendrickx, A.P.A.; Willems, R.J.; Top, J.; Sava, I.; Huebner, J.; Witte, W.; Werner, G. Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island. PLoS ONE 2011, 6, e16720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Morroni, G.; Di Cesare, A.; Di Sante, L.; Brenciani, A.; Vignaroli, C.; Pasquaroli, S.; Giovanetti, E.; Sabatino, R.; Rossi, L.; Magnani, M.; et al. Enterococcus faecium ST17 from Coastal Marine Sediment Carrying Transferable Multidrug Resistance Plasmids. Microb. Drug Resist. 2016, 22, 523–530. [Google Scholar] [CrossRef] [PubMed]
  108. De Leener, E.; Martel, A.; Decostere, A.; Haesebrouck, F. Distribution of the erm(B) Gene, Tetracycline Resistance Genes, and Tn1545-like Transposons in Macrolide- and Lincosamide-Resistant Enterococci from Pigs and Humans. Microb. Drug Resist. 2004, 10, 341–345. [Google Scholar] [CrossRef] [PubMed]
  109. Yan, X.-M.; Wang, J.; Tao, X.-X.; Jia, H.-B.; Meng, F.-L.; Yang, H.; You, Y.-H.; Zheng, B.; Hu, Y.; Bu, X.-X.; et al. A Conjugative MDR pMG1-Like Plasmid Carrying the lsa(E) Gene of Enterococcus faecium With Potential Transmission to Staphylococcus aureus. Front. Microbiol. 2021, 12, 667415. [Google Scholar] [CrossRef] [PubMed]
  110. Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005, 56, 20–51. [Google Scholar] [CrossRef] [Green Version]
  111. Li, X.-S.; Dong, W.-C.; Wang, X.-M.; Hu, G.-Z.; Wang, Y.-B.; Cai, B.-Y.; Wu, C.-M.; Wang, Y.; Du, X.-D. Presence and genetic environment of pleuromutilin–lincosamide–streptogramin A resistance gene lsa(E) in enterococci of human and swine origin. J. Antimicrob. Chemother. 2013, 69, 1424–1426. [Google Scholar] [CrossRef]
  112. Zhao, C.; Hartke, A.; La Sorda, M.; Posteraro, B.; Laplace, J.M.; Auffray, Y.; Sanguinetti, M. Role of Methionine Sulfoxide Reductases A and B of Enterococcus faecalis in Oxidative Stress and Virulence. Infect. Immun. 2010, 78, 3889–3897. [Google Scholar] [CrossRef] [Green Version]
  113. Portillo, A.; Ruiz-Larrea, F.; Zarazaga, M.; Alonso, A.; Martinez, J.L.; Torres, C. Macrolide Resistance Genes in Enterococcus spp. Antimicrob. Agents Chemother. 2000, 44, 967–971. [Google Scholar] [CrossRef] [Green Version]
  114. Sun, L.Y.; Zhang, P.; Qu, T.T.; Chen, Y.; Hua, X.T.; Shi, K.R.; Yu, Y.S. Identification of Novel Conjugative Plasmids with Multiple Copies of fosB that Confer High-Level Fosfomycin Resistance to Vancomycin-Resistant Enterococci. Front. Microbiol. 2017, 8, 1541. [Google Scholar] [CrossRef] [Green Version]
  115. Qu, T.T.; Shi, K.R.; Ji, J.S.; Yang, Q.; Du, X.X.; Wei, Z.Q.; Yu, Y.S. Fosfomycin resistance among vancomycin-resistant enterococci owing to transfer of a plasmid harbouring the fosB gene. Int. J. Antimicrob. Agents 2014, 43, 361–365. [Google Scholar] [CrossRef]
  116. Xu, X.G.; Chen, C.H.; Lin, D.F.; Guo, Q.L.; Hu, F.P.; Zhu, D.M.; Li, G.H.; Wang, M.G. The Fosfomycin Resistance Gene fosB3 Is Located on a Transferable, Extrachromosomal Circular Intermediate in Clinical Enterococcus faecium Isolates. PLoS ONE 2013, 8, e78106. [Google Scholar] [CrossRef]
  117. Thompson, M.K.; Keithly, M.E.; Goodman, M.C.; Hammer, N.D.; Cook, P.D.; Jagessar, K.L.; Harp, J.; Skaar, E.P.; Armstrong, R.N. Structure and Function of the Genomically Encoded Fosfomycin Resistance Enzyme, FosB, from Staphylococcus aureus. Biochemistry 2014, 53, 755–765. [Google Scholar] [CrossRef]
  118. Jonas, B.M.; Murray, B.E.; Weinstock, G.M. Characterization of emeA, a norA Homolog and Multidrug Resistance Efflux Pump, in Enterococcus faecalis. Antimicrob. Agents Chemother. 2001, 45, 3574–3579. [Google Scholar] [CrossRef] [Green Version]
  119. Mbanga, J.; Amoako, D.G.; Abia, A.L.K.; Allam, M.; Ismail, A.; Essack, S.Y. Genomic Analysis of Enterococcus spp. Isolated From a Wastewater Treatment Plant and Its Associated Waters in Umgungundlovu District, South Africa. Front. Microbiol. 2021, 12, 648454. [Google Scholar] [CrossRef]
  120. Oana, K.; Okimura, Y.; Kawakami, Y.; Hayashida, N.; Shimosaka, M.; Okazaki, M.; Hayashi, T.; Ohnishi, M. Physical and genetic map of Enterococcus faecium ATCC19434 and demonstration of intra- and interspecific genomic diversity in enterococci. FEMS Microbiol. Lett. 2002, 207, 133–139. [Google Scholar] [CrossRef]
  121. Petersen, A.; Jensen, L.B. Analysis of gyrA and parC mutations in enterococci from environmental samples with reduced susceptibility to ciprofloxacin. FEMS Microbiol. Lett. 2004, 231, 73–76. [Google Scholar] [CrossRef] [Green Version]
  122. Kanematsu, E.; Deguchi, T.; Yasuda, M.; Kawamura, T.; Nishino, Y.; Kawada, Y. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob. Agents Chemother. 1998, 42, 433–435. [Google Scholar] [CrossRef] [Green Version]
  123. Arsène, S.; Leclercq, R. Role of a qnr-Like Gene in the Intrinsic Resistance of Enterococcus faecalis to Fluoroquinolones. Antimicrob. Agents Chemother. 2007, 51, 3254–3258. [Google Scholar] [CrossRef] [Green Version]
  124. Simjee, S.; White, D.G.; Wagner, D.D.; Meng, J.; Qaiyumi, S.; Zhao, S.; McDermott, P.F. Identification of vat(E) in Enterococcus faecalis Isolates from Retail Poultry and Its Transferability to Enterococcus faecium. Antimicrob. Agents Chemother. 2002, 46, 3823–3828. [Google Scholar] [CrossRef] [Green Version]
  125. Soltani, M.; Beighton, D.; Philpott-Howard, J.; Woodford, N. Mechanisms of Resistance to Quinupristin-Dalfopristin among Isolates of Enterococcus faecium from Animals, Raw Meat, and Hospital Patients in Western Europe. Antimicrob. Agents Chemother. 2000, 44, 433–436. [Google Scholar] [CrossRef]
  126. Allignet, J.; Elsolh, N. Diversity among the Gram-Positive Acetyltransferases Inactivating Streptogramin a and Structurally Related-Compounds and Characterization of a New Staphylococcal Determinant, vatB. Antimicrob. Agents Chemother. 1995, 39, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  127. Allignet, J.; Liassine, N.; El Solh, N. Characterization of a Staphylococcal Plasmid Related to pUB110 and Carrying Two Novel Genes, vatC and vgbB, Encoding Resistance to Streptogramins A and B and Similar Antibiotics. Antimicrob. Agents Chemother. 1998, 42, 1794–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Allignet, J.; Loncle, V.; Simenel, C.; Delepierre, M.; Elsolh, N. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. Gene 1993, 130, 91–98. [Google Scholar] [CrossRef] [PubMed]
  129. Roberts, M.C.; Sutcliffe, J.; Courvalin, P.; Jensen, L.B.; Rood, J.; Seppala, H. Nomenclature for Macrolide and Macrolide-Lincosamide-Streptogramin B Resistance Determinants. Antimicrob. Agents Chemother. 1999, 43, 2823–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Jung, Y.H.; Shin, E.S.; Kim, O.; Yoo, J.S.; Lee, K.M.; Yoo, J.I.; Chung, G.T.; Lee, Y.S. Characterization of two newly identified genes, vgaD and vatH, conferring resistance to streptogramin A in Enterococcus faecium. Antimicrob. Agents Chemother. 2010, 54, 4744–4749. [Google Scholar] [CrossRef] [Green Version]
  131. Li, W.; Atkinson, G.C.; Thakor, N.S.; Allas, U.; Lu, C.C.; Chan, K.Y.; Tenson, T.; Schulten, K.; Wilson, K.S.; Hauryliuk, V.; et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 2013, 4, 1477. [Google Scholar] [CrossRef] [Green Version]
  132. Molale, L.G.; Bezuidenhout, C.C. Antibiotic resistance, efflux pump genes and virulence determinants in Enterococcus spp. from surface water systems. Environ. Sci. Pollut. Res. 2016, 23, 21501–21510. [Google Scholar] [CrossRef]
  133. Agerso, Y.; Pedersen, A.G.; Aarestrup, F.M. Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J. Antimicrob. Chemother. 2006, 57, 832–839. [Google Scholar] [CrossRef] [Green Version]
  134. You, Y.Q.; Hilpert, M.; Ward, M.J. Detection of a Common and Persistent tet(L)-Carrying Plasmid in Chicken-Waste-Impacted Farm Soil. Appl. Environ. Microbiol. 2012, 78, 3203–3213. [Google Scholar] [CrossRef] [Green Version]
  135. Huys, G.; D’Haene, K.; Collard, J.M.; Swings, J. Prevalence and Molecular Characterization of Tetracycline Resistance in Enterococcus Isolates from Food. Appl. Environ. Microbiol. 2004, 70, 1555–1562. [Google Scholar] [CrossRef]
  136. Crowe-McAuliffe, C.; Murina, V.; Turnbull, K.J.; Huch, S.; Kasari, M.; Takada, H.; Nersisyan, L.; Sundsfjord, A.; Hegstad, K.; Atkinson, G.C.; et al. Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nat. Commun. 2022, 13, 1860. [Google Scholar] [CrossRef]
  137. Lim, J.-A.; Kwon, A.-R.; Kim, S.-K.; Chong, Y.; Lee, K.; Choi, E.-C. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J. Antimicrob. Chemother. 2002, 49, 489–495. [Google Scholar] [CrossRef]
  138. Rouch, D.A.; Byrne, M.E.; Kong, Y.C.; Skurray, R.A. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: Expression and nucleotide sequence analysis. J. Gen. Microbiol. 1987, 133, 3039–3052. [Google Scholar] [CrossRef] [Green Version]
  139. Lyon, B.R.; May, J.W.; Skurray, R.A. Tn4001—A Gentamicin and Kanamycin Resistance Transposon in Staphylococcus aureus. Mol. Gen. Genet. 1984, 193, 554–556. [Google Scholar] [CrossRef]
  140. Trieu-Cuot, P.; Courvalin, P. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3’5”-aminoglycoside phosphotransferase type III. Gene 1983, 23, 331–341. [Google Scholar] [CrossRef]
  141. Ferretti, J.J.; Gilmore, K.S.; Courvalin, P. Nucleotide sequence analysis of the gene specifying the bifunctional 6’-aminoglycoside acetyltransferase 2”-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 1986, 167, 631–638. [Google Scholar] [CrossRef] [Green Version]
  142. Murphy, E. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3”) (9). Mol. Gen. Genet. 1985, 200, 33–39. [Google Scholar] [CrossRef]
  143. Kayser, F.H.; Homberger, F.; Devaud, M. Aminocyclitol-Modifying Enzymes Specified by Chromosomal Genes in Staphylococcus aureus. Antimicrob. Agents Chemother. 1981, 19, 766–772. [Google Scholar] [CrossRef] [Green Version]
  144. Schwendener, S.; Perreten, V. New Transposon Tn6133 in Methicillin-Resistant Staphylococcus aureus ST398 Contains vga(E), a Novel Streptogramin A, Pleuromutilin, and Lincosamide Resistance Gene. Antimicrob. Agents Chemother. 2011, 55, 4900–4904. [Google Scholar] [CrossRef] [Green Version]
  145. Hisatsune, J.; Hirakawa, H.; Yamaguchi, T.; Fudaba, Y.; Oshima, K.; Hattori, M.; Kato, F.; Kayama, S.; Sugai, M. Emergence of Staphylococcus aureus Carrying Multiple Drug Resistance Genes on a Plasmid Encoding Exfoliative Toxin B. Antimicrob. Agents Chemother. 2013, 57, 6131–6140. [Google Scholar] [CrossRef]
  146. Schmitz, F.-J.; Fluit, A.C.; Gondolf, M.; Beyrau, R.; Lindenlauf, E.; Verhoef, J.; Heinz, H.-P.; Jones, M.E. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother. 1999, 43, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  147. Derbise, A.; Dyke, K.G.; el Solh, N. Characterization of a Staphylococcus aureus transposon, Tn5405, located within Tn5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 1996, 35, 174–188. [Google Scholar] [CrossRef] [PubMed]
  148. Gómez-Sanz, E.; Kadlec, K.; Feßler, A.T.; Zarazaga, M.; Torres, C.; Schwarz, S. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob. Agents Chemother. 2013, 57, 3275–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Hackbarth, C.J.; Chambers, H.F. blaI and blaR1 Regulate β-Lactamase and PBP 2a Production in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1993, 37, 1144–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. Pence, M.A.; Haste, N.M.; Meharena, H.S.; Olson, J.; Gallo, R.L.; Nizet, V.; Kristian, S.A. Beta-Lactamase Repressor BlaI Modulates Staphylococcus aureus Cathelicidin Antimicrobial Peptide Resistance and Virulence. PLoS ONE 2015, 10, e0136605. [Google Scholar] [CrossRef] [PubMed]
  151. Zscheck, K.K.; Murray, B.E. Genes Involved in the Regulation of β-Lactamase Productionin Enterococci and Staphylococci. Antimicrob. Agents Chemother. 1993, 37, 1966–1970. [Google Scholar] [CrossRef] [Green Version]
  152. Lyon, B.R.; Skurray, R. Antimicrobial Resistance of Staphylococcus aureus: Genetic Basis. Microbiol. Rev. 1987, 51, 88–134. [Google Scholar] [CrossRef]
  153. Vesterholm-Nielsen, M.; Larsen, M.O.; Olsen, J.E.; Aarestrup, F.M. Occurrence of the blaZ gene in penicillin resistant Staphylococcus aureus isolated from bovine mastitis in Denmark. Acta Vet. Scand. 1999, 40, 279–286. [Google Scholar] [CrossRef]
  154. Sidhu, M.S.; Heir, E.; Leegaard, T.; Wiger, K.; Holck, A. Frequency of Disinfectant Resistance Genes and Genetic Linkage with β-Lactamase Transposon Tn552 among Clinical Staphylococci. Antimicrob. Agents Chemother. 2002, 46, 2797–2803. [Google Scholar] [CrossRef] [Green Version]
  155. Murphy, E.; Novick, R.P. Physical Mapping of Staphylococcus aureus Penicillinase Plasmid pI524: Characterization of an Invertible Region. Mol. Gen. Genet. 1979, 175, 19–30. [Google Scholar] [CrossRef]
  156. Sidhu, M.S.; Heir, E.; Sorum, H.; Holck, A. Genetic Linkage Between Resistance to Quaternary Ammonium Compounds and β-Lactam Antibiotics in Food-Related Staphylococcus spp. Microb. Drug Resist. 2001, 7, 363–371. [Google Scholar] [CrossRef]
  157. Asheshov, E.H. The Genetics of Penicillinase Production in Staphylococcus aureus Strain PS80. J. Gen. Microbiol. 1969, 59, 289–301. [Google Scholar] [CrossRef] [Green Version]
  158. Rowland, S.J.; Dyke, K.G. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 1990, 4, 961–975. [Google Scholar] [CrossRef]
  159. Wang, P.Z.; Projan, S.J.; Leason, K.R.; Novick, R.P. Translational Fusion with a Secretory Enzyme as an Indicator. J. Bacteriol. 1987, 169, 3082–3087. [Google Scholar] [CrossRef] [Green Version]
  160. Miragaia, M. Factors Contributing to the Evolution of mecA-Mediated β-lactam Resistance in Staphylococci: Update and New Insights From Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef] [Green Version]
  161. Scherer, C.B.; Botoni, L.S.; Carvalho, A.U.; Keller, K.M.; Costa-Val, A.P. Ceftaroline resistance in Staphylococcus pseudintermedius gene mecA carriers. Pesqui. Vet. Bras. 2018, 38, 2233–2236. [Google Scholar] [CrossRef]
  162. Long, S.W.; Olsen, R.J.; Mehta, S.C.; Palzkill, T.; Cernoch, P.L.; Perez, K.K.; Musick, W.L.; Rosato, A.E.; Musser, J.M. PBP2a Mutations Causing High-Level Ceftaroline Resistance in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Antimicrob. Agents Chemother. 2014, 58, 6668–6674. [Google Scholar] [CrossRef] [Green Version]
  163. Hiramatsu, K. Molecular evolution of MRSA. Microbiol. Immunol. 1995, 39, 531–543. [Google Scholar] [CrossRef]
  164. Deurenberg, R.H.; Stobberingh, E.E. The Molecular Evolution of Hospital- and Community-Associated Methicillin-Resistant Staphylococcus aureus. Curr. Mol. Med. 2009, 9, 100–115. [Google Scholar] [CrossRef]
  165. Rasmussen, G.; Monecke, S.; Brus, O.; Ehricht, R.; Soderquist, B. Long Term Molecular Epidemiology of Methicillin-Susceptible Staphylococcus aureus Bacteremia Isolates in Sweden. PLoS ONE 2014, 9, e114276. [Google Scholar] [CrossRef]
  166. Bruckner, R.; Matzura, H. Regulation of the inducible chloramphenicol acetyltransferase gene of the Staphylococcus aureus plasmid pUB112. EMBO J. 1985, 4, 2295–2300. [Google Scholar] [CrossRef] [PubMed]
  167. Brückner, R.; Zyprian, E.; Matzura, H. Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. Gene 1984, 32, 151–160. [Google Scholar] [CrossRef] [PubMed]
  168. Horinouchi, S.; Weisblum, B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 1982, 150, 815–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. Shaw, W.V.; Brenner, D.G.; LeGrice, S.F.; Skinner, S.E.; Hawkins, A.R. Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies. Febs Lett. 1985, 179, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Macrina, F.L.; Archer, G.L. Conjugation and Broad Host Range Plasmids in Streptococci and Staphylococci. In Bacterial Conjugation; Clewell, D.B., Ed.; Springer: Boston, MA, USA, 1993; pp. 313–329. [Google Scholar] [CrossRef]
  171. Koprivnjak, T.; Zhang, D.; Ernst, C.M.; Peschel, A.; Nauseef, W.M.; Weiss, J.P. Characterization of Staphylococcus aureus Cardiolipin Synthases 1 and 2 and Their Contribution to Accumulation of Cardiolipin in Stationary Phase and within Phagocytes. J. Bacteriol. 2011, 193, 4134–4142. [Google Scholar] [CrossRef] [Green Version]
  172. Zhang, T.; Muraih, J.K.; Tishbi, N.; Herskowitz, J.; Victor, R.L.; Silverman, J.; Uwumarenogie, S.; Taylor, S.D.; Palmer, M.; Mintzer, E. Cardiolipin prevents membrane translocation and permeabilization by daptomycin. J. Biol. Chem. 2014, 289, 11584–11591. [Google Scholar] [CrossRef] [Green Version]
  173. Jiang, J.H.; Bhuiyan, M.S.; Shen, H.H.; Cameron, D.R.; Rupasinghe, T.W.T.; Wu, C.M.; Le Brun, A.P.; Kostoulias, X.; Domene, C.; Fulcher, A.J.; et al. Antibiotic resistance and host immune evasion in Staphylococcus aureus mediated by a metabolic adaptation. Proc. Natl. Acad. Sci. USA 2019, 116, 3722–3727. [Google Scholar] [CrossRef] [Green Version]
  174. Thitiananpakorn, K.; Aiba, Y.; Tan, X.E.; Watanabe, S.; Kiga, K.; Sato’o, Y.; Boonsiri, T.; Li, F.Y.; Sasahara, T.; Taki, Y.; et al. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Sci. Rep. 2020, 10, 16107. [Google Scholar] [CrossRef]
  175. Chen, F.J.; Lauderdale, T.L.; Lee, C.H.; Hsu, Y.C.; Huang, I.W.; Hsu, P.C.; Yang, C.S. Effect of a Point Mutation in mprF on Susceptibility to Daptomycin, Vancomycin, and Oxacillin in an MRSA Clinical Strain. Front. Microbiol. 2018, 9, 1086. [Google Scholar] [CrossRef]
  176. Mishra, N.N.; Yang, S.J.; Sawa, A.; Rubio, A.; Nast, C.C.; Yeaman, M.R.; Bayer, A.S. Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
  177. Zuo, H.; Uehara, Y.; Lu, Y.J.; Sasaki, T.; Hiramatsu, K. Genetic and phenotypic diversity of methicillin-resistant Staphylococcus aureus among Japanese inpatients in the early 1980s. Sci. Rep. 2021, 11, 5447. [Google Scholar] [CrossRef]
  178. Cui, L.Z.; Isii, T.; Fukuda, M.; Ochiai, T.; Neoh, H.M.; Camargo, I.L.B.D.; Watanabe, Y.; Shoji, M.; Hishinuma, T.; Hiramatsu, K. An RpoB Mutation Confers Dual Heteroresistance to Daptomycin and Vancomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5222–5233. [Google Scholar] [CrossRef] [Green Version]
  179. Gao, W.; Cameron, D.R.; Davies, J.K.; Kostoulias, X.; Stepnell, J.; Tuck, K.L.; Yeaman, M.R.; Peleg, A.Y.; Stinear, T.P.; Howden, B.P. The RpoB H481Y rifampicin resistance mutation and an active stringent response reduce virulence and increase resistance to innate immune responses in Staphylococcus aureus. J. Infect. Dis. 2013, 207, 929–939. [Google Scholar] [CrossRef] [Green Version]
  180. Howden, B.P.; McEvoy, C.R.E.; Allen, D.L.; Chua, K.; Gao, W.; Harrison, P.F.; Bell, J.; Coombs, G.; Bennett-Wood, V.; Porter, J.L.; et al. Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR. PLoS Pathog. 2011, 7, e1002359. [Google Scholar] [CrossRef]
  181. Poupel, O.; Moyat, M.; Groizeleau, J.; Antunes, L.C.S.; Gribaldo, S.; Msadek, T.; Dubrac, S. Transcriptional Analysis and Subcellular Protein Localization Reveal Specific Features of the Essential WalKR System in Staphylococcus aureus. PLoS ONE 2016, 11, e0151449. [Google Scholar] [CrossRef]
  182. Dubrac, S.; Boneca, I.G.; Poupel, O.; Msadek, T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J. Bacteriol. 2007, 189, 8257–8269. [Google Scholar] [CrossRef] [Green Version]
  183. Delaune, A.; Dubrac, S.; Blanchet, C.; Poupel, O.; Mader, U.; Hiron, A.; Leduc, A.; Fitting, C.; Nicolas, P.; Cavaillon, J.M.; et al. The WalKR System Controls Major Staphylococcal Virulence Genes and Is Involved in Triggering the Host Inflammatory Response. Infect. Immun. 2012, 80, 3438–3453. [Google Scholar] [CrossRef] [Green Version]
  184. Mehta, S.; Cuirolo, A.X.; Plata, K.B.; Riosa, S.; Silverman, J.A.; Rubio, A.; Rosato, R.R.; Rosato, A.E. VraSR Two-Component Regulatory System Contributes to mprF-Mediated Decreased Susceptibility to Daptomycin in In Vivo-Selected Clinical Strains of Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 92–102. [Google Scholar] [CrossRef] [Green Version]
  185. Gardete, S.; Wu, S.W.; Gill, S.; Tomasz, A. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 3424–3434. [Google Scholar] [CrossRef]
  186. Yin, S.H.; Daum, R.S.; Boyle-Vavra, S. VraSR Two-Component Regulatory System and Its Role in Induction of pbp2 and vraSR Expression by Cell Wall Antimicrobials in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 336–343. [Google Scholar] [CrossRef] [Green Version]
  187. Kuroda, M.; Ohta, T.; Uchiyama, I.; Baba, T.; Yuzawa, H.; Kobayashi, I.; Cui, L.Z.; Oguchi, A.; Aoki, K.; Nagai, Y.; et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 2001, 357, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
  188. Kuroda, M.; Kuroda, H.; Oshima, T.; Takeuchi, F.; Mori, H.; Hiramatsu, K. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 2003, 49, 807–821. [Google Scholar] [CrossRef] [PubMed]
  189. Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S25–S34. [Google Scholar] [CrossRef] [PubMed]
  190. Weigel, L.M.; Clewell, D.B.; Gill, S.R.; Clark, N.C.; McDougal, L.K.; Flannagan, S.E.; Kolonay, J.F.; Shetty, J.; Killgore, G.E.; Tenover, F.C. Genetic Analysis of a High-Level Vancomycin-Resistant Isolate of Staphylococcus aureus. Science 2003, 302, 1569–1571. [Google Scholar] [CrossRef] [PubMed]
  191. Zhu, W.; Clark, N.C.; McDougal, L.K.; Hageman, J.; McDonald, L.C.; Patel, J.B. Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob. Agents Chemother. 2008, 52, 452–457. [Google Scholar] [CrossRef] [Green Version]
  192. Périchon, B.; Courvalin, P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4580–4587. [Google Scholar] [CrossRef] [Green Version]
  193. Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef] [Green Version]
  194. Lannergard, J.; Norstrom, T.; Hughes, D. Genetic Determinants of Resistance to Fusidic Acid among Clinical Bacteremia Isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2059–2065. [Google Scholar] [CrossRef] [Green Version]
  195. O’Neill, A.J.; Chopra, I. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol. Microbiol. 2006, 59, 664–676. [Google Scholar] [CrossRef]
  196. O’Brien, F.G.; Price, C.; Grubb, W.B.; Gustafson, J.E. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J. Antimicrob. Chemother. 2002, 50, 313–321. [Google Scholar] [CrossRef] [Green Version]
  197. O’Neill, A.J.; McLaws, F.; Kahlmeter, G.; Henriksen, A.S.; Chopra, I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob. Agents Chemother. 2007, 51, 1737–1740. [Google Scholar] [CrossRef] [Green Version]
  198. Kinnevey, P.M.; Shore, A.C.; Brennan, G.I.; Sullivan, D.J.; Ehricht, R.; Monecke, S.; Slickers, P.; Coleman, D.C. Emergence of Sequence Type 779 Methicillin-Resistant Staphylococcus aureus Harboring a Novel Pseudo Staphylococcal Cassette Chromosome mec (SCCmec)-SCC-SCCCRISPR Composite Element in Irish Hospitals. Antimicrob. Agents Chemother. 2013, 57, 524–531. [Google Scholar] [CrossRef] [Green Version]
  199. Ender, M.; Berger-Bächi, B.; McCallum, N. Variability in SCCmecN1 spreading among injection drug users in Zurich, Switzerland. BMC Microbiol. 2007, 7, 62. [Google Scholar] [CrossRef] [Green Version]
  200. Holden, M.T.; Feil, E.J.; Lindsay, J.A.; Peacock, S.J.; Day, N.P.; Enright, M.C.; Foster, T.J.; Moore, C.E.; Hurst, L.; Atkin, R.; et al. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 2004, 101, 9786–9791. [Google Scholar] [CrossRef] [Green Version]
  201. Lin, Y.-T.; Tsai, J.-C.; Chen, H.-J.; Hung, W.-C.; Hsueh, P.-R.; Teng, L.-J. A Novel Staphylococcal Cassette Chromosomal Element, SCCfusC, Carrying fusC and speG in Fusidic Acid-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 1224–1227. [Google Scholar] [CrossRef] [Green Version]
  202. Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
  203. Morales, G.; Picazo, J.J.; Baos, E.; Candel, F.J.; Arribi, A.; Pelaez, B.; Andrade, R.; de la Torre, M.A.; Fereres, J.; Sanchez-Garcia, M. Resistance to Linezolid Is Mediated by the cfr Gene in the First Report of an Outbreak of Linezolid-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2010, 50, 821–825. [Google Scholar] [CrossRef] [Green Version]
  204. Kehrenberg, C.; Schwarz, S.; Jacobsen, L.; Hansen, L.H.; Vester, B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: Methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 2005, 57, 1064–1073. [Google Scholar] [CrossRef]
  205. Besier, S.; Ludwig, A.; Zander, J.; Brade, V.; Wichelhaus, T.A. Linezolid Resistance in Staphylococcus aureus: Gene Dosage Effect, Stability, Fitness Costs, and Cross-Resistances. Antimicrob. Agents Chemother. 2008, 52, 1570–1572. [Google Scholar] [CrossRef]
  206. Toh, S.M.; Xiong, L.; Arias, C.A.; Villegas, M.V.; Lolans, K.; Quinn, J.; Mankin, A.S. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol. Microbiol. 2007, 64, 1506–1514. [Google Scholar] [CrossRef] [Green Version]
  207. Mendes, R.E.; Deshpande, L.M.; Bonilla, H.F.; Schwarz, S.; Huband, M.D.; Jones, R.N.; Quinn, J.P. Dissemination of a pSCFS3-Like cfr-Carrying Plasmid in Staphylococcus aureus and Staphylococcus epidermidis Clinical Isolates Recovered from Hospitals in Ohio. Antimicrob. Agents Chemother. 2013, 57, 2923–2928. [Google Scholar] [CrossRef] [Green Version]
  208. Shore, A.C.; Brennan, O.M.; Ehricht, R.; Monecke, S.; Schwarz, S.; Slickers, P.; Coleman, D.C. Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob. Agents Chemother. 2010, 54, 4978–4984. [Google Scholar] [CrossRef] [Green Version]
  209. Shore, A.C.; Lazaris, A.; Kinnevey, P.M.; Brennan, O.M.; Brennan, G.I.; O’Connell, B.; Feßler, A.T.; Schwarz, S.; Coleman, D.C. First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob. Agents Chemother. 2016, 60, 3007–3015. [Google Scholar] [CrossRef] [Green Version]
  210. Locke, J.B.; Rahawi, S.; Lamarre, J.; Mankin, A.S.; Shaw, K.J. Genetic Environment and Stability of cfr in Methicillin-Resistant Staphylococcus aureus CM05. Antimicrob. Agents Chemother. 2012, 56, 332–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  211. Zhu, Y.; Zhang, W.; Wang, C.; Liu, W.; Yang, Q.; Luan, T.; Wang, L.; Schwarz, S.; Liu, S. Identification of a novel optrA-harbouring transposon, Tn6823, in Staphylococcus aureus. J. Antimicrob. Chemother. 2020, 75, 3395–3397. [Google Scholar] [CrossRef] [PubMed]
  212. Locke, J.B.; Hilgers, M.; Shaw, K.J. Novel Ribosomal Mutations in Staphylococcus aureus Strains Identified through Selection with the Oxazolidinones Linezolid and Torezolid (TR-700). Antimicrob. Agents Chemother. 2009, 53, 5265–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
  214. Saribas, Z.; Tunckanat, F.; Pinar, A. Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clin. Microbiol. Infect. 2006, 12, 797–799. [Google Scholar] [CrossRef] [Green Version]
  215. Leclercq, R.; Courvalin, P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 1991, 35, 1267–1272. [Google Scholar] [CrossRef]
  216. Schmitz, F.J.; Petridou, J.; Astfalk, N.; Scheuring, S.; Köhrer, K.; Verhoef, J.; Fluit, A.C.; Schwarz, S. Structural alterations in the translational attenuator of constitutively expressed erm(A) genes in Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1603–1604. [Google Scholar] [CrossRef] [Green Version]
  217. Ito, T.; Katayama, Y.; Asada, K.; Mori, N.; Tsutsumimoto, K.; Tiensasitorn, C.; Hiramatsu, K. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
  218. Li, B.; Wendlandt, S.; Yao, J.; Liu, Y.; Zhang, Q.; Shi, Z.; Wei, J.; Shao, D.; Schwarz, S.; Wang, S.; et al. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J. Antimicrob. Chemother. 2013, 68, 1251–1255. [Google Scholar] [CrossRef] [Green Version]
  219. Sarrou, S.; Liakopoulos, A.; Tsoumani, K.; Sagri, E.; Mathiopoulos, K.D.; Tzouvelekis, L.S.; Miriagou, V.; Petinaki, E. Characterization of a Novel lsa(E)- and lnu(B)-Carrying Structure Located in the Chromosome of a Staphylococcus aureus Sequence Type 398 Strain. Antimicrob. Agents Chemother. 2016, 60, 1164–1166. [Google Scholar] [CrossRef] [Green Version]
  220. Ji, X.; Krüger, H.; Wang, Y.; Feßler, A.T.; Wang, Y.; Schwarz, S.; Wu, C. Tn560, a Novel Tn554 Family Transposon from Porcine Methicillin-Resistant Staphylococcus aureus ST398, Carries a Multiresistance Gene Cluster Comprising a Novel spc Gene Variant and the Genes lsa(E) and lnu(B). Antimicrob. Agents Chemother. 2022, 66, e01947-21. [Google Scholar] [CrossRef]
  221. Huang, J.; O’Toole, P.W.; Shen, W.; Amrine-Madsen, H.; Jiang, X.; Lobo, N.; Palmer, L.M.; Voelker, L.; Fan, F.; Gwynn, M.N.; et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 909–917. [Google Scholar] [CrossRef] [Green Version]
  222. Matsuoka, M.; Endou, K.; Kobayashi, H.; Inoue, M.; Nakajima, Y. A plasmid that encodes three genes for resistance to macrolide antibiotics in Staphylococcus aureus. FEMS Microbiol. Lett. 1998, 167, 221–227. [Google Scholar] [CrossRef]
  223. Udo, E.E.; Al-Sweih, N.; Noronha, B.C. A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance. J. Antimicrob. Chemother. 2003, 51, 1283–1286. [Google Scholar] [CrossRef]
  224. Seah, C.; Alexander, D.C.; Louie, L.; Simor, A.; Low, D.E.; Longtin, J.; Melano, R.G. MupB, a New High-Level Mupirocin Resistance Mechanism in Staphylococcus aureus. Antimicrob. Agents Chemother. 2012, 56, 1916–1920. [Google Scholar] [CrossRef] [Green Version]
  225. Woodford, N.; Watson, A.P.; Patel, S.; Jevon, M.; Waghorn, D.J.; Cookson, B.D. Heterogeneous location of the mupA high-level mupirocin resistance gene in Staphylococcus aureus. J. Med. Microbiol. 1998, 47, 829–835. [Google Scholar] [CrossRef]
  226. Udo, E.E.; Jacob, L.E. Conjugative transfer of high-level mupirocin resistance and the mobilization of non-conjugative plasmids in Staphylococcus aureus. Microb. Drug Resist. 1998, 4, 185–193. [Google Scholar] [CrossRef]
  227. Dyke, K.G.; Curnock, S.P.; Golding, M.; Noble, W.C. Cloning of the gene conferring resistance to mupirocin in Staphylococcus aureus. FEMS Microbiol. Lett. 1991, 61, 195–198. [Google Scholar] [CrossRef]
  228. Goswami, C.; Fox, S.; Holden, M.; Leanord, A.; Evans, T.J. Genomic Analysis of Global Staphylococcus argenteus Strains Reveals Distinct Lineages With Differing Virulence and Antibiotic Resistance Gene Content. Front. Microbiol. 2021, 12, 795173. [Google Scholar] [CrossRef]
  229. Etienne, J.; Gerbaud, G.; Courvalin, P.; Fleurette, J. Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis. FEMS Microbiol. Lett. 1989, 52, 133–137. [Google Scholar] [CrossRef] [PubMed]
  230. Fey, P.D.; Endres, J.L.; Yajjala, V.K.; Widhelm, T.J.; Boissy, R.J.; Bose, J.L.; Bayles, K.W. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 2013, 4, e00537-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  231. Fu, Z.; Liu, Y.; Chen, C.; Guo, Y.; Ma, Y.; Yang, Y.; Hu, F.; Xu, X.; Wang, M. Characterization of Fosfomycin Resistance Gene, fosB, in Methicillin-Resistant Staphylococcus aureus Isolates. PLoS ONE 2016, 11, e0154829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  232. Zilhao, R.; Courvalin, P. Nucleotide sequence of the fosB gene conferring fosfomycin resistance in Staphylococcus epidermidis. FEMS Microbiol. Lett. 1990, 56, 267–272. [Google Scholar] [CrossRef] [PubMed]
  233. Novick, R.P.; Christie, G.E.; Penadés, J.R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 2010, 8, 541–551. [Google Scholar] [CrossRef]
  234. Sanfilippo, C.M.; Hesje, C.K.; Haas, W.; Morris, T.W. Topoisomerase Mutations That Are Associated with High-Level Resistance to Earlier Fluoroquinolones in Staphylococcus aureus Have Less Effect on the Antibacterial Activity of Besifloxacin. Chemotherapy 2011, 57, 363–371. [Google Scholar] [CrossRef]
  235. Neyfakh, A.A.; Borsch, C.M.; Kaatz, G.W. Fluoroquinolone Resistance Protein NorA of Staphylococcus aureus Is a Multidrug Efflux Transporter. Antimicrob. Agents Chemother. 1993, 37, 128–129. [Google Scholar] [CrossRef]
  236. Abdu, A.B.; Mirabeau, T.Y. Prevalence of qnr Genes among Multidrug Resistance Staphylococcus aureus from Clinical Isolates. J. Adv. Med. Med. Res. 2019, 30, 1–10. [Google Scholar] [CrossRef]
  237. Haroche, J.; Allignet, J.; El Solh, N. Tn5406, a new staphylococcal transposon conferring resistance to streptogramin A and related compounds including dalfopristin. Antimicrob. Agents Chemother. 2002, 46, 2337–2343. [Google Scholar] [CrossRef] [Green Version]
  238. Li, J.; Li, B.; Wendlandt, S.; Schwarz, S.; Wang, Y.; Wu, C.; Ma, Z.; Shen, J. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin. J. Antimicrob. Chemother. 2013, 69, 919–923. [Google Scholar] [CrossRef] [Green Version]
  239. Lozano, C.; Aspiroz, C.; Rezusta, A.; Gómez-Sanz, E.; Simon, C.; Gómez, P.; Ortega, C.; Revillo, M.J.; Zarazaga, M.; Torres, C. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int. J. Antimicrob. Agents 2012, 40, 306–312. [Google Scholar] [CrossRef]
  240. Haroche, J.; Allignet, J.; Buchrieser, C.; El Solh, N. Characterization of a variant of vga(A) conferring resistance to streptogramin A and related compounds. Antimicrob. Agents Chemother. 2000, 44, 2271–2275. [Google Scholar] [CrossRef] [Green Version]
  241. Donhofer, A.; Franckenberg, S.; Wickles, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. Structural basis for TetM-mediated tetracycline resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 16900–16905. [Google Scholar] [CrossRef] [Green Version]
  242. Lima, M.C.; de Barros, M.; Scatamburlo, T.M.; Polyeiro, R.C.; de Castro, L.K.; Guimaraes, S.H.S.; da Costa, S.L.; da Costa, M.M.; Moreira, M.A.S. Profiles of Staphyloccocus aureus isolated from goat persistent mastitis before and after treatment with enrofloxacin. BMC Microbiol. 2020, 20, 127. [Google Scholar] [CrossRef]
  243. Emaneini, M.; Bigverdi, R.; Kalantar, D.; Soroush, S.; Jabalameli, F.; Noorazar Khoshgnab, B.; Asadollahi, P.; Taherikalani, M. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann. Burns Fire Disasters 2013, 26, 76–80. [Google Scholar]
  244. Guay, G.G.; Khan, S.A.; Rothstein, D.M. The tet(K) Gene of Plasmid pT181 of Staphylococcus aureus Encodes an Efflux Protein That Contains 14 Transmembrane Helices. Plasmid 1993, 30, 163–166. [Google Scholar] [CrossRef]
  245. Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009, 4, 565–582. [Google Scholar] [CrossRef]
  246. Leroy, S.; Christieans, S.; Talon, R. Tetracycline Gene Transfer in Staphylococcus xylosus in situ During Sausage Fermentation. Front. Microbiol. 2019, 10, 392. [Google Scholar] [CrossRef]
  247. Coque, T.M.; Singh, K.V.; Weinstock, G.M.; Murray, B.E. Characterization of Dihydrofolate Reductase Genes from Trimethoprim-Susceptible and Trimethoprim-Resistant Strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 1999, 43, 141–147. [Google Scholar] [CrossRef] [Green Version]
  248. Rouch, D.A.; Messerotti, L.J.; Loo, L.S.; Jackson, C.A.; Skurray, R.A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol. Microbiol. 1989, 3, 161–175. [Google Scholar] [CrossRef]
  249. Reeve, S.M.; Scocchera, E.W.; Narendran, G.D.; Keshipeddy, S.; Krucinska, J.; Hajian, B.; Ferreira, J.; Nailor, M.; Aeschlimann, J.; Wright, D.L.; et al. MRSA Isolates from United States Hospitals Carry dfrG and dfrK Resistance Genes and Succumb to Propargyl-Linked Antifolates. Cell Chem. Biol. 2016, 23, 1458–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  250. Dale, G.E.; Broger, C.; DArcy, A.; Hartman, P.G.; DeHoogt, R.; Jolidon, S.; Kompis, I.; Labhardt, A.M.; Langen, H.; Locher, H.; et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J. Mol. Biol. 1997, 266, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  251. Dale, G.E.; Broger, C.; Hartman, P.G.; Langen, H.; Page, M.G.P.; Then, R.L.; Stuber, D. Characterization of the Gene for the Chromosomal Dihydrofolate Reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: The Origin of the Trimethoprim-Resistant S1 DHFR from Staphylococcus aureus? J. Bacteriol. 1995, 177, 2965–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  252. Rodríguez-Martínez, J.M. Mechanisms of plasmid-mediated resistance to quinolones. Enferm. Infecc. Microbiol. Clin. 2005, 23, 25–31. [Google Scholar] [CrossRef] [PubMed]
  253. Ulrich, N.; Vonberg, R.P.; Gastmeier, P. Outbreaks caused by vancomycin-resistant Enterococcus faecium in hematology and oncology departments: A systematic review. Heliyon 2017, 3, e00473. [Google Scholar] [CrossRef] [Green Version]
  254. Willems, R.J.; Top, J.; van Santen, M.; Robinson, D.A.; Coque, T.M.; Baquero, F.; Grundmann, H.; Bonten, M.J. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg. Infect. Dis. 2005, 11, 821–828. [Google Scholar] [CrossRef]
  255. Mahony, A.A.; Buultjens, A.H.; Ballard, S.A.; Grabsch, E.A.; Xie, S.; Seemann, T.; Stuart, R.L.; Kotsanas, D.; Cheng, A.; Heffernan, H.; et al. Vancomycin-resistant Enterococcus faecium sequence type 796—Rapid international dissemination of a new epidemic clone. Antimicrob. Resist. Infect. Control 2018, 7, 44. [Google Scholar] [CrossRef]
  256. Wassilew, N.; Seth-Smith, H.M.; Rolli, E.; Fietze, Y.; Casanova, C.; Führer, U.; Egli, A.; Marschall, J.; Buetti, N. Outbreak of vancomycin-resistant Enterococcus faecium clone ST796, Switzerland, December 2017 to April 2018. Eurosurveillance 2018, 23, 1800351. [Google Scholar] [CrossRef]
  257. Abele-Horn, M.; Vogel, U.; Klare, I.; Konstabel, C.; Trabold, R.; Kurihara, R.; Witte, W.; Kreth, W.; Schlegel, P.G.; Claus, H. Molecular Epidemiology of Hospital-Acquired Vancomycin-Resistant Enterococci. J. Clin. Microbiol. 2006, 44, 4009–4013. [Google Scholar] [CrossRef] [Green Version]
  258. Orababa, O.Q.; Soriwei, J.D.; Akinsuyi, S.O.; Essiet, U.U.; Solesi, O.M. A systematic review and meta-analysis on the prevalence of vancomycin-resistant enterococci (VRE) among Nigerians. Porto Biomed. J. 2021, 6, e125. [Google Scholar] [CrossRef]
  259. Melese, A.; Genet, C.; Andualem, T. Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 124. [Google Scholar] [CrossRef] [Green Version]
  260. Shrestha, S.; Kharel, S.; Homagain, S.; Aryal, R.; Mishra, S.K. Prevalence of vancomycin-resistant enterococci in Asia—A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2021, 46, 1226–1237. [Google Scholar] [CrossRef]
  261. Shiadeh, S.M.J.; Pormohammad, A.; Hashemi, A.; Lak, P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: A systematic review and meta-analysis. Infect. Drug Resist. 2019, 12, 2713–2725. [Google Scholar] [CrossRef] [Green Version]
  262. Prieto, A.M.G.; van Schaik, W.; Rogers, M.R.C.; Coque, T.M.; Baquero, F.; Corander, J.; Willems, R.J.L. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front. Microbiol. 2016, 7, 788. [Google Scholar] [CrossRef] [Green Version]
  263. Markwart, R.; Willrich, N.; Haller, S.; Noll, I.; Koppe, U.; Werner, G.; Eckmanns, T.; Reuss, A. The rise in vancomycin-resistant Enterococcus faecium in Germany: Data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob. Resist. Infect. Control 2019, 8, 147. [Google Scholar] [CrossRef] [Green Version]
  264. Pan, S.C.; Wang, J.T.; Chen, Y.C.; Chang, Y.Y.; Chen, M.L.; Chang, S.C. Incidence of and Risk Factors for Infection or Colonization of Vancomycin-Resistant Enterococci in Patients in the Intensive Care Unit. PLoS ONE 2012, 7, e47297. [Google Scholar] [CrossRef] [Green Version]
  265. Olawale, K.O.; Fadiora, S.O.; Taiwo, S.S. Prevalence of hospital-acquired enterococci infections in two primary-care hospitals in osogbo, southwestern Nigeria. Afr. J. Infect. Dis. 2011, 5, 40–46. [Google Scholar] [CrossRef]
  266. Lee, M.C.; Lu, C.H.; Lee, W.Y.; Lee, C.M. Correlation between Nosocomial Carriage of Vancomycin-Resistant Enterococci and Antimicrobial Use in Taiwan. Am. J. Trop. Med. 2021, 104, 1131–1136. [Google Scholar] [CrossRef]
  267. Coombs, G.W.; Daley, D.A.; Lee, Y.T.; Pang, S. Australian Group on Antimicrobial Resistance (AGAR) Australian Enterococcal Sepsis Outcome Programme (AESOP) Annual Report 2017. Commun. Dis. Intell. 2019, 43. [Google Scholar] [CrossRef] [PubMed]
  268. Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
  269. European Centre for Disease Prevention and Control. Data from the ECDC Surveillance Atlas—Antimicrobial Resistance. Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed on 24 November 2022).
  270. Alemayehu, T.; Hailemariam, M. Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 20542. [Google Scholar] [CrossRef] [PubMed]
  271. Australian Group on Antimicrobial Resistance. Sepsis Outcome Programs 2020 Report. 2021. Available online: https://www.safetyandquality.gov.au/sites/default/files/2022-05/agar_sepsis_outcome_programs_2020_report_0.pdf (accessed on 24 November 2022).
  272. Antimicrobial Use and Resistance in Australia Surveillance System (AURA). AURA 2021: Fourth Australian Report on Antimicrobial Use and Resistance in Human Health; Antimicrobial Use and Resistance in Australia Surveillance System (AURA): Sydney, Australia, 2021. [Google Scholar]
  273. Panesso, D.; Reyes, J.; Rincón, S.; Díaz, L.; Galloway-Peña, J.; Zurita, J.; Carrillo, C.; Merentes, A.; Guzmán, M.; Adachi, J.A.; et al. Molecular epidemiology of vancomycin-resistant Enterococcus faecium: A prospective, multicenter study in South American hospitals. J. Clin. Microbiol. 2010, 48, 1562–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  274. World Health Organisation. Global Priority List of Antibiotic Resistant Bacteria; World Health Organisation: Geneva, Switzerland, 2017; p. 7.
  275. Kern, W.V. Organization of antibiotic stewardship in Europe: The way to go. Wien. Med. Wochenschr. 2021, 171, 4–8. [Google Scholar] [CrossRef]
  276. Oberjé, E.J.M.; Tanke, M.A.C.; Jeurissen, P.P.T. Antimicrobial Stewardship Initiatives Throughout Europe: Proven Value for Money. Infect. Dis. Rep. 2017, 9, 6800. [Google Scholar] [CrossRef] [Green Version]
  277. Jones, R.; Carville, K.; James, R. Antimicrobial stewardship in Australian hospitals: How does compliance with antimicrobial stewardship standards compare across key hospital classifications? JAC Antimicrob. Resist. 2020, 2, dlaa100. [Google Scholar] [CrossRef]
  278. Nathwani, D.; Varghese, D.; Stephens, J.; Ansari, W.; Martin, S.; Charbonneau, C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 35. [Google Scholar] [CrossRef]
  279. Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Hardcastle, T.C.; Haque, M.; Lugova, H.; Dhingra, S.; Sharma, P.; Islam, S.; et al. Surveillance of antimicrobial resistance in low- and middle-income countries: A scattered picture. Antimicrob. Resist. Infect. Control 2021, 10, 63. [Google Scholar] [CrossRef]
  280. Yam, E.L.Y.; Hsu, L.Y.; Yap, E.P.-H.; Yeo, T.W.; Lee, V.; Schlundt, J.; Lwin, M.O.; Limmathurotsakul, D.; Jit, M.; Dedon, P.; et al. Antimicrobial Resistance in the Asia Pacific region: A meeting report. Antimicrob. Resist. Infect. Control 2019, 8, 202. [Google Scholar] [CrossRef]
  281. Gandra, S.; Alvarez-Uria, G.; Turner, P.; Joshi, J.; Limmathurotsakul, D.; Doorn, H.R.v. Antimicrobial Resistance Surveillance in Low- and Middle-Income Countries: Progress and Challenges in Eight South Asian and Southeast Asian Countries. Clin. Microbiol. Rev. 2020, 33, e00048-19. [Google Scholar] [CrossRef]
  282. Hegewisch-Taylor, J.; Dreser-Mansilla, A.; Romero-Mónico, J.; Levy-Hara, G. Antimicrobial stewardship in hospitals in Latin America and the Caribbean: A scoping review. Rev. Panam. Salud Publica 2020, 44, e68. [Google Scholar] [CrossRef]
  283. Fabre, V.; Cosgrove, S.E.; Secaira, C.; Tapia Torrez, J.C.; Lessa, F.C.; Patel, T.S.; Quiros, R. Antimicrobial stewardship in Latin America: Past, present, and future. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e68. [Google Scholar] [CrossRef]
  284. Rolfe, R., Jr.; Kwobah, C.; Muro, F.; Ruwanpathirana, A.; Lyamuya, F.; Bodinayake, C.; Nagahawatte, A.; Piyasiri, B.; Sheng, T.; Bollinger, J.; et al. Barriers to implementing antimicrobial stewardship programs in three low- and middle-income country tertiary care settings: Findings from a multi-site qualitative study. Antimicrob. Resist. Infect. Control 2021, 10, 60. [Google Scholar] [CrossRef]
  285. Aruhomukama, D. Antimicrobial resistance data, frugal sequencing, and low-income countries in Africa. Lancet Infect. Dis. 2022, 22, 933–934. [Google Scholar] [CrossRef]
  286. Lawpidet, P.; Tengjaroenkul, B.; Saksangawong, C.; Sukon, P. Global Prevalence of Vancomycin-Resistant Enterococci in Food of Animal Origin: A Meta-Analysis. Foodborne Pathog. Dis. 2021, 18, 405–412. [Google Scholar] [CrossRef]
  287. Goutard, F.L.; Bordier, M.; Calba, C.; Erlacher-Vindel, E.; Góchez, D.; de Balogh, K.; Benigno, C.; Kalpravidh, W.; Roger, F.; Vong, S. Antimicrobial policy interventions in food animal production in South East Asia. BMJ 2017, 358, j3544. [Google Scholar] [CrossRef] [Green Version]
  288. Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
  289. Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
  290. Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
  291. Wallinga, D.; Smit, L.A.M.; Davis, M.F.; Casey, J.A.; Nachman, K.E. A Review of the Effectiveness of Current US Policies on Antimicrobial Use in Meat and Poultry Production. Curr. Environ. Health Rep. 2022, 9, 339–354. [Google Scholar] [CrossRef]
  292. Pokharel, S.; Shrestha, P.; Adhikari, B. Antimicrobial use in food animals and human health: Time to implement ‘One Health’ approach. Antimicrob. Resist. Infect. Control 2020, 9, 181. [Google Scholar] [CrossRef]
  293. More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  294. Masalha, M.; Borovok, I.; Schreiber, R.; Aharonowitz, Y.; Cohen, G. Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen. J. Bacteriol. 2001, 183, 7260–7272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  295. Parlet, C.P.; Brown, M.M.; Horswill, A.R. Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiol. 2019, 27, 497–507. [Google Scholar] [CrossRef] [PubMed]
  296. Uhlemann, A.-C.; Otto, M.; Lowy, F.D.; DeLeo, F.R. Evolution of community- and healthcare-associated methicillin-resistant Staphylococcus aureus. Infect. Genet. Evol. 2014, 21, 563–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  297. McNamee, P.T.; Smyth, J.A. Bacterial chondronecrosis with osteomyelitis (‘femoral head necrosis’) of broiler chickens: A review. Avian. Pathol. 2000, 29, 253–270. [Google Scholar] [CrossRef]
  298. Peton, V.; Le Loir, Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014, 21, 602–615. [Google Scholar] [CrossRef]
  299. Sakr, A.; Bregeon, F.; Mege, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef]
  300. Aires de Sousa, M.; de Lencastre, H. Bridges from hospitals to the laboratory: Genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 2004, 40, 101–111. [Google Scholar] [CrossRef]
  301. Bien, J.; Sokolova, O.; Bozko, P. Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. J. Pathog. 2011, 2011, 601905. [Google Scholar] [CrossRef] [Green Version]
  302. Oogai, Y.; Matsuo, M.; Hashimoto, M.; Kato, F.; Sugai, M.; Komatsuzawa, H. Expression of virulence factors by Staphylococcus aureus grown in serum. Appl. Environ. Microbiol. 2011, 77, 8097–8105. [Google Scholar] [CrossRef] [Green Version]
  303. Silversides, J.A.; Lappin, E.; Ferguson, A.J. Staphylococcal Toxic Shock Syndrome: Mechanisms and Management. Curr. Infect. Dis. Rep. 2010, 12, 392–400. [Google Scholar] [CrossRef]
  304. McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
  305. Peng, H.; Liu, D.; Ma, Y.; Gao, W. Comparison of community- and healthcare-associated methicillin-resistant Staphylococcus aureus isolates at a Chinese tertiary hospital, 2012–2017. Sci. Rep. 2018, 8, 17916. [Google Scholar] [CrossRef] [Green Version]
  306. Xie, X.; Bao, Y.; Ouyang, N.; Dai, X.; Pan, K.; Chen, B.; Deng, Y.; Wu, X.; Xu, F.; Li, H.; et al. Molecular epidemiology and characteristic of virulence gene of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in Sun Yat-sen Memorial hospital, Guangzhou, Southern China. BMC Infect. Dis. 2016, 16, 339. [Google Scholar] [CrossRef] [Green Version]
  307. Figueiredo, A.M.; Ferreira, F.A. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem. Inst. Oswaldo Cruz 2014, 109, 265–278. [Google Scholar] [CrossRef] [Green Version]
  308. Figueiredo, A.M.S. What is behind the epidemiological difference between community-acquired and health-care associated methicillin-resistant Staphylococcus aureus? Virulence 2017, 8, 640–642. [Google Scholar] [CrossRef] [Green Version]
  309. Naimi, T.S.; LeDell, K.H.; Como-Sabetti, K.; Borchardt, S.M.; Boxrud, D.J.; Etienne, J.; Johnson, S.K.; Vandenesch, F.; Fridkin, S.; O’Boyle, C.; et al. Comparison of Community- and Health Care–Associated Methicillin-Resistant Staphylococcus aureus Infection. JAMA 2003, 290, 2976–2984. [Google Scholar] [CrossRef] [Green Version]
  310. Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [Green Version]
  311. Bloomfield, L.E.; Coombs, G.W.; Tempone, S.; Armstrong, P.K. Marked increase in community-associated methicillin-resistant Staphylococcus aureus infections, Western Australia, 2004-2018. Epidemiol. Infect. 2020, 148, e153. [Google Scholar] [CrossRef] [PubMed]
  312. Agostino, J.W.; Ferguson, J.K.; Eastwood, K.; Kirk, M.D. The increasing importance of community-acquired methicillin-resistant Staphylococcus aureus infections. Med. J. Aust. 2017, 207, 388–393. [Google Scholar] [CrossRef] [PubMed]
  313. Petersen, A.; Larssen, K.W.; Gran, F.W.; Enger, H.; Hæggman, S.; Mäkitalo, B.; Haraldsson, G.; Lindholm, L.; Vuopio, J.; Henius, A.E.; et al. Increasing Incidences and Clonal Diversity of Methicillin-Resistant Staphylococcus aureus in the Nordic Countries—Results From the Nordic MRSA Surveillance. Front. Microbiol. 2021, 12, 668900. [Google Scholar] [CrossRef]
  314. Junnila, J.; Hirvioja, T.; Rintala, E.; Auranen, K.; Rantakokko-Jalava, K.; Silvola, J.; Lindholm, L.; Gröndahl-Yli-Hannuksela, K.; Marttila, H.; Vuopio, J. Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area—New challenges for MRSA control. Eur. J. Clin. Microbiol. 2020, 39, 2299–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  315. Cameron, J.K.; Hall, L.; Tong, S.Y.C.; Paterson, D.L.; Halton, K. Incidence of community onset MRSA in Australia: Least reported where it is Most prevalent. Antimicrob. Resist. Infect. Control 2019, 8, 33. [Google Scholar] [CrossRef]
  316. Macmorran, E.; Harch, S.; Athan, E.; Lane, S.; Tong, S.; Crawford, L.; Krishnaswamy, S.; Hewagama, S. The rise of methicillin resistant Staphylococcus aureus: Now the dominant cause of skin and soft tissue infection in Central Australia. Epidemiol. Infect. 2017, 145, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
  317. Baines, S.L.; Holt, K.E.; Schultz, M.B.; Seemann, T.; Howden, B.O.; Jensen, S.O.; Hal, S.J.v.; Coombs, G.W.; Firth, N.; Powell, D.R.; et al. Convergent Adaptation in the Dominant Global Hospital Clone ST239 of Methicillin-Resistant Staphylococcus aureus. mBio 2015, 6, e00080-15. [Google Scholar] [CrossRef] [Green Version]
  318. Wang, B.; Xu, Y.; Zhao, H.; Wang, X.; Rao, L.; Guo, Y.; Yi, X.; Hu, L.; Chen, S.; Han, L.; et al. Methicillin-resistant Staphylococcus aureus in China: A multicentre longitudinal study and whole-genome sequencing. Emerg. Microbes Infect. 2022, 11, 532–542. [Google Scholar] [CrossRef]
  319. Chen, H.; Yin, Y.; van Dorp, L.; Shaw, L.P.; Gao, H.; Acman, M.; Yuan, J.; Chen, F.; Sun, S.; Wang, X.; et al. Drivers of methicillin-resistant Staphylococcus aureus (MRSA) lineage replacement in China. Genome Med. 2021, 13, 171. [Google Scholar] [CrossRef]
  320. Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef] [Green Version]
  321. Lin, Y.; Barker, E.; Kislow, J.; Kaldhone, P.; Stemper, M.E.; Pantrangi, M.; Moore, F.M.; Hall, M.; Fritsche, T.R.; Novicki, T.; et al. Evidence of multiple virulence subtypes in nosocomial and community-associated MRSA genotypes in companion animals from the upper midwestern and northeastern United States. Clin. Med. Res. 2011, 9, 7–16. [Google Scholar] [CrossRef]
  322. DeLeo, F.R.; Chambers, H.F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Investig. 2009, 119, 2464–2474. [Google Scholar] [CrossRef] [Green Version]
  323. Nichol, K.A.; Adam, H.J.; Golding, G.R.; Lagacé-Wiens, P.R.S.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G. Characterization of MRSA in Canada from 2007 to 2016. J. Antimicrob. Chemother. 2019, 74, iv55–iv63. [Google Scholar] [CrossRef]
  324. Reyes, J.; Carvajal, L.P.; Rios, R.; Echeverri, A.; Rincon, S.; Munita, J.M.; Tran, T.; Panesso, D.; Arias, C.; Diaz, L. 1221. Genetic Characteristics of Healthcare-Associated Methicillin-Resistant Staphylococcus aureus (HA-MRSA) Belonging to Clonal Complex 5 (CC5) in Latin-America. Open Forum Infect. Dis. 2018, 5, S370. [Google Scholar] [CrossRef] [Green Version]
  325. Arias, C.A.; Reyes, J.; Carvajal, L.P.; Rincon, S.; Diaz, L.; Panesso, D.; Ibarra, G.; Rios, R.; Munita, J.M.; Salles, M.J.; et al. A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries. Antimicrob. Agents Chemother. 2017, 61, e00816-17. [Google Scholar] [CrossRef] [Green Version]
  326. Coombs, G.W.; Daley, D.A.; Yee, N.W.T.; Shoby, P.; Mowlaboccus, S. Australian Group on Antimicrobial Resistance (AGAR) Australian Staphylococcus aureus Sepsis Outcome Programme (ASSOP) Annual Report 2020. Commun. Dis. Intell. 2022, 46, 2018. [Google Scholar] [CrossRef] [PubMed]
  327. Abdulgader, S.M.; Shittu, A.O.; Nicol, M.P.; Kaba, M. Molecular epidemiology of Methicillin-resistant Staphylococcus aureus in Africa: A systematic review. Front. Microbiol. 2015, 6, 348. [Google Scholar] [CrossRef]
  328. Junie, L.M.; Jeican, I.I.; Matroş, L.; Pandrea, S.L. Molecular epidemiology of the community-associated methicillin-resistant Staphylococcus aureus clones: A synthetic review. Clujul Med. 2018, 91, 7–11. [Google Scholar] [CrossRef] [Green Version]
  329. Gosbell, I.B. Epidemiology, clinical features and management of infections due to community methicillin-resistant Staphylococcus aureus (cMRSA). Intern. Med. J. 2005, 35 (Suppl. S2), S120–S135. [Google Scholar] [CrossRef]
  330. O’Brien, F.G.; Pearman, J.W.; Gracey, M.; Riley, T.V.; Grubb, W.B. Community strain of methicillin-resistant Staphylococcus aureus involved in a hospital outbreak. J. Clin. Microbiol. 1999, 37, 2858–2862. [Google Scholar] [CrossRef] [Green Version]
  331. Preeja, P.P.; Kumar, S.H.; Shetty, V. Prevalence and Characterization of Methicillin-Resistant Staphylococcus aureus from Community- and Hospital-Associated Infections: A Tertiary Care Center Study. Antibiotics 2021, 10, 197. [Google Scholar] [CrossRef] [PubMed]
  332. Udo, E.E.; Aly, N.Y.A.; Sarkhoo, E.; Al-Sawan, R.; Al-Asar, A.M. Detection and characterization of an ST97-SCCmec-V community-associated meticillin-resistant Staphylococcus aureus clone in a neonatal intensive care unit and special care baby unit. J. Med. Microbiol. 2011, 60, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  333. Joo, E.J.; Chung, D.R.; Ha, Y.E.; Park, S.Y.; Kang, S.J.; Kim, S.H.; Kang, C.I.; Peck, K.R.; Lee, N.Y.; Ko, K.S.; et al. Community-associated Panton-Valentine leukocidin-negative meticillin-resistant Staphylococcus aureus clone (ST72-MRSA-IV) causing healthcare-associated pneumonia and surgical site infection in Korea. J. Hosp. Infect. 2012, 81, 149–155. [Google Scholar] [CrossRef] [PubMed]
  334. Park, S.H.; Park, C.; Yoo, J.H.; Choi, S.M.; Choi, J.H.; Shin, H.H.; Lee, D.G.; Lee, S.; Kim, J.; Choi, S.E.; et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated bloodstream infections in Korea. Infect. Control Hosp. Epidemiol. 2009, 30, 146–155. [Google Scholar] [CrossRef] [PubMed]
  335. Valsesia, G.; Rossi, M.; Bertschy, S.; Pfyffer, G.E. Emergence of SCCmec type IV and SCCmec type V methicillin-resistant Staphylococcus aureus containing the Panton-Valentine leukocidin genes in a large academic teaching hospital in central Switzerland: External invaders or persisting circulators? J. Clin. Microbiol. 2010, 48, 720–727. [Google Scholar] [CrossRef] [Green Version]
  336. Sonnevend, Á.; Blair, I.; Alkaabi, M.; Jumaa, P.; Al Haj, M.; Ghazawi, A.; Akawi, N.; Jouhar, F.S.; Hamadeh, M.B.; Pál, T. Change in meticillin-resistant Staphylococcus aureus clones at a tertiary care hospital in the United Arab Emirates over a 5-year period. J. Clin. Pathol. 2012, 65, 178–182. [Google Scholar] [CrossRef]
  337. Gould, I.M.; Girvan, E.K.; Browning, R.A.; Mackenzie, F.M.; Edwards, G.F.S. Report of a hospital neonatal unit outbreak of community-associated methicillin-resistant Staphylococcus aureus. Epidemiol. Infect. 2009, 137, 1242–1248. [Google Scholar] [CrossRef] [Green Version]
  338. Maree, C.L.; Daum, R.S.; Boyle-Vavra, S.; Matayoshi, K.; Miller, L.G. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis. 2007, 13, 236–242. [Google Scholar] [CrossRef]
  339. Patel, M.; Hoesley, C.J.; Moser, S.A.; Stamm, A.M.; Baddley, J.W.; Waites, K.B. Dissemination of community-associated methicillin-resistant Staphylococcus aureus in a tertiary care hospital. Antibiotics 2008, 101, 40–45. [Google Scholar] [CrossRef]
  340. David, M.Z.; Cadilla, A.; Boyle-Vavra, S.; Daum, R.S. Replacement of HA-MRSA by CA-MRSA infections at an academic medical center in the midwestern United States, 2004–2005 to 2008. PLoS ONE 2014, 9, e92760. [Google Scholar] [CrossRef] [Green Version]
  341. Baldan, R.; Testa, F.; Lorè, N.I.; Bragonzi, A.; Cichero, P.; Ossi, C.; Biancardi, A.; Nizzero, P.; Moro, M.; Cirillo, D.M. Factors contributing to epidemic MRSA clones replacement in a hospital setting. PLoS ONE 2012, 7, e43153. [Google Scholar] [CrossRef]
  342. Planet, P.J. Life After USA300: The Rise and Fall of a Superbug. J. Infect. Dis. 2017, 215, S71–S77. [Google Scholar] [CrossRef]
  343. Chambers, H.F.; Deleo, F.R. Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
  344. Lawal, O.U.; Ayobami, O.; Abouelfetouh, A.; Mourabit, N.; Kaba, M.; Egyir, B.; Abdulgader, S.M.; Shittu, A.O. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front. Microbiol. 2022, 13, 860436. [Google Scholar] [CrossRef]
  345. Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri, T.; Tenover, F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 1997, 40, 135–136. [Google Scholar] [CrossRef] [Green Version]
  346. Ohlsen, K. Novel antibiotics for the treatment of Staphylococcus aureus. Expert Rev. Clin. Pharmacol. 2009, 2, 661–672. [Google Scholar] [CrossRef]
  347. Kluytmans, J.; vanBelkum, A.; Verbrugh, H. Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
  348. Grundmann, H.; Aires-De-Sousa, M.; Boyce, J.; Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006, 368, 874–885. [Google Scholar] [CrossRef] [Green Version]
  349. Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR Morb. Mortal. Wkly Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [Green Version]
  350. Rubinstein, E.; Keynan, Y. Vancomycin revisited—60 years later. Front. Public Health 2014, 2, 217. [Google Scholar] [CrossRef] [Green Version]
  351. Geraci, J.E.; Heilman, F.R.; Nichols, D.R.; Wellman, W.E.; Ross, G.T. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc. Staff Meet. Mayo Clin. 1956, 48, 809–810. [Google Scholar]
  352. Geraci, J.E.; Heilman, F.R.; Nichols, D.R.; Wellman, W.E. Antibiotic therapy of bacterial endocarditis. VII. Vancomycin for acute micrococcal endocarditis; preliminary report. Proc. Staff Meet. Mayo Clin. 1958, 33, 172–181. [Google Scholar] [PubMed]
  353. Filippone, E.J.; Kraft, W.K.; Farber, J.L. The Nephrotoxicity of Vancomycin. Clin. Pharmacol. Ther. 2017, 102, 459–469. [Google Scholar] [CrossRef] [PubMed]
  354. Hazlewood, K.A.; Brouse, S.D.; Pitcher, W.D.; Hall, R.G. Vancomycin-associated nephrotoxicity: Grave concern or death by character assassination? Am. J. Med. 2010, 123, e181–e187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  355. Cong, Y.; Yang, S.; Rao, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J. Adv. Res. 2020, 21, 169–176. [Google Scholar] [CrossRef]
  356. Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef]
  357. Choo, E.J.; Chambers, H.F. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect. Chemother. 2016, 48, 267–273. [Google Scholar] [CrossRef] [Green Version]
  358. Vemula, P.K.; Campbell, N.R.; Zhao, F.; Xu, B.; John, G.; Karp, J.M. 4.421—Self-Assembled Prodrugs. In Comprehensive Biomaterials; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2011; pp. 339–355. [Google Scholar] [CrossRef]
  359. Patel, S.; Preuss, C.V.; Bernice, F. Vancomycin; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
  360. Chang, J.D.; Foster, E.E.; Wallace, A.G.; Kim, S.J. Peptidoglycan O-acetylation increases in response to vancomycin treatment in vancomycin-resistant Enterococcus faecalis. Sci. Rep. 2017, 7, 46500. [Google Scholar] [CrossRef] [Green Version]
  361. Meziane-Cherif, D.; Stogios, P.J.; Evdokimova, E.; Savchenko, A.; Courvalin, P. Structural basis for the evolution of vancomycin resistance D,D-peptidases. Proc. Natl. Acad. Sci. USA 2014, 111, 5872–5877. [Google Scholar] [CrossRef] [Green Version]
  362. Zawadzka-Skomial, J.; Markiewicz, Z.; Nguyen-Disteche, M.; Devreese, B.; Frere, J.M.; Terrak, M. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J. Bacteriol. 2006, 188, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
  363. Hu, Q.W.; Peng, H.G.; Rao, X.C. Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus. Front. Microbiol. 2016, 7, 1601. [Google Scholar] [CrossRef]
  364. Wang, F.; Zhou, H.Y.; Olademehin, O.P.; Kim, S.J.; Tao, P. Insights into Key Interactions between Vancomycin and Bacterial Cell Wall Structures. ACS Omega 2018, 3, 37–45. [Google Scholar] [CrossRef]
  365. Sinha Roy, R.; Yang, P.; Kodali, S.; Xiong, Y.; Kim, R.M.; Griffin, P.R.; Onishi, H.R.; Kohler, J.; Silver, L.L.; Chapman, K. Direct interaction of a vancomycin derivative with bacterial enzymes involved in cell wall biosynthesis. Chem. Biol. 2001, 8, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
  366. World Health Organisation. Selection and Use of Essential Medicines: Report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (Including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children); Report No.: 0512-3054; World Health Organisation: Geneva, Switzerland, 2019; pp. 1–639.
  367. Uttley, A.H.C.; Collins, C.H.; Naidoo, J.; George, R.C. Vancomycin-Resistant Enterococci. Lancet 1988, 1, 57–58. [Google Scholar] [CrossRef]
  368. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021; Volume 41. [Google Scholar]
  369. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, 12th ed.; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2022. [Google Scholar]
  370. Bugg, T.D.H.; Wright, G.D.; Dutkamalen, S.; Arthur, M.; Courvalin, P.; Walsh, C.T. Molecular Basis for Vancomycin Resistance in Enterococcus faecium BM4147: Biosynthesis of a Depsipeptide Peptidoglycan Precursor by Vancomycin Resistance Proteins VanH and VanA. Biochemistry 1991, 30, 10408–10415. [Google Scholar] [CrossRef]
  371. Stogios, P.J.; Savchenko, A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef]
  372. Billot-Klein, D.; Blanot, D.; Gutmann, L.; van Heijenoort, J. Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-D-alanine and N-acetyl-D-alanyl-D-serine. Biochem. J. 1994, 304 Pt 3, 1021–1022. [Google Scholar] [CrossRef] [Green Version]
  373. Arthur, M.; Quintiliani, R., Jr. Regulation of VanA- and VanB-Type Glycopeptide Resistance in Enterococci. Antimicrob. Agents Chemother. 2001, 45, 375–381. [Google Scholar] [CrossRef] [Green Version]
  374. Marshall, C.G.; Zolli, M.; Wright, G.D. Molecular Mechanism of VanHst, an α-Ketoacid Dehydrogenase Required for Glycopeptide Antibiotic Resistance from a Glycopeptide Producing Organism. Biochemistry 1999, 38, 8485–8491. [Google Scholar] [CrossRef]
  375. Arthur, M.; Molinas, C.; Courvalin, P. The VanS-VanR Two-Component Regulatory System Controls Synthesis of Depsipeptide Peptidoglycan Precursorsin Enterococcus faecium BM4147. J. Bacteriol. 1992, 174, 2582–2591. [Google Scholar] [CrossRef] [Green Version]
  376. Wu, Z.; Wright, G.D.; Walsh, C.T. Overexpression, purification, and characterization of VanX, a D-, D-dipeptidase which is essential for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 1995, 34, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
  377. Arthur, M.; Depardieu, F.; Snaith, H.A.; Reynolds, P.E.; Courvalin, P. Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob. Agents Chemother. 1994, 38, 1899–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  378. Arthur, M.; Depardieu, F.; Cabanie, L.; Reynolds, P.; Courvalin, P. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol. Microbiol. 1998, 30, 819–830. [Google Scholar] [CrossRef]
  379. Wright, G.D.; Molinas, C.; Arthur, M.; Courvalin, P.; Walsh, C.T. Characterization of vanY, a DD-carboxypeptidase from vancomycin-resistant Enterococcus faecium BM4147. Antimicrob. Agents Chemother. 1992, 36, 1514–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  380. Smith, J.D.; Kumarasiri, M.; Zhang, W.; Hesek, D.; Lee, M.; Toth, M.; Vakulenko, S.; Fisher, J.F.; Mobashery, S.; Chen, Y. Structural analysis of the role of Pseudomonas aeruginosa penicillin-binding protein 5 in β-lactam resistance. Antimicrob. Agents Chemother. 2013, 57, 3137–3146. [Google Scholar] [CrossRef] [Green Version]
  381. Peters, K.; Kannan, S.; Rao, V.A.; Biboy, J.; Vollmer, D.; Erickson, S.W.; Lewis, R.J.; Young, K.D.; Vollmer, W. The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli. mBio 2016, 7, e00819-16. [Google Scholar] [CrossRef] [Green Version]
  382. Arthur, M.; Depardieu, F.; Molinas, C.; Reynolds, P.; Courvalin, P. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 1995, 154, 87–92. [Google Scholar] [CrossRef]
  383. Arthur, M.; Depardieu, F.; Reynolds, P.; Courvalin, P. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol. Microbiol. 1996, 21, 33–44. [Google Scholar] [CrossRef]
  384. Lebreton, F.; Depardieu, F.; Bourdon, N.; Fines-Guyon, M.; Berger, P.; Camiade, S.; Leclercq, R.; Courvalin, P.; Cattoir, V. D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2011, 55, 4606–4612. [Google Scholar] [CrossRef] [Green Version]
  385. Boyd, D.A.; Willey, B.M.; Fawcett, D.; Gillani, N.; Mulvey, M.R. Molecular Characterization of Enterococcus faecalis N06-0364 with Low-Level Vancomycin Resistance Harboring a Novel D-Ala-D-Ser Gene Cluster, vanL. Antimicrob. Agents Chemother. 2008, 52, 2667–2672. [Google Scholar] [CrossRef] [Green Version]
  386. Arias, C.A.; Weisner, J.; Blackburn, J.M.; Reynolds, P.E. Serine and alanine racemase activities of VanT: A protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology 2000, 146 Pt 7, 1727–1734. [Google Scholar] [CrossRef]
  387. Arias, C.A.; Martin-Martinez, M.; Blundell, T.L.; Arthur, M.; Courvalin, P.; Reynolds, P.E. Characterization and modelling of VanT: A novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 1999, 31, 1653–1664. [Google Scholar] [CrossRef] [Green Version]
  388. Arias, C.A.; Courvalin, P.; Reynolds, P.E. vanC Cluster of Vancomycin-Resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 2000, 44, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
  389. Abadía Patiño, L.; Courvalin, P.; Perichon, B. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol. 2002, 184, 6457–6464. [Google Scholar] [CrossRef] [Green Version]
  390. Depardieu, F.; Bonora, M.G.; Reynolds, P.E.; Courvalin, P. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 2003, 50, 931–948. [Google Scholar] [CrossRef]
  391. Arias, C.A.; Pena, J.; Panesso, D.; Reynolds, P. Role of the transmembrane domain of the VanT serine racemase in resistance to vancomycin in Enterococcus gallinarum BM4174. J. Antimicrob. Chemother. 2003, 51, 557–564. [Google Scholar] [CrossRef] [Green Version]
  392. Meziane-Cherif, D.; Stogios, P.J.; Evdokimova, E.; Egorova, O.; Savchenko, A.; Courvalin, P. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases. mBio 2015, 6, e00806. [Google Scholar] [CrossRef] [Green Version]
  393. Espaillat, A.; Carrasco-López, C.; Bernardo-García, N.; Pietrosemoli, N.; Otero, L.H.; Álvarez, L.; de Pedro, M.A.; Pazos, F.; Davis, B.M.; Waldor, M.K.; et al. Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 79–90. [Google Scholar] [CrossRef] [Green Version]
  394. Wu, H.M.; Kuan, Y.C.; Chu, C.H.; Hsu, W.H.; Wang, W.C. Crystal structures of lysine-preferred racemases, the non-antibiotic selectable markers for transgenic plants. PLoS ONE 2012, 7, e48301. [Google Scholar] [CrossRef] [Green Version]
  395. Podmore, A.H.; Reynolds, P.E. Purification and characterization of VanXYc, a D,D-dipeptidase/D,D-carboxypeptidase in vancomycin-resistant Enterococcus gallinarum BM4174. Eur. J. Biochem. 2002, 269, 2740–2746. [Google Scholar] [CrossRef]
  396. Reynolds, P.E.; Arias, C.A.; Courvalin, P. Gene vanXYc encodes D,D -dipeptidase (VanX) and D,D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 1999, 34, 341–349. [Google Scholar] [CrossRef] [PubMed]
  397. Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  398. Wu, Q.; Sabokroo, N.; Wang, Y.; Hashemian, M.; Karamollahi, S.; Kouhsari, E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
  399. Jacoby, G.A. Transmissible Antibiotic Resistance. In Antimicrobial Resistance in the 21st Century; Fong, I.W., Shlaes, D., Drlica, K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 341–381. [Google Scholar] [CrossRef]
  400. Hughes, D. Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat. Rev. Genet. 2003, 4, 432–441. [Google Scholar] [CrossRef] [PubMed]
  401. Centers for Disease Control and Prevention. Healthcare-associated Infections—VRE and the Clinical Laboratory. 2010. Available online: https://www.cdc.gov/hai/settings/lab/vreclinical-laboratory.html (accessed on 12 August 2022).
  402. Sahm, D.F.; Free, L.; Handwerger, S. Inducible and constitutive expression of vanC-1-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob. Agents Chemother. 1995, 39, 1480–1484. [Google Scholar] [CrossRef] [Green Version]
  403. Reynolds, P.E.; Snaith, H.A.; Maguire, A.J.; Dutka-Malen, S.; Courvalin, P. Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem. J. 1994, 301 Pt 1, 5–8. [Google Scholar] [CrossRef] [Green Version]
  404. Reynolds, P.E.; Courvalin, P. Vancomycin Resistance in Enterococci Due to Synthesis of Precursors Terminating in D-Alanyl-D-Serine. Antimicrob. Agents Chemother. 2005, 49, 21–25. [Google Scholar] [CrossRef] [Green Version]
  405. Naser, S.M.; Vancanneyt, M.; Hoste, B.; Snauwaert, C.; Vandemeulebroecke, K.; Swings, J. Reclassification of Enterococcus flavescens Pompei et al. 1992 as a later synonym of Enterococcus casseliflavus (ex Vaughan et al. 1979) Collins et al. 1984 and Enterococcus saccharominimus Vancanneyt et al. 2004 as a later synonym of Enterococcus italicus Fortina et al. 2004. Int. J. Syst. Evol. Microbiol. 2006, 56, 413–416. [Google Scholar] [CrossRef] [Green Version]
  406. Dutta, I.; Reynolds, P.E. Biochemical and Genetic Characterization of the vanC-2 Vancomycin Resistance Gene Cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob. Agents Chemother. 2002, 46, 3125–3132. [Google Scholar] [CrossRef] [Green Version]
  407. Fines, M.; Perichon, B.; Reynolds, P.; Sahm, D.F.; Courvalin, P. VanE, a New Type of Acquired Glycopeptide Resistance in Enterococcus faecalis BM4405. Antimicrob. Agents Chemother. 1999, 43, 2161–2164. [Google Scholar] [CrossRef]
  408. McKessar, S.J.; Berry, A.M.; Bell, J.M.; Turnidge, J.D.; Paton, J.C. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob. Agents Chemother. 2000, 44, 3224–3228. [Google Scholar] [CrossRef] [Green Version]
  409. Starikova, I.; Al-Haroni, M.; Werner, G.; Roberts, A.P.; Sørum, V.; Nielsen, K.M.; Johnsen, P.J. Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis. J. Antimicrob. Chemother. 2013, 68, 2755–2765. [Google Scholar] [CrossRef] [Green Version]
  410. Ayobami, O.; Willrich, N.; Reuss, A.; Eckmanns, T.; Markwart, R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: An epidemiological analysis of bloodstream infections. Emerg. Microbes Infect. 2020, 9, 1180–1193. [Google Scholar] [CrossRef]
  411. O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [CrossRef] [Green Version]
  412. Tedim, A.P.; Lanza, V.F.; Rodríguez, C.M.; Freitas, A.R.; Novais, C.; Peixe, L.; Baquero, F.; Coque, T.M. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J. Antimicrob. Chemother. 2021, 76, 2757–2764. [Google Scholar] [CrossRef]
  413. Foucault, M.L.; Depardieu, F.; Courvalin, P.; Grillot-Courvalin, C. Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc. Natl. Acad. Sci. USA 2010, 107, 16964–16969. [Google Scholar] [CrossRef] [Green Version]
  414. Ramadhan, A.A.; Hegedus, E. Survivability of vancomycin resistant enterococci and fitness cost of vancomycin resistance acquisition. J. Clin. Pathol. 2005, 58, 744–746. [Google Scholar] [CrossRef] [Green Version]
  415. Kankalil George, S.; Suseela, M.R.; El Safi, S.; Ali Elnagi, E.; Al-Naam, Y.A.; Adlan Mohammed Adam, A.; Mary Jacob, A.; Al-Maqati, T.; Kumar Ks, H. Molecular determination of van genes among clinical isolates of enterococci at a hospital setting. Saudi. J. Biol. Sci. 2021, 28, 2895–2899. [Google Scholar] [CrossRef]
  416. Werner, G.; Klare, I.; Fleige, C.; Geringer, U.; Witte, W.; Just, H.-M.; Ziegler, R. Vancomycin-resistant vanB-type Enterococcus faecium isolates expressing varying levels of vancomycin resistance and being highly prevalent among neonatal patients in a single ICU. Antimicrob. Resist. Infect. Control 2012, 1, 21. [Google Scholar] [CrossRef] [Green Version]
  417. Hashimoto, Y.; Taniguchi, M.; Kazuma, U.; Nomura, T.; Hirakawa, H.; Tanimoto, K.; Tamai, K.; Ruan, G.; Zheng, B.; Tomita, H. Novel Multidrug-Resistant Enterococcal Mobile Linear Plasmid pELF1 Encoding vanA and vanM Gene Clusters From a Japanese Vancomycin-Resistant Enterococci Isolate. Front. Microbiol. 2019, 10, 2568. [Google Scholar] [CrossRef]
  418. Pouwels, K.B.; Muller-Pebody, B.; Smieszek, T.; Hopkins, S.; Robotham, J.V. Selection and co-selection of antibiotic resistances among Escherichia coli by antibiotic use in primary care: An ecological analysis. PLoS ONE 2019, 14, e0218134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  419. Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  420. Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  421. Vats, P.; Kaur, U.J.; Rishi, P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J. Appl. Microbiol. 2022, 132, 4058–4076. [Google Scholar] [CrossRef] [PubMed]
  422. Wales, A.D.; Davies, R.H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef] [Green Version]
  423. Huttner, B.; Harbarth, S.; Nathwani, D. Success stories of implementation of antimicrobial stewardship: A narrative review. Clin. Microbiol. Infect. 2014, 20, 954–962. [Google Scholar] [CrossRef] [Green Version]
  424. Mustafa, F.; Koekemoer, L.A.; Green, R.J.; Turner, A.C.; Becker, P.; van Biljon, G. Successful antibiotic stewardship in hospitalised children in a developing nation. J. Glob. Antimicrob. Resist. 2020, 23, 217–220. [Google Scholar] [CrossRef]
  425. Al-Omari, A.; Al Mutair, A.; Alhumaid, S.; Salih, S.; Alanazi, A.; Albarsan, H.; Abourayan, M.; Al Subaie, M. The impact of antimicrobial stewardship program implementation at four tertiary private hospitals: Results of a five-years pre-post analysis. Antimicrob. Resist. Infect. Control 2020, 9, 95. [Google Scholar] [CrossRef]
  426. Hulscher, M.; Prins, J.M. Antibiotic stewardship: Does it work in hospital practice? A review of the evidence base. Clin. Microbiol. Infect. 2017, 23, 799–805. [Google Scholar] [CrossRef] [Green Version]
  427. Rzewuska, M.; Duncan, E.M.; Francis, J.J.; Morris, A.M.; Suh, K.N.; Davey, P.G.; Grimshaw, J.M.; Ramsay, C.R. Barriers and Facilitators to Implementation of Antibiotic Stewardship Programmes in Hospitals in Developed Countries: Insights From Transnational Studies. Front. Sociol. 2020, 5, 41. [Google Scholar] [CrossRef]
  428. Yang, M.C.; Wu, Y.K.; Lan, C.C.; Yang, M.C.; Chiu, S.K.; Peng, M.Y.; Su, W.L. Antibiotic Stewardship Related to Delayed Diagnosis and Poor Prognosis of Critically Ill Patients with Vancomycin-Resistant Enterococcal Bacteremia: A Retrospective Cohort Study. Infect. Drug Resist. 2022, 15, 723–734. [Google Scholar] [CrossRef]
  429. Simm, R.; Slettemeås, J.S.; Norström, M.; Dean, K.R.; Kaldhusdal, M.; Urdahl, A.M. Significant reduction of vancomycin resistant E. faecium in the Norwegian broiler population coincided with measures taken by the broiler industry to reduce antimicrobial resistant bacteria. PLoS ONE 2019, 14, e0226101. [Google Scholar] [CrossRef]
  430. Hammerum, A.M.; Lester, C.H.; Neimann, J.; Porsbo, L.J.; Olsen, K.E.P.; Jensen, L.B.; Emborg, H.-D.; Wegener, H.C.; Frimodt-Moller, N. A vancomycin-resistant Enterococcus faecium isolate from a Danish healthy volunteer, detected 7 years after the ban of avoparcin, is possibly related to pig isolates. J. Antimicrob. Chemother. 2004, 53, 547–549. [Google Scholar] [CrossRef] [Green Version]
  431. Bortolaia, V.; Mander, M.; Jensen, L.B.; Olsen, J.E.; Guardabassi, L. Persistence of Vancomycin Resistance in Multiple Clones of Enterococcus faecium Isolated from Danish Broilers 15 Years after the Ban of Avoparcin. Antimicrob. Agents Chemother. 2015, 59, 2926–2929. [Google Scholar] [CrossRef] [Green Version]
  432. Manson, J.M.; Smith, J.M.; Cook, G.M. Persistence of vancomycin-resistant enterococci in New Zealand broilers after discontinuation of avoparcin use. Appl. Environ. Microbiol. 2004, 70, 5764–5768. [Google Scholar] [CrossRef] [Green Version]
  433. Wist, V.; Morach, M.; Schneeberger, M.; Cernela, N.; Stevens, M.J.A.; Zurfluh, K.; Stephan, R.; Nüesch-Inderbinen, M. Phenotypic and Genotypic Traits of Vancomycin-Resistant Enterococci from Healthy Food-Producing Animals. Microorganisms 2020, 8, 261. [Google Scholar] [CrossRef] [Green Version]
  434. Nilsson, O. Vancomycin resistant enterococci in farm animals—Occurrence and importance. Infect. Ecol. Epidemiol. 2012, 2, 16959. [Google Scholar] [CrossRef] [Green Version]
  435. Lauderdale, T.-L.; Shiau, Y.-R.; Wang, H.-Y.; Lai, J.-F.; Huang, I.-W.; Chen, P.-C.; Chen, H.-Y.; Lai, S.-S.; Liu, Y.-F.; Ho, M. Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ. Microbiol. 2007, 9, 819–823. [Google Scholar] [CrossRef]
  436. Hammerum, A.M. Enterococci of animal origin and their significance for public health. Clin. Microbiol. Infect. 2012, 18, 619–625. [Google Scholar] [CrossRef]
  437. Hammerum, A.M.; Lester, C.H.; Heuer, O.E. Antimicrobial-resistant enterococci in animals and meat: A human health hazard? Foodborne Pathog. Dis. 2010, 7, 1137–1146. [Google Scholar] [CrossRef]
  438. Johnsen, P.J.; Simonsen, G.S.; Olsvik, O.; Midtvedt, T.; Sundsfjord, A. Stability, persistence, and evolution of plasmid-encoded VanA glycopeptide resistance in enterococci in the absence of antibiotic selection in vitro and in gnotobiotic mice. Microb. Drug Resist. 2002, 8, 161–170. [Google Scholar] [CrossRef] [PubMed]
  439. Kirkpatrick, B.D.; Harrington, S.M.; Smith, D.; Marcellus, D.; Miller, C.; Dick, J.; Karanfil, L.; Perl, T.M. An Outbreak of Vancomycin-Dependent Enterococcus faecium in a Bone Marrow Transplant Unit. Clin. Infect. Dis. 1999, 29, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  440. Van Bambeke, F.; Chauvel, M.; Reynolds, P.E.; Fraimow, H.S.; Courvalin, P. Vancomycin-Dependent Enterococcus faecalis Clinical Isolates and Revertant Mutants. Antimicrob. Agents Chemother. 1999, 43, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  441. Fraimow, H.S.; Jungkind, D.L.; Lander, D.W.; Delso, D.R.; Dean, J.L. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann. Intern. Med. 1994, 121, 22–26. [Google Scholar] [CrossRef] [PubMed]
  442. Murray, B.E. Vancomycin-resistant Enterococci. Am. J. Med. 1997, 102, 284–293. [Google Scholar] [CrossRef]
  443. Tambyah, P.A.; Marx, J.A.; Maki, D.G. Nosocomial infection with vancomycin-dependent enterococci. Emerg. Infect. Dis. 2004, 10, 1277–1281. [Google Scholar] [CrossRef]
  444. Dever, L.L.; Smith, S.M.; Handwerger, S.; Eng, R.H. Vancomycin-dependent Enterococcus faecium isolated from stool following oral vancomycin therapy. J. Clin. Microbiol. 1995, 33, 2770–2773. [Google Scholar] [CrossRef] [Green Version]
  445. Sukumaran, V.; Cosh, J.; Thammavong, A.; Kennedy, K.; Ong, C.W. Vancomycin dependent Enterococcus: An unusual mutant? Pathology 2019, 51, 318–320. [Google Scholar] [CrossRef]
  446. Kerbauy, G.; Perugini, M.R.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Vancomycin-dependent Enterococcus faecium vanA: Characterization of the first case isolated in a university hospital in Brazil. Br. J. Med. Biol. Res. 2011, 44, 253–257. [Google Scholar] [CrossRef] [Green Version]
  447. Rossney, A.S.; McConkey, S.J.; Keane, C.T. Vancomycin-dependent Enterococcus. Lancet 1997, 349, 430. [Google Scholar] [CrossRef]
  448. Yowler, C.J.; Blinkhorn, R.J.; Fratianne, R.B. Vancomycin-Dependent Enterococcal Strains: Case Report and Review. J. Trauma Acute Care Surg. 2000, 48, 783–785. [Google Scholar] [CrossRef]
  449. Merlino, J.; Gray, T. Vancomycin variable Enterococcus (VVE), E. faecium, harbouring the vanA gene complex. Pathology 2021, 53, 680–682. [Google Scholar] [CrossRef]
  450. Abdullah, H.M.; Marbjerg, L.H.; Andersen, L.; Hoegh, S.V.; Kemp, M. A Simple and Rapid Low-Cost Procedure for Detection of Vancomycin-Resistance Genes in Enterococci Reveals an Outbreak of Vancomycin-Variable Enterococcus faecium. Diagnostics 2022, 12, 2120. [Google Scholar] [CrossRef]
  451. Kohler, P.; Eshaghi, A.; Kim, H.C.; Plevneshi, A.; Green, K.; Willey, B.M.; McGeer, A.; Patel, S.N. Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS ONE 2018, 13, e0193926. [Google Scholar] [CrossRef]
  452. Thaker, M.N.; Kalan, L.; Waglechner, N.; Eshaghi, A.; Patel, S.N.; Poutanen, S.; Willey, B.; Coburn, B.; McGeer, A.; Low, D.E.; et al. Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob. Agents Chemother. 2015, 59, 1405–1410. [Google Scholar] [CrossRef] [Green Version]
  453. Gagnon, S.; Lévesque, S.; Lefebvre, B.; Bourgault, A.M.; Labbé, A.C.; Roger, M. vanA-containing Enterococcus faecium susceptible to vancomycin and teicoplanin because of major nucleotide deletions in Tn1546. J. Antimicrob. Chemother. 2011, 66, 2758–2762. [Google Scholar] [CrossRef]
  454. Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updates 2018, 40, 25–39. [Google Scholar] [CrossRef]
  455. Hammerum, A.M.; Justesen, U.S.; Pinholt, M.; Roer, L.; Kaya, H.; Worning, P.; Nygaard, S.; Kemp, M.; Clausen, M.E.; Nielsen, K.L.; et al. Surveillance of vancomycin-resistant enterococci reveals shift in dominating clones and national spread of a vancomycin-variable vanA Enterococcus faecium ST1421-CT1134 clone, Denmark, 2015 to March 2019. Eurosurveillance 2019, 24, 1900503. [Google Scholar] [CrossRef] [Green Version]
  456. Hiramatsu, K.; Aritaka, N.; Hanaki, H.; Kawasaki, S.; Hosoda, Y.; Hori, S.; Fukuchi, Y.; Kobayashi, I. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350, 1670–1673. [Google Scholar] [CrossRef]
  457. Hiramatsu, K.; Kayayama, Y.; Matsuo, M.; Aiba, Y.; Saito, M.; Hishinuma, T.; Iwamoto, A. Vancomycin-intermediate resistance in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2014, 2, 213–224. [Google Scholar] [CrossRef]
  458. Centers for Disease Control and Prevention. Staphylococcus aureus Resistant to Vancomycin—United States, 2002. MMWR Morb. Mortal. Wkly Rep. 2002, 51, 565–567. [Google Scholar]
  459. Liu, C.; Chambers, H.F. Staphylococcus aureus with Heterogeneous Resistance to Vancomycin: Epidemiology, Clinical Significance, and Critical Assessment of Diagnostic Methods. Antimicrob. Agents Chemother. 2003, 47, 3040–3045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  460. Cameron, D.R.; Lin, Y.H.; Trouillet-Assant, S.; Tafani, V.; Kostoulias, X.; Mouhtouris, E.; Skinner, N.; Visvanathan, K.; Baines, S.L.; Howden, B.; et al. Vancomycin-intermediate Staphylococcus aureus isolates are attenuated for virulence when compared with susceptible progenitors. Clin. Microbiol. Infect. 2017, 23, 767–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  461. Jin, Y.; Yu, X.; Zhang, S.T.; Kong, X.Y.; Chen, W.W.; Luo, Q.X.; Zheng, B.W.; Xiao, Y.H. Comparative Analysis of Virulence and Toxin Expression of Vancomycin-Intermediate and Vancomycin-Sensitive Staphylococcus aureus Strains. Front. Microbiol. 2020, 11, 596942. [Google Scholar] [CrossRef] [PubMed]
  462. Ohlsen, K.; Koller, K.P.; Hacker, J. Analysis of expression of the alpha-toxin gene (hla) of Staphylococcus aureus by using a chromosomally encoded hla::lacZ gene fusion. Infect. Immun. 1997, 65, 3606–3614. [Google Scholar] [CrossRef] [Green Version]
  463. Singh, A.; Singh, S.; Singh, J.; Rahman, M.; Pathak, A.; Prasad, K.N. Survivability and Fitness Cost of Heterogeneous Vancomycin-intermediate Staphylococcus aureus. Indian J. Med. Microbiol. 2017, 35, 415–416. [Google Scholar] [CrossRef]
  464. Saito, M.; Katayama, Y.; Hishinuma, T.; Iwamoto, A.; Aiba, Y.; Kuwahara-Arai, K.; Cui, L.; Matsuo, M.; Aritaka, N.; Hiramatsu, K. “Slow VISA,” a novel phenotype of vancomycin resistance, found in vitro in heterogeneous vancomycin-intermediate Staphylococcus aureus strain Mu3. Antimicrob. Agents Chemother. 2014, 58, 5024–5035. [Google Scholar] [CrossRef] [Green Version]
  465. Katayama, Y.; Azechi, T.; Miyazaki, M.; Takata, T.; Sekine, M.; Matsui, H.; Hanaki, H.; Yahara, K.; Sasano, H.; Asakura, K.; et al. Prevalence of Slow-Growth Vancomycin Nonsusceptibility in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e00452-17. [Google Scholar] [CrossRef] [Green Version]
  466. Shariati, A.; Dadashi, M.; Moghadam, M.T.; van Belkum, A.; Yaslianifard, S.; Darban-Sarokhalil, D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12689. [Google Scholar] [CrossRef]
  467. Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Investig. 2014, 124, 2836–2840. [Google Scholar] [CrossRef]
  468. Foucault, M.L.; Courvalin, P.; Grillot-Courvalin, C. Fitness Cost of VanA-Type Vancomycin Resistance in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2354–2359. [Google Scholar] [CrossRef]
  469. Katayama, Y.; Sekine, M.; Hishinuma, T.; Aiba, Y.; Hiramatsu, K. Complete Reconstitution of the Vancomycin-Intermediate Staphylococcus aureus Phenotype of Strain Mu50 in Vancomycin-Susceptible S. aureus. Antimicrob. Agents Chemother. 2016, 60, 3730–3742. [Google Scholar] [CrossRef] [Green Version]
  470. Howden, B.P.; Davies, J.K.; Johnson, P.D.; Stinear, T.P.; Grayson, M.L. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev. 2010, 23, 99–139. [Google Scholar] [CrossRef] [Green Version]
  471. Bhattacharyya, D.; Banerjee, J.; Bandyopadhyay, S.; Mondal, B.; Nanda, P.K.; Samanta, I.; Mahanti, A.; Das, A.K.; Das, G.; Dandapat, P.; et al. First Report on Vancomycin-Resistant Staphylococcus aureus in Bovine and Caprine Milk. Microb. Drug Resist. 2016, 22, 675–681. [Google Scholar] [CrossRef]
  472. Kwok, G.M.; O’Donoghue, M.M.; Doddangoudar, V.C.; Ho, J.; Boost, M.V. Reduced vancomycin susceptibility in porcine ST9 MRSA isolates. Front. Microbiol. 2013, 4, 316. [Google Scholar] [CrossRef] [Green Version]
  473. Moreno, L.Z.; Dutra, M.C.; Moreno, M.; Ferreira, T.S.; Silva, G.F.; Matajira, C.E.; Silva, A.P.; Moreno, A.M. Vancomycin-intermediate livestock-associated methicillin-resistant Staphylococcus aureus ST398/t9538 from swine in Brazil. Mem. Inst. Oswaldo Cruz 2016, 111, 659–661. [Google Scholar] [CrossRef] [Green Version]
  474. Silva, V.; Monteiro, A.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Poeta, P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022, 11, 1110. [Google Scholar] [CrossRef]
  475. Park, S.; Ronholm, J. Staphylococcus aureus in Agriculture: Lessons in Evolution from a Multispecies Pathogen. Clin. Microbiol. Rev. 2021, 34, e00182-20. [Google Scholar] [CrossRef]
  476. Zavala, E.; King, S.E.; Sawadogo-Lewis, T.; Roberton, T. Leveraging water, sanitation and hygiene for nutrition in low- and middle-income countries: A conceptual framework. Matern. Child Nutr. 2021, 17, e13202. [Google Scholar] [CrossRef]
  477. Loftus, M.J.; Guitart, C.; Tartari, E.; Stewardson, A.J.; Amer, F.; Bellissimo-Rodrigues, F.; Lee, Y.F.; Mehtar, S.; Sithole, B.L.; Pittet, D. Hand hygiene in low- and middle-income countries. Int. J. Infect. Dis. 2019, 86, 25–30. [Google Scholar] [CrossRef] [Green Version]
  478. Balkhair, A.; Muharrmi, Z.A.; Darwish, L.; Farhan, H.; Sallam, M. Treatment of vancomycin-intermediate Staphylococcus aureus (VISA) endocarditis with linezolid. Int. J. Infect. Dis. 2010, 14, e227–e229. [Google Scholar] [CrossRef] [PubMed]
  479. Safa, L.; Afif, N.; Zied, H.; Mehdi, D.; Ali, Y.M. Proper use of antibiotics: Situation of linezolid at the intensive care unit of the Tunisian Military Hospital. Pan Afr. Med. J. 2016, 25, 196. [Google Scholar] [CrossRef] [PubMed]
  480. Fiedler, S.; Bender, J.K.; Klare, I.; Halbedel, S.; Grohmann, E.; Szewzyk, U.; Werner, G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J. Antimicrob. Chemother. 2015, 71, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  481. Hemapanpairoa, J.; Changpradub, D.; Thunyaharn, S.; Santimaleeworagun, W. Vancomycin-resistant enterococcal infection in a Thai university hospital: Clinical characteristics, treatment outcomes, and synergistic effect. Infect. Drug Resist. 2019, 12, 2049–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  482. Kvirikadze, N.; Suseno, M.; Vescio, T.; Kaminer, L.; Singh, K. Daptomycin for the treatment of vancomycin resistant Enterococcus faecium bacteremia. Scand. J. Infect. Dis. 2006, 38, 290–292. [Google Scholar] [CrossRef]
  483. Poutsiaka, D.D.; Skiffington, S.; Miller, K.B.; Hadley, S.; Snydman, D.R. Daptomycin in the treatment of vancomycin-resistant Enterococcus faecium bacteremia in neutropenic patients. J. Infect. 2007, 54, 567–571. [Google Scholar] [CrossRef] [Green Version]
  484. Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2017, 73, 1–11. [Google Scholar] [CrossRef]
  485. Baëtz, B.; Boudrioua, A.; Hartke, A.; Giraud, C. Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics 2021, 10, 1116. [Google Scholar] [CrossRef]
  486. De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
  487. Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
  488. World Health Organisation. 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; World Health Organisation: Geneva, Switzerland, 2021; p. 76.
  489. Hindy, J.R.; Haddad, S.F.; Kanj, S.S. New drugs for methicillin-resistant Staphylococcus aureus skin and soft tissue infections. Curr. Opin. Infect. Dis. 2022, 35, 112–119. [Google Scholar] [CrossRef]
  490. Waglechner, N.; Wright, G.D. Antibiotic resistance: It’s bad, but why isn’t it worse? BMC Biol. 2017, 15, 84. [Google Scholar] [CrossRef] [Green Version]
  491. Seyhan, A.A. Lost in translation: The valley of death across preclinical and clinical divide—Identification of problems and overcoming obstacles. Transl. Med. Commun. 2019, 4, 18. [Google Scholar] [CrossRef] [Green Version]
  492. McKenna, M. The antibiotic paradox: Why companies can’t afford to create life-saving drugs. Nature 2020, 584, 338–341. [Google Scholar] [CrossRef]
  493. Kraljevic, S.; Stambrook, P.J.; Pavelic, K. Accelerating drug discovery. EMBO Rep. 2004, 5, 837–842. [Google Scholar] [CrossRef] [Green Version]
  494. Payne, J.A.E.; Tailhades, J.; Ellett, F.; Kostoulias, X.; Fulcher, A.J.; Fu, T.; Leung, R.; Louch, S.; Tran, A.; Weber, S.A.; et al. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat. Commun. 2021, 12, 6157. [Google Scholar] [CrossRef]
  495. Mühlberg, E.; Umstätter, F.; Domhan, C.; Hertlein, T.; Ohlsen, K.; Krause, A.; Kleist, C.; Beijer, B.; Zimmermann, S.; Haberkorn, U.; et al. Vancomycin-Lipopeptide Conjugates with High Antimicrobial Activity on Vancomycin-Resistant Enterococci. Pharmaceuticals 2020, 13, 110. [Google Scholar] [CrossRef]
  496. Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Hiroshi Morisaki, J.; et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 2015, 527, 323–328. [Google Scholar] [CrossRef]
  497. Mariathasan, S.; Tan, M.W. Antibody-Antibiotic Conjugates: A Novel Therapeutic Platform against Bacterial Infections. Trends Mol. Med. 2017, 23, 135–149. [Google Scholar] [CrossRef]
  498. Cavaco, M.; Castanho, M.; Neves, V. The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Front. Microbiol. 2022, 13, 835677. [Google Scholar] [CrossRef]
  499. Le, H.; Arnoult, C.; Dé, E.; Schapman, D.; Galas, L.; Le Cerf, D.; Karakasyan, C. Antibody-Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilms. Biomacromolecules 2021, 22, 1639–1653. [Google Scholar] [CrossRef] [PubMed]
  500. Zhou, C.; Cai, H.; Baruch, A.; Lewin-Koh, N.; Yang, M.; Guo, F.; Xu, D.; Deng, R.; Hazenbos, W.; Kamath, A.V. Sustained activity of novel THIOMAB antibody-antibiotic conjugate against Staphylococcus aureus in a mouse model: Longitudinal pharmacodynamic assessment by bioluminescence imaging. PLoS ONE 2019, 14, e0224096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  501. Deng, R.; Zhou, C.; Li, D.; Cai, H.; Sukumaran, S.; Carrasco-Triguero, M.; Saad, O.; Nazzal, D.; Lowe, C.; Ramanujan, S.; et al. Preclinical and translational pharmacokinetics of a novel THIOMAB™ antibody-antibiotic conjugate against Staphylococcus aureus. MAbs 2019, 11, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
  502. Cai, H.; Yip, V.; Lee, M.V.; Wong, S.; Saad, O.; Ma, S.; Ljumanovic, N.; Khojasteh, S.C.; Kamath, A.V.; Shen, B.-Q. Characterization of Tissue Distribution, Catabolism, and Elimination of an Anti–Staphylococcus aureus THIOMAB Antibody-Antibiotic Conjugate in Rats. Drug Metab. Dispos. 2020, 48, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
  503. Lim, J.; Lewin-Koh, N.; Chu, T.; Rymut, S.M.; Berhanu, A.; Carrasco-Triguero, M.; Rosenberger, C.C.; Hazenbos, W.L.; Miller, L.G.; Fowler, V.G., Jr.; et al. A Phase 1b, Randomized, Double-blind, Placebo-controlled, Multiple-ascending Dose Study to Investigate the Safety, Tolerability, and Pharmacokinetics of DSTA4637S in Patients with Staphylococcus aureus Bacteremia Receiving Standard-of-care Antibiotics. Open Forum Infect. Dis. 2020, 7, S213. [Google Scholar] [CrossRef]
  504. Rymut, S.M.; Deng, R.; Owen, R.; Saad, O.; Berhanu, A.; Lim, J.; Carrasco-Triguero, M.; Couch, J.A.; Peck, M.C. Comparison of Pharmacokinetics of DSTA4637S, a novel THIOMABTM Antibody-Antibiotic Conjugate, in Patients with Staphylococcus aureus Bacteremia Receiving Standard-of-Care Antibiotics with Pharmacokinetics in Healthy Volunteers. Open Forum Infect. Dis. 2020, 7, S666–S667. [Google Scholar] [CrossRef]
  505. Lima, P.G.; Oliveira, J.T.A.; Amaral, J.L.; Freitas, C.D.T.; Souza, P.F.N. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sci. 2021, 278, 119647. [Google Scholar] [CrossRef]
  506. Venkatesh, M.; Barathi, V.A.; Goh, E.T.L.; Anggara, R.; Fazil, M.H.U.T.; Ng, A.J.Y.; Harini, S.; Aung, T.T.; Fox, S.J.; Liu, S.; et al. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers. Antimicrob. Agents Chemother. 2017, 61, e00469-17. [Google Scholar] [CrossRef] [Green Version]
  507. Lin, M.; Sun, J. Antimicrobial peptide-inspired antibacterial polymeric materials for biosafety. Biosaf. Health 2022, 4, 269–279. [Google Scholar] [CrossRef]
  508. Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [Green Version]
  509. Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.F. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef]
  510. Qiu, H.; Si, Z.; Luo, Y.; Feng, P.; Wu, X.; Hou, W.; Zhu, Y.; Chan-Park, M.B.; Xu, L.; Huang, D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front. Bioeng. Biotechnol. 2020, 8, 910. [Google Scholar] [CrossRef]
  511. Thappeta, K.R.V.; Vikhe, Y.S.; Yong, A.M.H.; Chan-Park, M.B.; Kline, K.A. Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infect. Dis. 2020, 6, 1228–1237. [Google Scholar] [CrossRef]
  512. Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J.W.; Matthay, M.A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010, 28, 2229–2238. [Google Scholar] [CrossRef] [Green Version]
  513. Yagi, H.; Chen, A.F.; Hirsch, D.; Rothenberg, A.C.; Tan, J.; Alexander, P.G.; Tuan, R.S. Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Res. Ther. 2020, 11, 293. [Google Scholar] [CrossRef]
  514. Johnson, V.; Webb, T.; Dow, S. Activated mesenchymal stem cells amplify antibiotic activity against chronic Staphylococcus aureus infection (P5056). J. Immunol. 2013, 190, 180.111. [Google Scholar]
  515. Zhu, C.; Zhao, Y.; Zhao, X.; Liu, S.; Xia, X.; Zhang, S.; Wang, Y.; Zhang, H.; Xu, Y.; Chen, S.; et al. The Antimicrobial Peptide MPX Can Kill Staphylococcus aureus, Reduce Biofilm Formation, and Effectively Treat Bacterial Skin Infections in Mice. Front. Vet. Sci. 2022, 9, 819921. [Google Scholar] [CrossRef]
  516. Hernández-Aristizábal, I.; Ocampo-Ibáñez, I.D. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 7927. [Google Scholar] [CrossRef]
  517. Eckhard, L.H.; Sol, A.; Abtew, E.; Shai, Y.; Domb, A.J.; Bachrach, G.; Beyth, N. Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis. PLoS ONE 2014, 9, e109413. [Google Scholar] [CrossRef] [Green Version]
  518. Mergoni, G.; Manfredi, M.; Bertani, P.; Ciociola, T.; Conti, S.; Giovati, L. Activity of Two Antimicrobial Peptides against Enterococcus faecalis in a Model of Biofilm-Mediated Endodontic Infection. Antibiotics 2021, 10, 1220. [Google Scholar] [CrossRef]
  519. Oyama, L.B.; Crochet, J.A.; Edwards, J.E.; Girdwood, S.E.; Cookson, A.R.; Fernandez-Fuentes, N.; Hilpert, K.; Golyshin, P.N.; Golyshina, O.V.; Privé, F.; et al. Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Front. Chem. 2017, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  520. Wu, C.L.; Hsueh, J.Y.; Yip, B.S.; Chih, Y.H.; Peng, K.L.; Cheng, J.W. Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli. Int. J. Mol. Sci. 2020, 21, 4578. [Google Scholar] [CrossRef] [PubMed]
  521. Rajasekaran, G.; Kim, E.Y.; Shin, S.Y. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim. Biophys. Acta Biomembr. 2017, 1859, 722–733. [Google Scholar] [CrossRef] [PubMed]
  522. Bormann, N.; Koliszak, A.; Kasper, S.; Schoen, L.; Hilpert, K.; Volkmer, R.; Kikhney, J.; Wildemann, B. A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci. Rep. 2017, 7, 1506. [Google Scholar] [CrossRef] [Green Version]
  523. Lin, Q.; Deslouches, B.; Montelaro, R.C.; Di, Y.P. Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int. J. Antimicrob. Agents 2018, 52, 667–672. [Google Scholar] [CrossRef]
  524. De Breij, A.; Riool, M.; Cordfunke, R.A.; Malanovic, N.; de Boer, L.; Koning, R.I.; Ravensbergen, E.; Franken, M.; van der Heijde, T.; Boekema, B.K.; et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 2018, 10, eaan4044. [Google Scholar] [CrossRef] [Green Version]
  525. Almaaytah, A.; Qaoud, M.T.; Abualhaijaa, A.; Al-Balas, Q.; Alzoubi, K.H. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect. Drug Resist. 2018, 11, 835–847. [Google Scholar] [CrossRef] [Green Version]
  526. Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 2022, 42, 1377–1422. [Google Scholar] [CrossRef]
  527. Laurano, R.; Chiono, V.; Ceresa, C.; Fracchia, L.; Zoso, A.; Ciardelli, G.; Boffito, M. Custom-design of intrinsically antimicrobial polyurethane hydrogels as multifunctional injectable delivery systems for mini-invasive wound treatment. Eng. Regen. 2021, 2, 263–278. [Google Scholar] [CrossRef]
  528. Dardeer, H.M.; Toghan, A.; Zaki, M.E.A.; Elamary, R.B. Design, Synthesis and Evaluation of Novel Antimicrobial Polymers Based on the Inclusion of Polyethylene Glycol/TiO2 Nanocomposites in Cyclodextrin as Drug Carriers for Sulfaguanidine. Polymers 2022, 14, 227. [Google Scholar] [CrossRef]
  529. Lam, S.J.; O’Brien-Simpson, N.M.; Pantarat, N.; Sulistio, A.; Wong, E.H.H.; Chen, Y.-Y.; Lenzo, J.C.; Holden, J.A.; Blencowe, A.; Reynolds, E.C.; et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 2016, 1, 16162. [Google Scholar] [CrossRef]
  530. Kazemzadeh-Narbat, M.; Cheng, H.; Chabok, R.; Alvarez, M.M.; de la Fuente-Nunez, C.; Phillips, K.S.; Khademhosseini, A. Strategies for antimicrobial peptide coatings on medical devices: A review and regulatory science perspective. Crit. Rev. Biotechnol. 2021, 41, 94–120. [Google Scholar] [CrossRef]
  531. Namivandi-Zangeneh, R.; Sadrearhami, Z.; Dutta, D.; Willcox, M.; Wong, E.H.H.; Boyer, C. Synergy between Synthetic Antimicrobial Polymer and Antibiotics: A Promising Platform To Combat Multidrug-Resistant Bacteria. ACS Infect. Dis. 2019, 5, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
  532. Xie, J.; Zhou, M.; Qian, Y.; Cong, Z.; Chen, S.; Zhang, W.; Jiang, W.; Dai, C.; Shao, N.; Ji, Z.; et al. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat. Commun. 2021, 12, 5898. [Google Scholar] [CrossRef]
  533. Mercer, D.K.; Katvars, L.K.; Hewitt, F.; Smith, D.W.; Robertson, J.; O’Neil, D.A. NP108, an Antimicrobial Polymer with Activity against Methicillin- and Mupirocin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e00502-17. [Google Scholar] [CrossRef] [Green Version]
  534. Thoma, L.M.; Boles, B.R.; Kuroda, K. Cationic Methacrylate Polymers as Topical Antimicrobial Agents against Staphylococcus aureus Nasal Colonization. Biomacromolecules 2014, 15, 2933–2943. [Google Scholar] [CrossRef] [Green Version]
  535. Gavara, R.; de Llanos, R.; Pérez-Laguna, V.; Arnau del Valle, C.; Miravet, J.F.; Rezusta, A.; Galindo, F. Broad-Spectrum Photo-Antimicrobial Polymers Based on Cationic Polystyrene and Rose Bengal. Front. Med. 2021, 8, 641646. [Google Scholar] [CrossRef]
  536. Petrovic Fabijan, A.; Lin, R.C.Y.; Ho, J.; Maddocks, S.; Ben Zakour, N.L.; Iredell, J.R.; Khalid, A.; Venturini, C.; Chard, R.; Morales, S.; et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 465–472. [Google Scholar] [CrossRef]
  537. Lehman, S.M.; Mearns, G.; Rankin, D.; Cole, R.A.; Smrekar, F.; Branston, S.D.; Morales, S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019, 11, 88. [Google Scholar] [CrossRef] [Green Version]
  538. Ooi, M.L.; Drilling, A.J.; Morales, S.; Fong, S.; Moraitis, S.; Macias-Valle, L.; Vreugde, S.; Psaltis, A.J.; Wormald, P.-J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 723–729. [Google Scholar] [CrossRef]
  539. Berryhill, B.A.; Huseby, D.L.; McCall, I.C.; Hughes, D.; Levin, B.R. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc. Natl. Acad. Sci. USA 2021, 118, e2008007118. [Google Scholar] [CrossRef] [PubMed]
  540. Feng, T.; Leptihn, S.; Dong, K.; Loh, B.; Zhang, Y.; Stefan, M.I.; Li, M.; Guo, X.; Cui, Z. JD419, a Staphylococcus aureus Phage With a Unique Morphology and Broad Host Range. Front. Microbiol. 2021, 12, 602902. [Google Scholar] [CrossRef] [PubMed]
  541. Save, J.; Que, Y.A.; Entenza, J.M.; Kolenda, C.; Laurent, F.; Resch, G. Bacteriophages Combined With Subtherapeutic Doses of Flucloxacillin Act Synergistically Against Staphylococcus aureus Experimental Infective Endocarditis. J. Am. Heart Assoc. 2022, 11, e023080. [Google Scholar] [CrossRef] [PubMed]
  542. Plumet, L.; Ahmad-Mansour, N.; Dunyach-Remy, C.; Kissa, K.; Sotto, A.; Lavigne, J.-P.; Costechareyre, D.; Molle, V. Bacteriophage Therapy for Staphylococcus aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Front. Cell. Infect. Microbiol. 2022, 12, 907314. [Google Scholar] [CrossRef] [PubMed]
  543. El Haddad, L.; Angelidakis, G.; Clark, J.R.; Mendoza, J.F.; Terwilliger, A.L.; Chaftari, C.P.; Duna, M.; Yusuf, S.T.; Harb, C.P.; Stibich, M.; et al. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022, 14, 1591. [Google Scholar] [CrossRef]
  544. Duerkop, B.A.; Huo, W.; Bhardwaj, P.; Palmer, K.L.; Hooper, L.V. Molecular Basis for Lytic Bacteriophage Resistance in Enterococci. mBio 2016, 7, e01304-16. [Google Scholar] [CrossRef] [Green Version]
  545. Chatterjee, A.; Johnson, C.N.; Luong, P.; Hullahalli, K.; McBride, S.W.; Schubert, A.M.; Palmer, K.L.; Carlson, P.E., Jr.; Duerkop, B.A. Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infect. Immun. 2019, 87, e00085-19. [Google Scholar] [CrossRef] [Green Version]
  546. Melo, L.D.R.; Ferreira, R.; Costa, A.R.; Oliveira, H.; Azeredo, J. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci. Rep. 2019, 9, 6643. [Google Scholar] [CrossRef] [Green Version]
  547. Lee, D.; Im, J.; Na, H.; Ryu, S.; Yun, C.-H.; Han, S.H. The Novel Enterococcus Phage vB_EfaS_HEf13 Has Broad Lytic Activity Against Clinical Isolates of Enterococcus faecalis. Front. Microbiol. 2019, 10, 2877. [Google Scholar] [CrossRef]
  548. Huang, L.; Guo, W.; Lu, J.; Pan, W.; Song, F.; Wang, P. Enterococcus faecalis Bacteriophage vB_EfaS_efap05-1 Targets the Surface Polysaccharide and ComEA Protein as the Receptors. Front. Microbiol. 2022, 13, 866382. [Google Scholar] [CrossRef]
  549. Cheng, M.; Liang, J.; Zhang, Y.; Hu, L.; Gong, P.; Cai, R.; Zhang, L.; Zhang, H.; Ge, J.; Ji, Y.; et al. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front. Microbiol. 2017, 8, 837. [Google Scholar] [CrossRef] [Green Version]
  550. Canfield, G.S.; Duerkop, B.A. Molecular mechanisms of enterococcal-bacteriophage interactions and implications for human health. Curr. Opin. Microbiol. 2020, 56, 38–44. [Google Scholar] [CrossRef]
  551. Tkachev, P.V.; Pchelin, I.M.; Azarov, D.V.; Gorshkov, A.N.; Shamova, O.V.; Dmitriev, A.V.; Goncharov, A.E. Two Novel Lytic Bacteriophages Infecting Enterococcus spp. Are Promising Candidates for Targeted Antibacterial Therapy. Viruses 2022, 14, 831. [Google Scholar] [CrossRef]
  552. Khalifa, L.; Brosh, Y.; Gelman, D.; Coppenhagen-Glazer, S.; Beyth, S.; Poradosu-Cohen, R.; Que, Y.-A.; Beyth, N.; Hazan, R. Targeting Enterococcus faecalis Biofilms with Phage Therapy. Appl. Environ. Microbiol. 2015, 81, 2696–2705. [Google Scholar] [CrossRef] [Green Version]
  553. Song, M.; Wu, D.; Hu, Y.; Luo, H.; Li, G. Characterization of an Enterococcus faecalis Bacteriophage vB_EfaM_LG1 and Its Synergistic Effect With Antibiotic. Front. Cell. Infect. Microbiol. 2021, 11, 698807. [Google Scholar] [CrossRef]
  554. Neuts, A.S.; Berkhout, H.J.; Hartog, A.; Goosen, J.H.M. Bacteriophage therapy cures a recurrent Enterococcus faecalis infected total hip arthroplasty? A case report. Acta Orthop. 2021, 92, 678–680. [Google Scholar] [CrossRef]
  555. Letkiewicz, S.; Miedzybrodzki, R.; Fortuna, W.; Weber-Dabrowska, B.; Górski, A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—Case report. Folia Microbiol. 2009, 54, 457–461. [Google Scholar] [CrossRef]
  556. Paul, K.; Merabishvili, M.; Hazan, R.; Christner, M.; Herden, U.; Gelman, D.; Khalifa, L.; Yerushalmy, O.; Coppenhagen-Glazer, S.; Harbauer, T.; et al. Bacteriophage Rescue Therapy of a Vancomycin-Resistant Enterococcus faecium Infection in a One-Year-Old Child following a Third Liver Transplantation. Viruses 2021, 13, 1785. [Google Scholar] [CrossRef]
  557. Chan, R.; Buckley, P.T.; O’Malley, A.; Sause, W.E.; Alonzo, F.; Lubkin, A.; Boguslawski, K.M.; Payne, A.; Fernandez, J.; Strohl, W.R.; et al. Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus. Sci. Transl. Med. 2019, 11, eaat0882. [Google Scholar] [CrossRef]
  558. Hullahalli, K.; Rodrigues, M.; Palmer, K.L. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. Elife 2017, 6, e26664. [Google Scholar] [CrossRef]
  559. Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  560. Palmer, K.L.; Gilmore, M.S.; Losick, R. Multidrug-Resistant Enterococci Lack CRISPR-cas. mBio 2010, 1, e00227-10. [Google Scholar] [CrossRef] [PubMed]
  561. Hullahalli, K.; Rodrigues, M.; Nguyen, U.T.; Palmer, K.; Kline, K.A. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio 2018, 9, e00414-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  562. Price, V.J.; McBride, S.W.; Hullahalli, K.; Chatterjee, A.; Duerkop, B.A.; Palmer, K.L.; Ellermeier, C.D. Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. mSphere 2019, 4, e00464-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  563. Li, Y.; Mikkelsen, K.; Lluch, I.G.O.; Wang, Z.; Tang, Y.; Jiao, X.; Ingmer, H.; Høyland-Kroghsbo, N.M.; Li, Q. Functional Characterization of Type III-A CRISPR-Cas in a Clinical Human Methicillin-R Staphylococcus aureus Strain. CRISPR J. 2021, 4, 686–698. [Google Scholar] [CrossRef]
  564. Wang, K.; Nicholaou, M. Suppression of Antimicrobial Resistance in MRSA Using CRISPR-dCas9. Clin. Lab. Sci. 2017, 30, 207–213. [Google Scholar] [CrossRef]
  565. Liu, Q.; Jiang, Y.; Shao, L.; Yang, P.; Sun, B.; Yang, S.; Chen, D. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Acta Biochim. Biophys. Sin. 2017, 49, 764–770. [Google Scholar] [CrossRef] [Green Version]
  566. Wu, Y.; Battalapalli, D.; Hakeem, M.J.; Selamneni, V.; Zhang, P.; Draz, M.S.; Ruan, Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J. Nanobiotechnol. 2021, 19, 401. [Google Scholar] [CrossRef]
  567. Chen, W.; Zhang, Y.; Yeo, W.-S.; Bae, T.; Ji, Q. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System. J. Am. Chem. Soc. 2017, 139, 3790–3795. [Google Scholar] [CrossRef]
  568. Chen, W.; Ji, Q. Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology. Methods Mol. Biol. 2020, 2069, 113–124. [Google Scholar] [CrossRef]
  569. Kiga, K.; Tan, X.-E.; Ibarra-Chávez, R.; Watanabe, S.; Aiba, Y.; Sato’o, Y.; Li, F.-Y.; Sasahara, T.; Cui, B.; Kawauchi, M.; et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 2020, 11, 2934. [Google Scholar] [CrossRef]
  570. Bikard, D.; Euler, C.W.; Jiang, W.; Nussenzweig, P.M.; Goldberg, G.W.; Duportet, X.; Fischetti, V.A.; Marraffini, L.A. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 2014, 32, 1146–1150. [Google Scholar] [CrossRef]
  571. Chen, Y.; Shi, Y.; Zhu, W.; You, J.; Yang, J.; Xie, Y.; Zhao, H.; Li, H.; Fan, S.; Li, L.; et al. Combining CRISPR-Cas12a-Based Technology and Metagenomics Next Generation Sequencing: A New Paradigm for Rapid and Full-Scale Detection of Microbes in Infectious Diabetic Foot Samples. Front. Microbiol. 2021, 12, 742040. [Google Scholar] [CrossRef]
  572. Schuch, R.; Cassino, C.; Vila-Farres, X. Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Front. Microbiol. 2022, 13, 841905. [Google Scholar] [CrossRef]
  573. ContraFect. Direct Lysis of Staph Aureus Resistant Pathogen Trial of Exebacase (DISRUPT) ClinicalTrials.gov: National Institutes of Health. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04160468 (accessed on 29 August 2022).
  574. Traczewski, M.M.; Ambler, J.E.; Schuch, R. Determination of MIC Quality Control Parameters for Exebacase, a Novel Lysin with Antistaphylococcal Activity. J. Clin. Microbiol. 2021, 59, e0311720. [Google Scholar] [CrossRef]
  575. Vázquez, R.; García, E.; García, P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Front. Immunol. 2018, 9, 2252. [Google Scholar] [CrossRef] [Green Version]
  576. Bae, J.Y.; Jun, K.I.; Kang, C.K.; Song, K.H.; Choe, P.G.; Bang, J.H.; Kim, E.S.; Park, S.W.; Kim, H.B.; Kim, N.J.; et al. Efficacy of Intranasal Administration of the Recombinant Endolysin SAL200 in a Lethal Murine Staphylococcus aureus Pneumonia Model. Antimicrob. Agents Chemother. 2019, 63, e02009-18. [Google Scholar] [CrossRef] [Green Version]
  577. Kim, H.-B.; Park, W.B. Phase IIa Clinical Study of N-Rephasin® SAL200. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03089697 (accessed on 23 November 2022).
  578. Gilmer, D.B.; Schmitz, J.E.; Euler, C.W.; Fischetti, V.A. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 2743–2750. [Google Scholar] [CrossRef] [Green Version]
  579. Gu, J.; Xi, H.; Cheng, M.; Han, W. Phage-derived lysins as therapeutic agents against multidrug-resistant Enterococcus faecalis. Future Microbiol. 2018, 13, 275–278. [Google Scholar] [CrossRef] [Green Version]
  580. Binte Muhammad Jai, H.S.; Dam, L.C.; Tay, L.S.; Koh, J.J.W.; Loo, H.L.; Kline, K.A.; Goh, B.C. Engineered Lysins With Customized Lytic Activities Against Enterococci and Staphylococci. Front. Microbiol. 2020, 11, 574739. [Google Scholar] [CrossRef]
  581. ContraFect. Product Pipeline: Developing Drugs for Drug-Resistant, Life Threatening Infections. Available online: https://www.contrafect.com/pipeline/overview (accessed on 24 November 2022).
  582. Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118 (Suppl. S1), S23–S31. [Google Scholar] [CrossRef] [PubMed]
  583. Wei, Y.; Gong, J.; Zhu, W.; Guo, D.; Gu, L.; Li, N.; Li, J. Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant Staphylococcus aureus enterocolitis. BMC Infect. Dis. 2015, 15, 265. [Google Scholar] [CrossRef] [PubMed]
  584. Li, X.; Song, L.; Zhu, S.; Xiao, Y.; Huang, Y.; Hua, Y.; Chu, Q.; Ren, Z. Two Strains of Lactobacilli Effectively Decrease the Colonization of VRE in a Mouse Model. Front. Cell. Infect. Microbiol. 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  585. Stripling, J.; Kumar, R.; Baddley, J.W.; Nellore, A.; Dixon, P.; Howard, D.; Ptacek, T.; Lefkowitz, E.J.; Tallaj, J.A.; Benjamin, W.H., Jr.; et al. Loss of Vancomycin-Resistant Enterococcus Fecal Dominance in an Organ Transplant Patient With Clostridium difficile Colitis After Fecal Microbiota Transplant. Open Forum Infect. Dis. 2015, 2, ofv078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  586. Davido, B.; Batista, R.; Fessi, H.; Michelon, H.; Escaut, L.; Lawrence, C.; Denis, M.; Perronne, C.; Salomon, J.; Dinh, A. Fecal microbiota transplantation to eradicate vancomycin-resistant enterococci colonization in case of an outbreak. Med. Mal. Infect. 2019, 49, 214–218. [Google Scholar] [CrossRef]
  587. Yeo, W.-S.; Arya, R.; Kim, K.K.; Jeong, H.; Cho, K.H.; Bae, T. The FDA-approved anti-cancer drugs, streptozotocin and floxuridine, reduce the virulence of Staphylococcus aureus. Sci. Rep. 2018, 8, 2521. [Google Scholar] [CrossRef] [Green Version]
  588. Kim, W.; Zhu, W.; Hendricks, G.L.; Van Tyne, D.; Steele, A.D.; Keohane, C.E.; Fricke, N.; Conery, A.L.; Shen, S.; Pan, W.; et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 2018, 556, 103–107. [Google Scholar] [CrossRef]
  589. Younis, W.; Thangamani, S.; Seleem, N.M. Repurposing Non-Antimicrobial Drugs and Clinical Molecules to Treat Bacterial Infections. Curr. Pharm. Des. 2015, 21, 4106–4111. [Google Scholar] [CrossRef] [Green Version]
  590. She, P.; Wang, Y.; Li, Y.; Zhou, L.; Li, S.; Zeng, X.; Liu, Y.; Xu, L.; Wu, Y. Drug Repurposing: In vitro and in vivo Antimicrobial and Antibiofilm Effects of Bithionol Against Enterococcus faecalis and Enterococcus faecium. Front. Microbiol. 2021, 12, 579806. [Google Scholar] [CrossRef]
  591. AbdelKhalek, A.; Abutaleb, N.S.; Elmagarmid, K.A.; Seleem, M.N. Repurposing auranofin as an intestinal decolonizing agent for vancomycin-resistant enterococci. Sci. Rep. 2018, 8, 8353. [Google Scholar] [CrossRef] [Green Version]
  592. Niranjan, V.; Setlur, A.S.; Karunakaran, C.; Uttarkar, A.; Kumar, K.M.; Skariyachan, S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct. Chem. 2022, 33, 1585–1608. [Google Scholar] [CrossRef]
  593. Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 2018, 17, 35–56. [Google Scholar] [CrossRef]
  594. Zhu, Y.; Li, H.; Ding, S.; Wang, Y. Autophagy inhibition promotes phagocytosis of macrophage and protects mice from methicillin-resistant Staphylococcus aureus pneumonia. J. Cell. Biochem. 2018, 119, 4808–4814. [Google Scholar] [CrossRef]
  595. Hawchar, F.; László, I.; Öveges, N.; Trásy, D.; Ondrik, Z.; Molnar, Z. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J. Crit. Care 2019, 49, 172–178. [Google Scholar] [CrossRef] [Green Version]
  596. Van Heerden, P.V.; Abutbul, A.; Sviri, S.; Zlotnick, E.; Nama, A.; Zimro, S.; el-Amore, R.; Shabat, Y.; Reicher, B.; Falah, B.; et al. Apoptotic Cells for Therapeutic Use in Cytokine Storm Associated With Sepsis– A Phase Ib Clinical Trial. Front. Immunol. 2021, 12, 718191. [Google Scholar] [CrossRef]
  597. Tan, C.H.; Jiang, L.; Li, W.; Chan, S.H.; Baek, J.S.; Ng, N.K.J.; Sailov, T.; Kharel, S.; Chong, K.K.L.; Loo, S.C.J. Lipid-Polymer Hybrid Nanoparticles Enhance the Potency of Ampicillin against Enterococcus faecalis in a Protozoa Infection Model. ACS Infect. Dis. 2021, 7, 1607–1618. [Google Scholar] [CrossRef]
  598. Sun, Q.; Duan, M.; Fan, W.; Fan, B. Ca–Si mesoporous nanoparticles with the optimal Ag–Zn ratio inhibit the Enterococcus faecalis infection of teeth through dentinal tubule infiltration: An in vitro and in vivo study. J. Mater. Chem. B 2021, 9, 2200–2211. [Google Scholar] [CrossRef]
  599. Wang, H.; Wang, M.; Xu, X.; Gao, P.; Xu, Z.; Zhang, Q.; Li, H.; Yan, A.; Kao, R.Y.-T.; Sun, H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 2021, 12, 3331. [Google Scholar] [CrossRef]
  600. Walduck, A.; Sangwan, P.; Vo, Q.A.; Ratcliffe, J.; White, J.; Muir, B.W.; Tran, N. Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles. Rsc. Adv. 2020, 10, 33608–33619. [Google Scholar] [CrossRef]
  601. Bohlmann, L.; De Oliveira, D.M.P.; El-Deeb, I.M.; Brazel, E.B.; Harbison-Price, N.; Ong, C.Y.; Rivera-Hernandez, T.; Ferguson, S.A.; Cork, A.J.; Phan, M.D.; et al. Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance. mBio 2018, 9, e02391-18. [Google Scholar] [CrossRef] [Green Version]
  602. De Oliveira, D.M.P.; Bohlmann, L.; Conroy, T.; Jen, F.E.C.; Everest-Dass, A.; Hansford, K.A.; Bolisetti, R.; El-Deeb, I.M.; Forde, B.M.; Phan, M.D.; et al. Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Sci. Transl. Med. 2020, 12, eabb3791. [Google Scholar] [CrossRef] [PubMed]
  603. De Oliveira, D.M.P.; Keller, B.; Hayes, A.J.; Ong, C.Y.; Harbison-Price, N.; El-Deeb, I.M.; Li, G.; Keller, N.; Bohlmann, L.; Brouwer, S.; et al. Neurodegenerative Disease Treatment Drug PBT2 Breaks Intrinsic Polymyxin Resistance in Gram-Positive Bacteria. Antibiotics 2022, 11, 449. [Google Scholar] [CrossRef] [PubMed]
  604. Oliveira, D.M.P.D.; Forde, B.M.; Phan, M.-D.; Steiner, B.; Zhang, B.; Zuegg, J.; El-deeb, I.M.; Li, G.; Keller, N.; Brouwer, S.; et al. Rescuing Tetracycline Class Antibiotics for the Treatment of Multidrug-Resistant Acinetobacter baumannii Pulmonary Infection. mBio 2022, 13, e03517-21. [Google Scholar] [CrossRef] [PubMed]
  605. Eumkeb, G.; Sakdarat, S.; Siriwong, S. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine 2010, 18, 40–45. [Google Scholar] [CrossRef] [PubMed]
  606. Su, T.; Qiu, Y.; Hua, X.; Ye, B.; Luo, H.; Liu, D.; Qu, P.; Qiu, Z. Novel Opportunity to Reverse Antibiotic Resistance: To Explore Traditional Chinese Medicine With Potential Activity Against Antibiotics-Resistance Bacteria. Front. Microbiol. 2020, 11, 610070. [Google Scholar] [CrossRef]
  607. Liu, Y.; Tong, Z.; Shi, J.; Jia, Y.; Deng, T.; Wang, Z. Reversion of antibiotic resistance in multidrug-resistant pathogens using non-antibiotic pharmaceutical benzydamine. Commun. Biol. 2021, 4, 1328. [Google Scholar] [CrossRef]
  608. Wang, C.; Lu, H.; Li, X.; Zhu, Y.; Ji, Y.; Lu, W.; Wang, G.; Dong, W.; Liu, M.; Wang, X.; et al. Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. Biomed. Pharmacother. 2022, 153, 113334. [Google Scholar] [CrossRef]
  609. Kim, H.K.; Emolo, C.; DeDent, A.C.; Falugi, F.; Missiakas, D.M.; Schneewind, O. Protein A-Specific Monoclonal Antibodies and Prevention of Staphylococcus aureus Disease in Mice. Infect. Immun. 2012, 80, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
  610. Kim, H.K.; Cheng, A.G.; Kim, H.Y.; Missiakas, D.M.; Schneewind, O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J. Exp. Med. 2010, 207, 1863–1870. [Google Scholar] [CrossRef] [Green Version]
  611. Chen, X.; Sun, Y.; Missiakas, D.; Schneewind, O. Staphylococcus aureus Decolonization of Mice With Monoclonal Antibody Neutralizing Protein A. J. Infect. Dis. 2019, 219, 884–888. [Google Scholar] [CrossRef]
  612. Huynh, T.; Stecher, M.; Mckinnon, J.; Jung, N.; Rupp, M.E. Safety and Tolerability of 514G3, a True Human Anti-Protein A Monoclonal Antibody for the Treatment of S. aureus Bacteremia. Open Forum Infect. Dis. 2016, 3, 1354. [Google Scholar] [CrossRef]
  613. Rupp, M. A Study of the Safety and Efficacy of 514G3 in Subjects Hospitalized with Bacteremia Due to Staphylococcus Aureus. Available online: https://clinicaltrials.gov/ct2/show/study/NCT02357966 (accessed on 28 November 2022).
  614. Shi, M.; Chen, X.; Sun, Y.; Kim, H.K.; Schneewind, O.; Missiakas, D. A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine 2021, 39, 3907–3915. [Google Scholar] [CrossRef]
  615. Clegg, J.; Soldaini, E.; McLoughlin, R.M.; Rittenhouse, S.; Bagnoli, F.; Phogat, S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front. Immunol. 2021, 12, 705360. [Google Scholar] [CrossRef]
  616. World Health Organization. Bacterial Vaccines in Clinical and Preclinical Development 2021: An Overview and Analysis; World Health Organization: Geneva, Switzerland, 2022; p. 82.
  617. Mirzaei, B.; Babaei, R.; Zeighami, H.; Dadar, M.; Soltani, A. Staphylococcus aureus Putative Vaccines Based on the Virulence Factors: A Mini-Review. Front. Microbiol. 2021, 12, 704247. [Google Scholar] [CrossRef]
  618. Kalfopoulou, E.; Huebner, J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020, 9, 2397. [Google Scholar] [CrossRef]
  619. Dey, J.; Mahapatra, S.R.; Raj, T.K.; Kaur, T.; Jain, P.; Tiwari, A.; Patro, S.; Misra, N.; Suar, M. Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut. Pathog. 2022, 14, 21. [Google Scholar] [CrossRef]
  620. Romero-Saavedra, F.; Laverde, D.; Kalfopoulou, E.; Martini, C.; Torelli, R.; Martinez-Matamoros, D.; Sanguinetti, M.; Huebner, J. Conjugation of Different Immunogenic Enterococcal Vaccine Target Antigens Leads to Extended Strain Coverage. J. Infect. Dis. 2019, 220, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
  621. Kodali, S.; Vinogradov, E.; Lin, F.; Khoury, N.; Hao, L.; Pavliak, V.; Jones, C.H.; Laverde, D.; Huebner, J.; Jansen, K.U.; et al. A Vaccine Approach for the Prevention of Infections by Multidrug-resistant Enterococcus faecium. J. Biol. Chem. 2015, 290, 19512–19526. [Google Scholar] [CrossRef]
Figure 2. Timeline of antibiotic introduction (above) and subsequent resistance emergence in S. aureus (below) [29,30,33,34,345,346]. Abbreviations: PRSA—Penicillin-resistant S. aureus; MRSA—Methicillin-resistant S. aureus; VISA—Vancomycin-intermediate S. aureus; Q/DRSA—Quinupristin/dalfopristin-resistant S. aureus; LRSA—Linezolid-resistant S. aureus; VRSA—Vancomycin-resistant S. aureus; DRSA—Daptomycin-resistant S. aureus; CRSA—Ceftaroline-resistant S. aureus.
Figure 2. Timeline of antibiotic introduction (above) and subsequent resistance emergence in S. aureus (below) [29,30,33,34,345,346]. Abbreviations: PRSA—Penicillin-resistant S. aureus; MRSA—Methicillin-resistant S. aureus; VISA—Vancomycin-intermediate S. aureus; Q/DRSA—Quinupristin/dalfopristin-resistant S. aureus; LRSA—Linezolid-resistant S. aureus; VRSA—Vancomycin-resistant S. aureus; DRSA—Daptomycin-resistant S. aureus; CRSA—Ceftaroline-resistant S. aureus.
Microorganisms 11 00024 g002
Figure 3. Mechanism of vancomycin activity. (A) Susceptible bacteria undergo normal cell wall synthesis through enzymatic (transglycosylase and transpeptidase) cross-linking activity in the absence of vancomycin. 1. Bacterial peptidoglycan with unlinked D-Ala-D-Ala monomers. 2. PBP recognises and binds to D-Ala-D-Ala monomers. 3. PBP facilitates the cross-linking of peptidoglycan D-Ala-D-Ala monomers through catalysis of pentaglycine bonds [23,350,360,361,362,363,364]. 4. Newly formed cell wall with complete cross-linking of D-Ala-D-Ala monomers. (B) Vancomycin inhibits peptidoglycan cross-linking in susceptible bacteria through its recognition and binding to D-Ala-D-Ala monomers. 1. Bacterial peptidoglycan with unlinked D-Ala-D-Ala monomers. 2. Vancomycin recognises and binds to D-Ala-D-Ala monomers. 3. Prevention of PBP-mediated catalysis of pentaglycine bonds due to vancomycin’s binding to D-Ala-D-Ala monomers. 4. Peptidoglycan cross-linking is inhibited, disrupting cell wall synthesis which leads to cytostasis (Enterococcus) or cell death (S. aureus) [23,350,360,361,362,363,364]. Created with BioRender.com.
Figure 3. Mechanism of vancomycin activity. (A) Susceptible bacteria undergo normal cell wall synthesis through enzymatic (transglycosylase and transpeptidase) cross-linking activity in the absence of vancomycin. 1. Bacterial peptidoglycan with unlinked D-Ala-D-Ala monomers. 2. PBP recognises and binds to D-Ala-D-Ala monomers. 3. PBP facilitates the cross-linking of peptidoglycan D-Ala-D-Ala monomers through catalysis of pentaglycine bonds [23,350,360,361,362,363,364]. 4. Newly formed cell wall with complete cross-linking of D-Ala-D-Ala monomers. (B) Vancomycin inhibits peptidoglycan cross-linking in susceptible bacteria through its recognition and binding to D-Ala-D-Ala monomers. 1. Bacterial peptidoglycan with unlinked D-Ala-D-Ala monomers. 2. Vancomycin recognises and binds to D-Ala-D-Ala monomers. 3. Prevention of PBP-mediated catalysis of pentaglycine bonds due to vancomycin’s binding to D-Ala-D-Ala monomers. 4. Peptidoglycan cross-linking is inhibited, disrupting cell wall synthesis which leads to cytostasis (Enterococcus) or cell death (S. aureus) [23,350,360,361,362,363,364]. Created with BioRender.com.
Microorganisms 11 00024 g003
Figure 4. Mechanism of high-level vancomycin resistance. 1. Vancomycin-sensitive bacteria expressing D-Ala-D-Ala monomers. 2. Mutated vancomycin-resistant bacteria expressing D-Ala-D-Lac monomers that vancomycin poorly recognises. 3. With D-Ala-D-Lac not bound to vancomycin, PBP can subsequently bind to and catalyse the formation of pentaglycine bonds between MurNac-GlaNac monomers. 4. Bacterial peptidoglycan cross-linking and cell division continue uninhibited.
Figure 4. Mechanism of high-level vancomycin resistance. 1. Vancomycin-sensitive bacteria expressing D-Ala-D-Ala monomers. 2. Mutated vancomycin-resistant bacteria expressing D-Ala-D-Lac monomers that vancomycin poorly recognises. 3. With D-Ala-D-Lac not bound to vancomycin, PBP can subsequently bind to and catalyse the formation of pentaglycine bonds between MurNac-GlaNac monomers. 4. Bacterial peptidoglycan cross-linking and cell division continue uninhibited.
Microorganisms 11 00024 g004
Figure 5. Molecular mechanisms of vanA-mediated vancomycin resistance. Expression of vanHAX genes are regulated by the two-component vanSR system. D-Ala-D-Ala components are hydrolysed by VanX, with VanY hydrolysing terminal D-Ala-D-Ala residues of existing peptidoglycan precursors not eliminated by VanX. Pyruvate is reduced to D-Lac by VanH, and VanA catalyses the esterification of D-Ala to D-Lac to form vancomycin-resistant peptidoglycan terminal ends. The role of VanZ in mediating vancomycin resistance is unknown and is implicated in teicoplanin resistance only [304,399,400]. Created with BioRender.com.
Figure 5. Molecular mechanisms of vanA-mediated vancomycin resistance. Expression of vanHAX genes are regulated by the two-component vanSR system. D-Ala-D-Ala components are hydrolysed by VanX, with VanY hydrolysing terminal D-Ala-D-Ala residues of existing peptidoglycan precursors not eliminated by VanX. Pyruvate is reduced to D-Lac by VanH, and VanA catalyses the esterification of D-Ala to D-Lac to form vancomycin-resistant peptidoglycan terminal ends. The role of VanZ in mediating vancomycin resistance is unknown and is implicated in teicoplanin resistance only [304,399,400]. Created with BioRender.com.
Microorganisms 11 00024 g005
Table 3. The molecular basis of van-mediated vancomycin resistance in enterococci.
Table 3. The molecular basis of van-mediated vancomycin resistance in enterococci.
GeneProtein/FunctionMechanism of ActionReferences
D-Ala-D-Lac based resistance (VanA-type resistance)—vanA, vanB, vanD, vanF, vanM gene cassettes High level vancomycin resistance
vanA1LigaseCatalyses the formation of D-Ala-D-Lac depsipeptides[192,373]
vanHDehydrogenaseCatalyses conversion of pyruvate to D-lactate, generating the necessary substrate for D-Ala-D-Lac depsipeptide synthesis[370,374]
vanR/vanSRegulatory SystemThe vanR transcription regulator and the vanS sensor kinase comprise the canonical two-component regulatory system that controls vanHAX expression[375]
vanXDipeptidaseCleavage of D-Ala-D-Ala into individual D-Ala residues, thus depleting D-Ala-D-Ala dipeptide substrates from the peptidoglycan synthesis pathway; inhibition of D-Ala-D-Ala synthesis and subsequent loss of binding sites for vancomycin[376]
vanYPentapeptidaseD,D-carboxypeptidase activity against D-Ala; reducing availability of D-Ala precursors and therefore favoring the production of peptidoglycan with D-Ala-D-Lac terminals[377,378,379,380,381]
vanZUnknownCurrently unknown; vanZ does not appear to be necessary for vancomycin resistance but is required for resistance to the related glycopeptide teicoplanin[382,383]
D-Ala-D-Ser based resistance (VanC-type resistance)—vanC 2, vanE, vanG, vanL, vanN gene cassettes Low level vancomycin resistance
vanC1LigaseSynthesis of D-Ala-D-Ser peptidoglycan terminals[371]
vanR/vanSRegulatory systemTwo-component regulatory system consisting of the VanR transcription regulator and the VanS sensor kinase[371]
vanT3Membrane-bound serine racemaseCatalyses conversion of L-Ser to D-Ser, producing the D-Ser substrates required for D-Ala-D-Ser terminals[384,385,386,387,388,389,390,391,392,393,394]
vanXY3Bifunctional dipeptidase/pentapeptidaseHydrolyses UDP-MurNac-pentapeptides (D-Ala) and D-Ala-D-Ala[395,396]
1vanA and vanC are the ligase genes of the vanA and vanC operons respectively. Ligase genes are named similarly for the other resistance cassettes e.g., vanB is the ligase gene designation for the vanB operon [371]. 2 The vanC operon is not found in E. faecium or E. faecalis [397]. 3 Not found in D-Ala-D-Lac based vancomycin resistance cassettes [371].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, G.; Walker, M.J.; De Oliveira, D.M.P. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2023, 11, 24. https://doi.org/10.3390/microorganisms11010024

AMA Style

Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms. 2023; 11(1):24. https://doi.org/10.3390/microorganisms11010024

Chicago/Turabian Style

Li, Gen, Mark J. Walker, and David M. P. De Oliveira. 2023. "Vancomycin Resistance in Enterococcus and Staphylococcus aureus" Microorganisms 11, no. 1: 24. https://doi.org/10.3390/microorganisms11010024

APA Style

Li, G., Walker, M. J., & De Oliveira, D. M. P. (2023). Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms, 11(1), 24. https://doi.org/10.3390/microorganisms11010024

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop