Lactiplantibacillus plantarum A1, C1 and C10 Are Potential Probiotics Isolated from Pineapple Residual Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Isolation and Identification of LAB Strains
2.3. Presence of Genes Encoding Virulence Factors
2.4. Anti-Pathogenic Activity
2.5. Antibiotic Susceptibility
2.6. Cell Surface Hydrophobicity
2.7. Resistance to Gastrointestinal Conditions
2.7.1. Tolerance to Low pH and Bile Salts
2.7.2. Tolerance to Simulated Gastric and Intestinal Fluids
2.8. Inhibition of the Growth of E. coli F5 and S. Dublin
2.9. Adhesion to BJECs
2.10. Antioxidant Capacity
2.10.1. Survival Rate and Growth Curves at Different H2O2 Concentrations
2.10.2. Modulation of Reactive Oxygen Species (ROS) and Total Antioxidant Capacity (T-AOC) Activity of BJECs with or without H2O2
2.11. Statistical Analysis
3. Results
3.1. Identification of the LAB Strains
3.2. Virulence Gene Detection
3.3. Antibacterial Activity
3.4. Antibiotic Sensitivity
3.5. Cell-Surface Hydrophobicity
3.6. Tolerance to Acids, Bile Salts and Gastric and Pancreatic Digestion
3.7. Inhibition of Growth of E. coli F5 and S. Dublin
3.8. In Vitro Adhesion to BJECs
3.9. Resistance of the Screened L. plantarum Strains to H2O2
3.10. Improving the Antioxidant Activity of BJECs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic beverage from pineapple juice fermented with Lactobacillus and Bifidobacterium strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agriculture Organization). FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 December 2020).
- Suksathit, S.; Wachirapakorn, C.; Opatpatanakit, Y. Effects of levels of ensiled pineapple waste and pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of Southern Thai native cattle. Songklanskarin J. Sci. Technol. 2011, 33, 281–289. [Google Scholar]
- Wang, B.; Mao, S.Y.; Yang, H.J.; Wu, Y.M.; Wang, J.K.; Li, S.L.; Shen, Z.M.; Liu, J.X. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J. Dairy Sci. 2014, 97, 7706–7715. [Google Scholar] [CrossRef] [Green Version]
- Fessard, A.; Kapoor, A.; Patche, J.; Assemat, S.; Hoarau, M.; Bourdon, E.; Bahorun, T.; Remize, F. Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas. Microorganisms 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Ray, M.; Adak, A.; Halder, S.K.; Das, A.; Jana, A.; Parua, S.; Vagvolgyi, C.; Das Mohapatra, P.K.; Pati, B.R.; et al. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour. Technol. 2015, 188, 161–168. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Cho, Y.I.; Yoon, K.J. An overview of calf diarrhea—Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Shin, S.U.; Choi, K.S. Molecular surveillance of viral pathogens associated with diarrhea in pre-weaned Korean native calves. Trop. Anim. Health Prod. 2020, 52, 1811–1820. [Google Scholar] [CrossRef]
- Cho, Y.I.; Han, J.I.; Wang, C.; Cooper, V.; Schwartz, K.; Engelken, T.; Yoon, K.J. Case-control study of microbiological etiology associated with calf diarrhea. Vet. Microbiol. 2013, 166, 375–385. [Google Scholar] [CrossRef]
- Barkley, J.A.; Pempek, J.A.; Bowman, A.S.; Nolting, J.M.; Lee, J.; Lee, S.; Habing, G.G. Longitudinal health outcomes for enteric pathogens in preweaned calves on Ohio dairy farms. Prev. Vet. Med. 2021, 190, 105323. [Google Scholar] [CrossRef]
- Karamzadeh-Dehaghani, A.; Towhidi, A.; Zhandi, M.; Mojgani, N.; Fouladi-Nashta, A. Combined effect of probiotics and specific immunoglobulin Y directed against Escherichia coli on growth performance, diarrhea incidence, and immune system in calves. Animal 2021, 15, 100124. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, W.; Sordillo, L.M.; Abuelo, A. Oxidative stress compromises lymphocyte function in Neonatal dairy calves. Antioxidants 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernandez, J.; Benedito, J.L.; Castillo, C. Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, M.; Uchimura, T.; Okada, S. Experimental Manual of Lactic Acid Bacteria; Asakurasyoten: Tokyo, Japan, 1992. [Google Scholar]
- Ding, W.R.; Shi, C.; Chen, M.; Zhou, J.W.; Long, R.J.; Guo, X.S. Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J. Funct. Foods 2017, 32, 324–332. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Sussmuth, S.D.; Muscholl-Silberhorn, A.; Wirth, R.; Susa, M.; Marre, R.; Rozdzinski, E. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect. Immun. 2000, 68, 4900–4906. [Google Scholar] [CrossRef] [Green Version]
- Mannu, L.; Paba, A.; Daga, E.; Comunian, R.; Zanetti, S.; Dupre, I.; Sechi, L.A. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int. J. Food Microbiol. 2003, 88, 291–304. [Google Scholar] [CrossRef]
- Billstrom, H.; Lunda, B.; Sullivan, A.; Nord, C.E. Virulence and antimicrobial resistance in clinical Enterococcus faecium. Int. J. Antimicrob. Agents 2008, 32, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Thurlow, L.R.; Thomas, V.C.; Narayanan, S.; Olson, S.; Fleming, S.D.; Hancock, L.E. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect. Immun. 2010, 78, 4936–4943. [Google Scholar] [CrossRef] [Green Version]
- Spano, G.; Russo, P.; Lonvaud-Funel, A.; Lucas, P.; Alexandre, H.; Grandvalet, C.; Coton, E.; Coton, M.; Barnavon, L.; Bach, B.; et al. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 2010, 64, S95–S100. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Kumar, A.; Arora, S. In vitro probiotic potential of lactobacilli isolated from indigenous fermented milk products. Int. J. Probiotics Prebiotics 2010, 5, 105–112. [Google Scholar]
- Pumriw, S.; Luang-In, V.; Samappito, W. Screening of probiotic lactic acid bacteria isolated from fermented Pak-Sian for use as a starter culture. Curr. Microbiol. 2021, 78, 2695–2707. [Google Scholar] [CrossRef] [PubMed]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef]
- CLSI. CLSI Supplement M100S. In Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.H.; Li, P.L.; Liu, Z. The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians’ faeces. Anaerobe 2006, 12, 148–152. [Google Scholar] [CrossRef]
- Adetoye, A.; Pinloche, E.; Adeniyi, B.A.; Ayeni, F.A. Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces. BMC Microbiol. 2018, 18, 96. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Wang, S.; Ahmadi, S.; Hayes, J.; Gagliano, J.; Subashchandrabose, S.; Kitzman, D.W.; Becton, T.; Read, R.; Yadav, H. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci. Rep. 2018, 8, 12649. [Google Scholar] [CrossRef] [Green Version]
- Candela, M.; Perna, F.; Carnevali, P.; Vitali, B.; Ciati, R.; Gionchetti, P.; Rizzello, F.; Campieri, M.; Brigidi, P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: Adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 2008, 125, 286–292. [Google Scholar] [CrossRef]
- Xu, D.H.; Ma, Y.H.; Han, X.D.; Chen, Y.B. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 2021, 417, 126902. [Google Scholar] [CrossRef]
- El-Seedy, F.R.; Abed, A.H.; Yanni, H.A.; Abd El-Rahman, S.A.A.A. Prevalence of Salmonella and E. coli in neonatal diarrheic calves. Beni. Suef. Univ. J. Basic. Appl. Sci. 2016, 5, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.A.E.M.; Marouf, S.A.E.M.; Erfana, A.M.; El, J.K.A.E.H.; Hessain, A.M.; Dawoud, T.M.; Kabli, S.A.; Moussa, I.M. Risk factors associated with E. coli causing neonatal calf diarrhea. Saudi J. Biol. Sci. 2019, 26, 1084–1088. [Google Scholar] [PubMed]
- Sharafi, H.; Maleki, H.; Ahmadian, G.; Zahiri, H.S.; Sajedinejad, N.; Houshmand, B.; Vali, H.; Noghabi, K.A. Antibacterial activity and probiotic potential of Lactiplantibacillus plantarum HKN01: A new insight into the morphological changes of antibacterial compound-treated Escherichia coli by electron microscopy. J. Microbiol. Biotechnol. 2013, 23, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Ruzauskas, M.; Lele, V.; Zavistanaviciute, P.; Bernatoniene, J.; Jakstas, V.; Ivanauskas, L.; Zadeike, D.; Klupsaite, D.; Viskelis, P.; et al. Development of antimicrobial gummy candies with addition of bovine colostrum, essential oils and probiotics. Int. J. Food Sci. Technol. 2018, 53, 1227–1235. [Google Scholar] [CrossRef]
- Abdel-Daim, A.; Hassouna, N.; Hafez, M.; Ashor, M.S.A.; Aboulwafa, M.M. Antagonistic activity of Lactobacillus isolates against Salmonella typhi in vitro. Biomed Res. Int. 2013, 2013, 680605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, Y.P.; Tan, Z.F.; Li, Z.W.; Jiao, Z.; Huang, Q.C. Screening of probiotic activities of Lactobacilli strains isolated from traditional Tibetan Qula, a raw yak milk cheese. Asian-Australas. J. Anim. Sci. 2016, 29, 1490–1499. [Google Scholar] [CrossRef] [Green Version]
- Karasu, N.; Simsek, O.; Con, A.H. Technological and probiotic characteristics of Lactiplantibacillus plantarum strains isolated from traditionally produced fermented vegetables. Ann. Microbiol. 2010, 60, 227–234. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Park, S.K.; Heo, H.J.; Kim, H.J.; Ham, K.S.; Kim, J.H. Isolation of lactic acid bacteria with probiotic potentials from kimchi, traditional Korean fermented vegetable. LWT-Food Sci. Technol. 2016, 71, 130–137. [Google Scholar] [CrossRef]
- Hummel, A.S.; Hertel, C.; Holzapfel, W.H.; Franz, C.M.A.P. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microb. 2007, 73, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.; Hallman, C.; Casas, I.A.; Abad, J.; Lowers, J.; Reuter, G. Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J. Appl. Microbiol. 2000, 89, 815–824. [Google Scholar] [CrossRef]
- Saarela, M.; Mättö, J.; Mattila-Sandholm, T. Safety aspects of Lactobacillus and Bifdobacterium species originating from human oro-gastrointestinal tract or from probiotic products. Microb. Ecol. Health Dis. 2002, 14, 233–240. [Google Scholar]
- Danielsen, M.; Wind, A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 2003, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Klare, I.; Witte, W. Large conjugative vanA plasmids in vancomycin-resistant Enterococcus faecium. J. Clin. Microbiol. 1999, 37, 2383–2384. [Google Scholar] [CrossRef]
- Handwerger, S.; Skoble, J. Identifcation of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 1995, 39, 2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abushelaibi, A.; Al-Mahadin, S.; El-Tarabily, K.; Shah, N.P.; Ayyash, M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Sci. Technol. 2017, 79, 316–325. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Reinheimer, J.A. Lactic acid starter and probiotic bacteria: A comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res. Int. 2003, 36, 895–904. [Google Scholar] [CrossRef]
- Del Re, B.; Sgorbati, B.; Miglioli, M.; Palenzona, D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000, 31, 438–442. [Google Scholar] [CrossRef]
- De Angelis, M.; Gobbetti, M. Environmental stress responses in Lactobacillus: A review. Proteomics 2004, 4, 106–122. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, Y.C.; Zhang, Y.; Liu, Y.; Wang, S.Q.; Dong, X.M.; Wang, Y.Y.; Zhang, H.P. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 2010, 21, 695–701. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Staley, T.E.; Bush, L.J. Importance of bile tolerance of Lactobacillus-Acidophilus used as a dietary adjunct. J. Dairy Sci. 1984, 67, 3045–3051. [Google Scholar] [CrossRef]
- Noriega, L.; Gueimonde, M.; Sánchez, B.; Margolles, A.; de los Reyes-Gavilán, C.G. Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low pH and cross-resistance to bile salts in Bifidobacterium. Int. J. Food Microbiol. 2004, 94, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, M.A.; Kurzak, P.; Bauer, J.; Vogel, R.F. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 2002, 92, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Angmo, K.; Monika, S.; Bhalla, T.C. Probiotic characterization of lactic acid bacteria isolated from fermented foods and partial purification of its bacteriocin. LWT-Food Sci. Technol. 2016, 5, 8–16. [Google Scholar]
- Tang, W.; Xing, Z.Q.; Li, C.; Wang, J.J.; Wang, Y.P. Molecular mechanisms and in vitro antioxidant effects of Lactiplantibacillus plantarum MA2. Food Chem. 2017, 221, 1642–1649. [Google Scholar] [CrossRef]
- Lin, X.N.; Xia, Y.J.; Yang, Y.J.; Wang, G.Q.; Zhou, W.; Ai, L.Z. Probiotic characteristics of Lactiplantibacillus plantarum AR113 and its molecular mechanism of antioxidant. LWT-Food Sci. Technol. 2020, 126, 109278. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food. Chem. 2015, 63, 3615–3626. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.P.; Wang, Y.Y.; Xu, H.; Mei, X.Q.; Yu, D.Y.; Wang, Y.B.; Li, W.F. Antioxidant properties of probiotic bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Goyal, A. Technology. Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactiplantibacillus plantarum DM5 isolated from Marcha of Sikkim. LWT-Food Sci. Technol. 2015, 61, 263–268. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Dong, L.Y.; Jia, K.Y.; Zhan, H.; Zhang, Z.H.; Shah, N.P.; Tao, X.Y.; Wei, H. Sulfonation of Lactiplantibacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model. J. Dairy Sci. 2019, 102, 5922–5932. [Google Scholar] [CrossRef]
- Nie, Y.F.; Hu, J.; Hou, Q.L.; Zheng, W.O.; Zhang, X.H.; Yang, T.; Ma, L.B.; Yan, X.H. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells. FASEB J. 2019, 33, 10705–10716. [Google Scholar] [CrossRef]
Virulence Genes and Products | Primers | Sequence (5’-3’) | Product (bp) | Tm °C |
---|---|---|---|---|
gelE (Gelatinase) | gelE-F | ACCCCGTATCATTGGTTT | 419 | 56 |
gelE-R | ACGCATTGCTTTTCCATC | |||
cylA (Cytolysin) | cylA-F | TGGATGATAGTGATAGGAAGT | 517 | 57 |
cylA-R | TCTACAGTAAATCTTTCGTCA | |||
esp (Enterococcal surface protein) | esp-F | TTGCTAATGCTAGTCCACGACC | 933 | 62 |
esp-R | GCGTCAACACTTGCATTGCCGAA | |||
efaAfs (Cell wall adhesins) | efaAfs-F | GACAGACCCTCACGAATA | 705 | 52 |
efaAfs-R | AGTTCATCATGCTGTAGTA | |||
hyl (Hyaluronidase) | HYLn1 | ACAGAAGAGCTGCAGGAAATG | 276 | 56 |
HYLn2 | GACTGACGTCCAAGTTTCCAA | |||
asa (Aggregation substance) | ASA11 | GCACGCTATTACGAACTATGA | 375 | 56 |
ASA12 | TAAGAAAGAACATCACCACGA | |||
hdc (Histidine decarboxylase) | JV16HC | AGATGGTATTGTTTCTTATG | 367 | 52 |
JV17HC | AGACCATACACCATAACCTT | |||
ace (Adhesion of collagen) | ACE-F | GAATTGAGCAAAAGTTCAATCG | 1008 | 55 |
ACE-R | GTCTGTCTTTTCACTTGTTTC | |||
tdc (Tyrosine decarboxylase) | P2-for | GAYATNATNGGNATNGGNYTNGAYCARG | 924 | 52 |
P1-rev | CCRTARTCNGGNATAGCRAARTCNGTRTG | |||
odc (Ornithine decarboxylase) | odc-3 | GTNTTYAAYGCNGAYAARACNTAYTTYGT | 1446 | 52 |
odc-16 | ATNGARTTNAGTTCRCAYTTYTCNGG |
Strains | Virulence Genes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
gelE | cylA | esp | efaAfs | hyl | asa | hdc | ace | tdc | odc | |
Lactiplantibacillus plantarum A1 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum A10 | − | − | + | + | − | − | − | − | − | − |
Lactiplantibacillus plantarum B8 | − | − | + | + | − | + | − | − | − | − |
Lactiplantibacillus plantarum B9 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum C1 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum C10 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum D11 | − | − | + | − | − | + | − | − | − | − |
Lactiplantibacillus plantarum D8 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum E10 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum E11 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum E6 | − | − | − | + | − | + | − | − | − | − |
Lactiplantibacillus plantarum E8 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum F10 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum F11 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum F12 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum F2 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum F5 | − | − | + | + | − | + | − | − | − | − |
Lactiplantibacillus plantarum F8 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum G9 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum H1 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum H10 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum H11 | − | − | + | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum H2 | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum H5 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis A9 | − | − | + | + | − | − | − | − | − | − |
Levilactobacillus brevis B1 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis C12 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis D6 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis E7 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis F4 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis G1 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis G11 | − | − | − | − | − | − | − | − | − | − |
Levilactobacillus brevis G4 | − | − | − | − | − | − | − | − | − | − |
Lacticaseibacillus casei A7 | − | − | − | + | − | − | − | − | − | − |
Lacticaseibacillus casei C4 | − | − | − | + | − | − | − | − | − | − |
Lacticaseibacillus casei D5 | − | − | − | + | − | − | − | − | − | − |
Lacticaseibacillus casei D7 | − | − | − | + | − | − | − | − | − | − |
Liquorilactobacillus nagelii A8 | − | − | − | − | − | − | − | − | − | −− |
Liquorilactobacillus nagelii B2 | − | − | − | − | − | − | − | − | − | − |
Liquorilactobacillus nagelii C5 | − | − | − | − | − | − | − | − | − | − |
Lentilactobacillus buchneri A5 | − | − | − | − | − | − | − | − | − | − |
Lentilactobacillus buchneri B7 | − | − | − | − | − | − | − | − | − | − |
Lentilactobacillus buchneri D12 | − | − | − | − | − | − | − | − | − | − |
Lacticaseibacillus paracasei B6 | − | − | − | − | − | − | − | − | − | + |
Pediococcus ethanolidurans A2 | − | − | + | + | − | − | − | − | − | − |
Pediococcus ethanolidurans B5 | − | − | + | − | − | − | − | − | − | − |
Pediococcus ethanolidurans D10 | − | − | − | − | − | − | − | − | − | − |
Strains | Diameter of Inhibition (mm) | |
---|---|---|
E. coli F5 | S. Dublin | |
Levilactobacillus brevis B1 | − | − |
Levilactobacillus brevis C12 | − | + |
Levilactobacillus brevis D6 | + | + |
Levilactobacillus brevis E7 | − | − |
Levilactobacillus brevis F4 | − | − |
Levilactobacillus brevis G1 | − | − |
Levilactobacillus brevis G11 | − | − |
Levilactobacillus brevis G4 | − | − |
Lentilactobacillus buchneri A5 | + | + |
Lentilactobacillus buchneri B7 | − | − |
Lentilactobacillus buchneri D12 | − | + |
Liquorilactobacillus nagelii A8 | + | + |
Liquorilactobacillus nagelii B2 | − | − |
Liquorilactobacillus nagelii C5 | + | + |
Lactiplantibacillus plantarum A1 | + | + |
Lactiplantibacillus plantarum C1 | + | + |
Lactiplantibacillus plantarum C10 | + | + |
Lactiplantibacillus plantarum E10 | + | + |
Lactiplantibacillus plantarum E11 | + | + |
Lactiplantibacillus plantarum F10 | + | + |
Lactiplantibacillus plantarum F11 | + | + |
Lactiplantibacillus plantarum F12 | + | + |
Lactiplantibacillus plantarum F8 | + | + |
Lactiplantibacillus plantarum G9 | + | + |
Lactiplantibacillus plantarum H10 | + | + |
Lactiplantibacillus plantarum H2 | + | + |
Lactiplantibacillus plantarum H5 | + | + |
Pediococcus ethanolidurans D10 | + | + |
Strains | Antibiotic 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
RIF | VAN | GEN | STR | KAN | ERY | AMO | AMP | TET | CHL | |
Levilactobacillus brevis D6 | S | R | R | R | R | S | S | S | S | S |
Lentilactobacillus buchneri A5 | S | R | R | R | R | S | S | S | S | S |
Liquorilactobacillus nagalii C5 | S | R | S | R | R | S | S | S | S | S |
Liquorilactobacillus nagelii A8 | S | R | R | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum A1 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum C1 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum C10 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum E10 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum E11 | S | R | S | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum F10 | S | R | R | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum F11 | S | R | S | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum F12 | S | R | S | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum F8 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum G9 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum H10 | S | R | S | R | R | S | S | S | MS | S |
Lactiplantibacillus plantarum H2 | S | R | R | R | R | S | S | S | S | S |
Lactiplantibacillus plantarum H5 | S | R | S | R | MS | S | S | S | S | S |
Pediococcus ethanolidurans D10 | S | R | S | MS | R | S | S | S | MS | S |
Strains | Cell Surface Hydrophobicity (%) |
---|---|
Liquorilactobacillus nagelii C5 | 9.61 ± 0.79 d |
Lactiplantibacillus plantarum A1 | 71.92 ± 1.51 b |
Lactiplantibacillus plantarum C1 | 45.50 ± 1.45 c |
Lactiplantibacillus plantarum C10 | 66.90 ± 2.93 b |
Lactiplantibacillus plantarum E10 | 90.83 ± 1.68 a |
Lactiplantibacillus plantarum E11 | 86.24 ± 0.51 a |
Lactiplantibacillus plantarum F11 | 6.37 ± 2.23 d |
Lactiplantibacillus plantarum F12 | 4.66 ± 0.74 d |
Lactiplantibacillus plantarum F8 | 85.99 ± 2.28 a |
Lactiplantibacillus plantarum G9 | 3.92 ± 0.47 de |
Lactiplantibacillus plantarum H10 | 1.92 ± 0.28 e |
Lactiplantibacillus plantarum H5 | 7.45 ± 1.36 d |
Pediococcus ethanolidurans D10 | 9.27 ± 1.39 d |
Strains | Survival Rate (%) | ||||||
---|---|---|---|---|---|---|---|
pH = 7 | pH = 4 | pH = 3 | pH = 2 | Bile Salt = 0.1% | Bile Salt = 0.5% | Bile Salt = 1% | |
Lactiplantibacillus plantarum A1 | 766.45 ± 53.32 b | 194.38 ± 10.88 b | 79.34 ± 5.14 b | 10.27 ± 2.590 a | 106.59 ± 7.090 b | 0.10 ± 0.01 d | 0.03 ± 0.01 c |
Lactiplantibacillus plantarum C1 | 324.75 ± 6.810 d | 172.30 ± 7.700 c | 89.46 ± 4.58 b | 5.17 ± 0.87 b | 115.44 ± 11.14 b | 55.39 ± 1.400 b | 41.46 ± 2.800 a |
Lactiplantibacillus plantarum C10 | 350.00 ± 13.34 d | 235.78 ± 9.660 a | 135.29 ± 13.66 a | 0.50 ± 0.10 c | 111.76 ± 5.160 b | 69.61 ± 7.400 a | 21.67 ± 1.480 b |
Lactiplantibacillus plantarum E10 | 637.55 ± 29.21 c | 186.62 ± 12.18 b | 83.46 ± 2.28 b | 0.00 c | 135.13 ± 14.36 a | 52.38 ± 2.720 b | 1.88 ± 0.16 c |
Lactiplantibacillus plantarum E11 | 1039.58 ± 102.15 a | 210.42 ± 13.03 a | 71.46 ± 3.00 b | 0.00 c | 117.11 ± 0.820 b | 1.95 ± 0.10 d | 0.12 ± 0.00 c |
Lactiplantibacillus plantarum F8 | 259.38 ± 14.27 e | 53.02 ± 2.20 d | 13.40 ± 0.98 c | 0.00 c | 34.45 ± 3.05 c | 10.51 ± 0.340 c | 0.65 ± 0.12 c |
Strains | Survival Rate (%) | ||
---|---|---|---|
Gastric Fluid | Intestinal Fluid for 3 h | Intestinal Fluid for 6 h | |
Lactiplantibacillus plantarum A1 | 70.6 ± 6.63 a | 0.05 ± 0.01 b | 0.03 ± 0.01 b |
Lactiplantibacillus plantarum C1 | 41.3 ± 1.77 b | 0.8 ± 0.04 b | 0.7 ± 0.02 b |
Lactiplantibacillus plantarum C10 | 38.5 ± 1.48 b | 4.1 ± 0.41 a | 3.7 ± 0.12 a |
Concentration of H2O2 (mmol/L) | Survival Rate (%) | ||
---|---|---|---|
L. plantarum A1 | L. plantarum C1 | L. plantarum C10 | |
0 | 345.0 ± 31.9 b | 342.6 ± 28.85 b | 366.7 ± 26.67 a |
2 | 172.7 ± 15.36 a | 146.4 ± 12.95 b | 182.7 ± 7.69 a |
4 | 0.5 ± 0.18 b | 0.06 ± 0.017 b | 12.7 ± 6.61 a |
6 | <0.01 a | <0.01 a | <0.01 a |
8 | <0.01 a | <0.01 a | <0.01 a |
10 | 0 a | 0 a | <0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Liu, Y.; Huang, K.; Chen, H.; Yang, B.; Wang, J. Lactiplantibacillus plantarum A1, C1 and C10 Are Potential Probiotics Isolated from Pineapple Residual Silage. Microorganisms 2023, 11, 29. https://doi.org/10.3390/microorganisms11010029
Zeng H, Liu Y, Huang K, Chen H, Yang B, Wang J. Lactiplantibacillus plantarum A1, C1 and C10 Are Potential Probiotics Isolated from Pineapple Residual Silage. Microorganisms. 2023; 11(1):29. https://doi.org/10.3390/microorganisms11010029
Chicago/Turabian StyleZeng, Hongbo, Yalu Liu, Kailang Huang, Hongwei Chen, Bin Yang, and Jiakun Wang. 2023. "Lactiplantibacillus plantarum A1, C1 and C10 Are Potential Probiotics Isolated from Pineapple Residual Silage" Microorganisms 11, no. 1: 29. https://doi.org/10.3390/microorganisms11010029
APA StyleZeng, H., Liu, Y., Huang, K., Chen, H., Yang, B., & Wang, J. (2023). Lactiplantibacillus plantarum A1, C1 and C10 Are Potential Probiotics Isolated from Pineapple Residual Silage. Microorganisms, 11(1), 29. https://doi.org/10.3390/microorganisms11010029