Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of Aeromonas spp. and Antimicrobial Susceptibility Testing
2.3. Detection of Virulence Determinants by PCR Assay
2.4. Detection of Biofilm Formation
2.5. Phylogenetic Analysis
2.6. Statistical Analysis
3. Results
3.1. Isolation of Aeromonas spp.
3.2. Resistance Phenotypes of the Aeromonas Strains
3.3. Virulence Determinants of Aeromonas spp.
3.4. Biofilm Formation by Aeromonas spp.
3.5. Phylogenetic Relationships
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Hu, Y.; Liu, F.; Wang, Y.; Bi, Y.; Lv, N.; Li, J.; Zhu, B.; Gao, G.F. Metagenomic Analysis Reveals the Microbiome and Resistome in Migratory Birds. Microbiome 2020, 8, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, W.D.; Taylor, M.W. Characterizing the Avian Gut Microbiota: Membership, Driving Influences, and Potential Function. Front. Microbiol. 2014, 5, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, D.M.; Ferree, E.; Simon, D.M.; Yeh, P.J. Patterns of Bird-Bacteria Associations. Ecohealth 2018, 15, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.D.; Lemos, L.S.; Roges, E.M.; de Moura, J.F.; Tavares, D.C.; Matias, C.A.R.; Rodrigues, D.P.; Siciliano, S. A Comprehensive Survey of Aeromonas sp. and Vibrio sp. in Seabirds from Southeastern Brazil: Outcomes for Public Health. J. Appl. Microbiol. 2018, 124, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.L.; Shaw, J.G. Aeromonas spp. Clinical Microbiology and Disease. J. Infect. 2010, 62, 109–118. [Google Scholar] [CrossRef]
- Percival, S.L.; Williams, D.W. Chapter Three—Aeromonas. In Microbiology of Waterborne Diseases, Second ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 49–64. [Google Scholar]
- Igbinosa, I.H.; Okoh, A.I. Detection and Distribution of Putative Virulence Associated Genes in Aeromonas Species from Freshwater and Wastewater Treatment Plant. J. Basic Microbiol. 2013, 53, 895–901. [Google Scholar] [CrossRef]
- Yano, Y.; Hamano, K.; Tsutsui, I.; Aue-umneoy, D.; Ban, M.; Satomi, M. Occurrence, Molecular Characterization, and Antimicrobial Susceptibility of Aeromonas spp. in Marine Species of Shrimps Cultured at Inland Low Salinity Ponds. Food Microbiol. 2015, 47, 21–27. [Google Scholar] [CrossRef]
- Igbinosa, I.H.; Beshiru, A.; Odjadjare, E.E.; Ateba, C.N.; Igbinosa, E.O. Pathogenic Potentials of Aeromonas Species Isolated from Aquaculture and Abattoir Environments. Microb. Pathog. 2017, 107, 185–192. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Y.; Zhang, D.; Gong, H.; Shi, C.; Chang, O.; Pan, H. Distribution of Virulence Genes in Aeromonas Species Isolated from Diseased Freshwater Fish and the Pathogenicity to Carassius Auratus Gibelio. J. Fish. China 2021, 45, 462–471. [Google Scholar]
- Martino, M.E.; Fasolato, L.; Montemurro, F.; Rosteghin, M.; Manfrin, A.; Patarnello, T.; Novelli, E.; Cardazzo, B. Determination of Microbial Diversity of Aeromonas Strains on the Basis of Multilocus Sequence Typing, Phenotype, and Presence of Putative Virulence Genes. Appl. Environ. Microbiol. 2011, 77, 4986–5000. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Khan, S.A.; Khan, A.A.; Sung, K.; Tran, Q.; Kerdahi, K.; Steele, R. Detection and Characterization of Virulence Genes and Integrons in Aeromonas veronii Isolated from Catfish. Food Microbiol. 2010, 27, 327–331. [Google Scholar] [CrossRef] [PubMed]
- LI, S.; Chen, X.; Chen, Y. Distribution Characteristics and Virulence Gene Analysis of Intestinal and Extraintestinal Aeromona. Chin. J. Clin. Lab. Sci. 2017, 35, 503–506. [Google Scholar]
- Gao, Z. Pathogenicity and Antimicrobial Resistance of Aeromonas hydrophila Strains Isolated from Fish in Changchun Area. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2016. [Google Scholar]
- Domínguez, D.C.; Chacón, L.M.; Wallace, D.J. Anthropogenic Activities and the Problem of Antibiotic Resistance in Latin America: A Water Issue. Water 2021, 13, 2693. [Google Scholar] [CrossRef]
- Dolejska, M.; Literak, I. Wildlife Is Overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2019, 63, e01167-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayobola, E.D.; Oscar, W.O.; Ejovwokoghene, E.F. Occurrence of Plasmid Mediated Fluoroquinolone Resistance Genes Amongst Enteric Bacteria Isolated from Human and Animal Sources in Delta State, Nigeria. AIMS Microbiol. 2021, 7, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Poole, T.L.; Schlosser, W.D.; Anderson, R.C.; Norman, K.N.; Beier, R.C.; Nisbet, D.J. Whole-Genome Sequence of Aeromonas Hydrophila Cvm861 Isolated from Diarrhetic Neonatal Swine. Microorganisms 2020, 8, 1648. [Google Scholar] [CrossRef]
- Albert, M.J.; Ansaruzzaman, M.; Talukder, K.A.; Chopra, A.K.; Kuhn, I.; Rahman, M.; Faruque, A.S.; Islam, M.S.; Sack, R.B.; Mollby, R. Prevalence of Enterotoxin Genes in Aeromonas spp. Isolated from Children with Diarrhea, Healthy Controls, and the Environment. J. Clin. Microbiol. 2000, 38, 3785–3790. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Rao, M.; Wu, D. Epidemic Characteristics and Drug Resistance Analysis of Aeromonas from Clinical Inpatients. J. Baotou Med. Coll. 2020, 36, 20–22. [Google Scholar]
- Hatrongjit, R.; Kerdsin, A.; Takeuchi, D.; Wongsurawat, T.; Jenjaroenpun, P.; Chopjitt, P.; Boueroy, P.; Akeda, Y.; Hamada, S. Genomic Analysis of Aeromonas veronii C198, a Novel Mcr-3.41-Harboring Isolate from a Patient with Septicemia in Thailand. Pathogens 2020, 9, 1031. [Google Scholar] [CrossRef]
- (CLSI), Clinical and Laboratory Standard Institute. M100-S18; Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement. CLSI, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019; Volume 28.
- (CLSI), Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria: Approved Guideline, 2nd ed.; M45–A2; CLSI, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011; Volume 30. [Google Scholar]
- Igbinosa, I.H.; Chigor, V.N.; Igbinosa, E.O.; Obi, L.C.; Okoh, A.I. Antibiogram, Adhesive Characteristics, and Incidence of Class 1 Integron in Aeromonas Species Isolated from Two South African Rivers. BioMed Res. Int. 2013, 2013, 127570. [Google Scholar] [CrossRef]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of Different Detection Methods of Biofilm Formation in the Clinical Isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odeyemi, O.A.; Ahmad, A. Antibiotic Resistance Profiling and Phenotyping of Aeromonas Species Isolated from Aquatic Sources. Saudi J. Biol. Sci. 2017, 24, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Huo, R.; Yan, Z.Q.; Suo, J.J.; Dong, J. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquird Resistannce. Chin. J. Nosocom. 2017, 27, 231–240. [Google Scholar]
- Fu, S.; Hao, J.; Yang, Q.; Lan, R.; Wang, Y.; Ye, S.; Liu, Y.; Li, R. Long-Distance Transmission of Pathogenic Vibrio Species by Migratory Waterbirds: A Potential Threat to the Public Health. Sci. Rep. 2019, 9, 16303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, D.L.; Jain, A.; Liu, Y.; Iqbal, M.; Choi, C.Y.; Crockford, N.J.; Millington, S.; Provencher, J. Challenges and Opportunities for Transboundary Conservation of Migratory Birds in the East Asian-Australasian Flyway. Conserv. Biol. 2018, 32, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Deng, J.; Hou, T.; Fu, X.; Zhang, L.; Sun, L.; Liu, Y. Aeromonas sobria Peritonitis in a Peritoneal Dialysis (Pd) Patient: A Case Report and Review of the Literature. BMC Nephrol. 2019, 20, 180. [Google Scholar] [CrossRef] [PubMed]
- Turjeman, S.; Corl, A.; Wolfenden, A.; Tsalyuk, M.; Lublin, A.; Choi, O.; Kamath, P.L.; Getz, W.M.; Bowie, R.C.K.; Nathan, R. Migration, Pathogens and the Avian Microbiome: A Comparative Study in Sympatric Migrants and Residents. Mol. Ecol. 2020, 29, 4706–4720. [Google Scholar] [CrossRef]
- Zhu, Y. The Study on the Virulence and Resistance of Aeromonas in the Yellow River Drainage Basin of Henan. Master’s Thesis, The Graduate School of Henan Normal University, Xinxiang, China, 2018. [Google Scholar]
- Zhang, F.; Xiang, X.; Dong, Y.; Yan, S.; Song, Y.; Zhou, L. Significant Differences in the Gut Bacterial Communities of Hooded Crane (Grus monacha) in Different Seasons at a Stopover Site on the Flyway. Animals 2020, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Li, F.; Wang, W.; Zhu, Z.; Chen, A.; Du, P.; Wang, R.; Chen, H.; Hu, Y.; Li, J.; Kan, B.; et al. Distribution, Virulence-Associated Genes and Antimicrobial Resistance of Aeromonas Isolates from Diarrheal Patients and Water, China. J. Infect. 2015, 70, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, S.; Diao, L.; Song, Q.; Wu, A.; Ye, H. Identification and Drug Resistance Analysis of Aeromonas sobria from Shad. J. Agric. Catastrophol. 2020, 10, 35–37. [Google Scholar]
- Zhang, M.; Hu, P.; Yang, A.; Pan, X.; Jiang, J.; Wen, H. Isolation Identification and Virulence Gene Analysis of a Grass Carp Aeromonas veronii. China Anim. Husb. Vet. Med. 2020, 47, 848–855. [Google Scholar]
- Meng, S.; Wang, Y.L.; Liu, C.; Yang, J.; Yuan, M.; Bai, X.N.; Jin, D.; Liang, J.R.; Cui, Z.G.; Li, J. Genetic Diversity, Antimicrobial Resistance, and Virulence Genes of Aeromonas Isolates from Clinical Patients, Tap Water Systems, and Food. Biomed. Environ. Sci. 2020, 33, 385–395. [Google Scholar]
- Zheng, L.; Zhu, L.W.; Jing, J.; Guan, J.Y.; Lu, G.J.; Xie, L.H.; Ji, X.; Chu, D.; Sun, Y.; Chen, P.; et al. Pan-Genome Analysis of Vibrio cholerae and Vibrio metschnikovii Strains Isolated from Migratory Birds at Dali Nouer Lake in Chifeng, China. Front. Vet. Sci. 2021, 8, 638820. [Google Scholar] [CrossRef]
- Wu, C.J.; Wu, J.J.; Yan, J.J.; Lee, H.C.; Lee, N.Y.; Chang, C.M.; Shih, H.I.; Wu, H.M.; Wang, L.R.; Ko, W.C. Clinical Significance and Distribution of Putative Virulence Markers of 116 Consecutive Clinical Aeromonas Isolates in Southern Taiwan. J. Infect. 2007, 54, 151–158. [Google Scholar] [CrossRef]
- Sha, J.; Kozlova, E.V.; Chopra, A.K. Role of Various Enterotoxins in Aeromonas Hydrophila-Induced Gastroenteritis: Generation of Enterotoxin Gene-Deficient Mutants and Evaluation of Their Enterotoxic Activity. Infect. Immun. 2002, 70, 1924–1935. [Google Scholar] [CrossRef]
- Kirov, S.M.; Tassell, B.C.; Semmler, A.B.; O’Donovan, L.A.; Rabaan, A.A.; Shaw, J.G. Lateral Flagella and Swarming Motility in Aeromonas Species. J. Bacteriol. 2002, 184, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Chenia, H.Y.; Duma, S. Characterization of Virulence, Cell Surface Characteristics and Biofilm-Forming Ability of Aeromonas spp. Isolates from Fish and Sea Water. J. Fish Dis. 2017, 40, 339–350. [Google Scholar] [CrossRef]
- Navarro, A.; Martínez-Murcia, A. Phylogenetic Analyses of the Genus Aeromonas Based on Housekeeping Gene Sequencing and Its Influence on Systematics. J. Appl. Microbiol. 2018, 125, 622–631. [Google Scholar] [CrossRef] [Green Version]
- Wamala, S.P.; Mugimba, K.K.; Dubey, S.; Takele, A.; Munang’andu, H.M.; Evensen, Ø.; Mutoloki, S.; Byarugaba, D.K.; Sørum, H. Multilocus Sequence Analysis Revealed a High Genotypic Diversity of Aeromonas hydrophila Infecting Fish in Uganda. J. Fish Dis. 2018, 41, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Function | Nucleotide Sequence (5′–3′) | Product Size (bp) | Reference |
---|---|---|---|---|
hlyA | Hemolysis A | F:GCCGAGCGCCCAGAAGGTGAGTT | 130 | [15] |
R:GAGCGGCTGGATGCGGTTGT | ||||
aerA | Aerolysin | F:GC(A/T)GA(A/G)CCC(A/G)TCTATCC(A/T) G | 252 | [14] |
R:TTTCTCCGGTAACAGGATTG | ||||
act | Cytotoxic enterotoxin | F:AGAAGGTGACCACCAAGAACA | 232 | [14] |
R:AACTGACATCGGCCTTGAACTC | ||||
alt | Heat-labile cytotonic enterotoxin | F:TGACCCAGTCCTGGCACGGC | 442 | [14] |
R:GGTGATCGATCACCACCAGC | ||||
ast | Heat-stable cytotonic enterotoxin | F:TCTCCATGCTTCCCTTCCACT | 331 | [14] |
R:GTGTAGGGATTGAAGAAGCCG | ||||
fla | Flagellin | F:TCCAACCGTYTGACCTC | 608 | [14] |
R:GMYTGGTTGCGRATGGT | ||||
lip | Lipase | F:ATCTTCTCCGACTGGTTCGG | 382 | [14] |
R:CCGTGCCAGGACTGGGTCTT | ||||
ascF-G | Type III secretion system | F:ATGAGGTCATCTGCTCGCGC | 789 | [14] |
R:GGAGCACAACCATGGCTGAT |
Average OD Value | Biofilm Production |
---|---|
OD ≤ ODC | non-adherent |
ODC < OD ≤ 2 × ODC | weakly adherent |
2 × ODC < OD ≤ 4 × ODC | moderately adherent |
4 × ODC < OD | strongly adherent |
Source | The Sample Type | The Relationship with Human Habitation a | Number of Samples (N) | Species of Aeromonas (n) | |||||
---|---|---|---|---|---|---|---|---|---|
Sampling Locations | Sampling Time | Taxonomy of Migratory Birds | Ecological Groups of Birds | ||||||
The south | Guangdong | Zhaoqing | January 2018 | Ciconiiformes | wader | faeces | B | 67 | — |
Guangxi | Nanning | January 2018 | Ciconiiformes | wader | faeces | C | 70 | A.sobria (1) | |
Jiangxi | Suichuan | September 2018 | Ciconiiformes | wader | cloacal swabs | C | 229 | A.sobria (7); A.hydrophila (4) | |
unclassified | — | 33 | — | ||||||
The north | Inner Mongolia | Honghaizi Wetland Park | April 2019 | Ciconiiformes | wader | faeces | B | 10 | A.sobria (7); A.hydrophila (2); A.veron (1) |
Anseriformes | Natatores | 29 | A.sobria (19); A.veron (2); A.caviae (1) | ||||||
Gruiformes | wader | 32 | A.sobria (21); A.hydrophila (3); A.caviae (4) | ||||||
Charadriiformes | Natatores | 14 | A.sobria (14); A.hydrophila (5); A.veron (1) | ||||||
Ordos City | April 2019 | Charadriiformes | Natatores | faeces | B | 81 | A.sobria (13); A.hydrophila (14); A.veron (3) | ||
Dali Lake | April 2019 | Charadriiformes | Natatores | faeces | A | 30 | A.sobria (12); A.hydrophila (11); A.veron (2) | ||
Ningxia Hui Autonomous Region | Tianhu Wetland Park | April 2018 | Anseriformes | Natatores | throat swabs and cloacal swabs | A | 24 and 24 | A.sobria (1 and 0) | |
Gruiformes | wader | 10 and 10 | — | ||||||
Qingtongxia Nature Reserve | Anseriformes | Natatores | throat swabs and cloacal swabs | A | 46 and 46 | A.sobria (13 and 0); A.hydrophila (7 and 0) | |||
Gruiformes | wader | 5 and 5 | — | ||||||
Yellow River beach wetland | unclassified | — | faeces | B | 45 | A.sobria (1); A.hydrophila (7) |
Biofilm Production | A. hydrophila (n = 53) | A. sobria (n = 109) | A. veronii (n = 9) | A. caviae (n = 5) | Total (n = 176) |
---|---|---|---|---|---|
non-adherent | 30.2 ± 1.51% | 33.0 ± 1.65% | 33.3 ± 1.67% | 100 ± 0.05% | 34.1 ± 1.71% |
weakly adherent | 69.8 ± 3.49% | 54.1 ± 2.71% | 66.7 ± 3.34% | 0% | 58.0 ± 2.9% |
moderately adherent | 0% | 12.8% ±0.64% | 0% | 0% | 8.0 ± 0.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Ji, X.; Jiang, B.; Yuan, T.; Gerile, C.L.M.; Zhu, L.; Wang, T.; Li, Y.; Liu, J.; Guo, X.; et al. Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China. Microorganisms 2023, 11, 7. https://doi.org/10.3390/microorganisms11010007
Liang B, Ji X, Jiang B, Yuan T, Gerile CLM, Zhu L, Wang T, Li Y, Liu J, Guo X, et al. Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China. Microorganisms. 2023; 11(1):7. https://doi.org/10.3390/microorganisms11010007
Chicago/Turabian StyleLiang, Bing, Xue Ji, Bowen Jiang, Tingyu Yuan, Chao Lu Men Gerile, Lingwei Zhu, Tiecheng Wang, Yuanguo Li, Jun Liu, Xuejun Guo, and et al. 2023. "Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China" Microorganisms 11, no. 1: 7. https://doi.org/10.3390/microorganisms11010007
APA StyleLiang, B., Ji, X., Jiang, B., Yuan, T., Gerile, C. L. M., Zhu, L., Wang, T., Li, Y., Liu, J., Guo, X., & Sun, Y. (2023). Virulence, Antibiotic Resistance, and Phylogenetic Relationships of Aeromonas spp. Carried by Migratory Birds in China. Microorganisms, 11(1), 7. https://doi.org/10.3390/microorganisms11010007