Prebiotics in New-Born and Children’s Health
Abstract
:1. Introduction
2. The Concept of Prebiotics
3. Prebiotics in the Early Life of Human
4. Functionality of Natural Prebiotics in Human Milk
4.1. Modulation of Gut Microbial Composition
4.2. Enhancing Microbial Adhesion
4.3. Anti-adhesive Strategies against Pathogens
4.4. Antimicrobial and Antiviral Activity
4.5. HMO Prebiotics in Anti-biofilm Formations
5. Prebiotics in Infant Formula
5.1. Manufactured Prebiotics (Non-HMO) in Infant Formula
5.2. HMO Prebiotics in Infant Formula
Reference | Interventions | Participants | Duration | Outcomes |
---|---|---|---|---|
Marriage et al. [100] | Control: breastfed Treatment: 3 types of formula [(a) GOS 2.4 g/L; (b) GOS 2.2 g/L + 2′-FL 0.2 g/L; and (c) GOS 1.4 g/L + 2′-FL 1 g/L] | Control (n = 65) and treatment (n = 189) | 4 months | Formulas supplemented with 2′FL are well tolerated, and 2′FL absorption profiles are similar to those of breastfed infants. |
Goehring et al. [101] | Control: breastfed Treatment: 3 types of formula [(a) GOS 2.4 g/L; (b) GOS 2.2 g/L + 2′-FL 0.2 g/L; and (c) GOS 1.4 g/L + 2′-FL 1 g/L] | Formula-fed (n = 317) or breastfed (n = 107) | 4 months | 2′-FL exhibits lower plasma and ex vivo inflammatory cytokine profiles, similar to those of a breastfed reference group |
Kajzer et al. [12] | Control: breastfed Treatment: 2-types of formula [(a) No oligosaccharides; (b) short chain FOS 2.0 g/L + 2′-FL 0.2 g/L] | Breastfed (n = 43); no prebiotics (n = 42); and with prebiotics (n = 46) | 4 months | 2′FL with FOSs demonstrated good tolerance, consistent stool consistency, formula intake, anthropometric measurements, and percentage of feedings resulting in spit-up or vomit. These findings were comparable to infants who were fed formula without oligosaccharides or human milk |
Steenhout et al. [102] | Control: breastfed and cow milk-based infant formula (no oligosaccharides) Treatment: cow milk-based infant formula + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Breastfed (n = 38); no prebiotics (n = 87); and with prebiotics (n = 88) | 4 months | 2′-FL and LNnT shift the stool microbiota and metabolic signature toward those observed in breastfed infants |
Puccio et al. [13] | Control: infant formula (no prebiotics) Treatment: infant formula + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Control (n = 87); treatment (n = 88) | 6 to 12 months | Infant formula supplemented with 2′FL and LNnT is safe and well tolerated. Decrease in respiratory tract-related morbidity outcomes in infants fed with formula containing 2′-FL and LNnT |
Storm et al. [103] | Control: formula + B. lactis only Treatment: formula + B. lactis + 2′-FL 0.25 g/L | Control (n = 33); treatment (n = 30) | 6 weeks | Partially hydrolyzed infant formula with 2′FL and B lactis is tolerated well |
Berger et al. [33] | Control: Breastfed and infant formula (No oligosaccharides) Treatment: infant formula + 2′-FL 1.0 to 1.2 g/L + LNnT 0.5 to 0.6 g/L replacing equivalent lactose | Breastfed (n = 35); no prebiotics (n = 63); and with prebiotics (n = 58) | 6 to 12 months | Shifts the stool microbiota and metabolic signature toward those observed in breastfed infants; increased in bifidobacterial population, less require antibiotics |
Dogra et al. [49] | Control: infant formula (No prebiotics but with 1.5 g/L additional lactose) Treatment: Infant formula + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Control (n = 103); treatment (n = 106) | 6 to 12 months | Reduced risk for reported bronchitis and lower respiratory tract illnesses |
Parschat et al. [104] | Control: breastfed and infant formula (no prebiotics) Treatment: Infant formula + mixture of 5-HMOs (2.99 g/L 2′-FL, 0.75 g/L 3-FL, 1.5 g/L LNT, 0.23 g/L 3′-SL, and 0.28 g/L 6′-SL) | Breastfed (n = 116); No prebiotics (n = 112), and with prebiotics (n = 113) | 4 months | 5HMO-Mix at 5.75 g/L in infant formula is safe and well tolerated by healthy term infants during the first months of life |
Alliet et al. [17] | Control: breastfed Treatment: (a) formula + L. reuteri; and (b) formula + 2′-FL 1 g/L] | Breastfed (n = 60); treatment (n = 289) | 6 months | 2′-FL supplementation shifted gut microbiota composition similarly to breastfeeding, but no significant weight gain as compared to probiotic-supplemented milk. The study suggests that 2′FL has incremental effects on top of L. reuteri in infant formula |
Bosheva et al. [105] | Control: breastfed and cow milk-based infant formula (No prebiotics) Treatment: (a) formula + 1.5 g/L 5-blended HMOs and (b) formula + 2.6 g/L 5-blended HMOs (2′FL, DFL, LNT, 3′SL,6′SL) | Breastfed (n = 35); no prebiotics (n = 63), and with prebiotics (n = 58) | 6 months | Increase in the relative abundance of the Bifidobacterial group as compared to controls; SCFA production close similar to breastfed; prebiotics supported the development of the intestinal immune system and gut barrier function |
Gold et al. [77] | Control: amino acid-based formula (AAF) (no HMOs) Treatment: AAF + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Cow’s milk protein allergy (CMPA) infants with no breastfeeding; control (n = 32); treatment (n = 29) | 4 to 12 months | Supplementation with 2′-FL and LNnT was associated with significant enrichment in HMO-utilizing bifidobacteria and a partial correction of the gut microbial dysbiosis in infants with CMPA |
Vandenplas et al. [106] | Control: whey hydrolyzed formula (no HMOs) Treatment: whey hydrolyzed formula + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Control (n = 96); treatment (n = 94) | 4 months | Reduction in relative risk of lower respiratory tract and gastrointestinal infections |
Lasekan et al. [107] | Control: breastfed and infant formula (No prebiotics) Treatment: infant formula + mixture of 5-HMOs (5.75 g/L; 2′-FL, 3-FL, LNT, 3′-SL and 6′-SL) | Breastfed (n = 104); No prebiotics (n = 129), and with prebiotics (n = 130) | 4 months | Formula containing five HMOs supported normal growth, gastrointestinal (GI) tolerance, and safe use in healthy term infants |
Boulangé et al. [78] | Control: whey hydrolyzed formula (no HMOs) Treatment: Whey hydrolyzed formula + 2′-FL 1.0 g/L + LNnT 0.5 g/L | Cow’s milk protein allergy (CMPA) infants with no breastfeeding; Control (n = 97) Treatment (n = 97) | 4 months | Enriched microbiome with HMO-utilizing bifidobacteria and slowed the progression of the microbiome composition toward an adult-type pattern. HMO supplementation partially reversed the dysbiosis in infants with CMPA and shifted the microbiome composition closer to a pattern typical of breastfed infants |
Holst et al. [81] | Control: treatment: formula + 5HMO-mix 5.75 g/L (2′-FL,3-FL, LNnT,3′-SL,6′-SL) | Treatment (n = 113) | 4 months | Shifts the infant fecal microbiome closer to that of breastfed infants; decreases the population of opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks |
Hill et al. [108] | Control: breastfed Treatment: 3 types of formula [(a). Control: no HMOs: GOS 2.4 g/L; (b) low dosage: GOS 2.2 g/L + 2′-FL 0.2 g/L; and (c) high dosage: GOS 1.4 g/L + 2′-FL 1 g/L] | Breast-fed (n = 51); control—no HMOs (n = 48); low dosage (n = 54); and high dosage (n = 48) | 4 months | 2′-FL inclusion resulted in significant increases in serum metabolites derived from microbial activity in the gastrointestinal tract and; an increase in bile acid production; 2′-FL supports the production of secondary microbial metabolites at levels comparable to breastfed |
6. Prebiotics during Weaning and Complementary Feeding
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, N.; Acharya, K.; Upadhya, D.P.; Pathak, S.; Pokharel, S.; Pradhan, P.M.S. Infant and young child feeding practices and its associated factors among mothers of under two years children in a western hilly region of Nepal. PLoS ONE 2021, 16, e0261301. [Google Scholar] [CrossRef]
- Cheng, L.; Akkerman, R.; Kong, C.; Walvoort, M.T.; de Vos, P. More than sugar in the milk: Human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit. Rev. Food Sci. Nutr. 2021, 61, 1184–1200. [Google Scholar] [CrossRef]
- Li, R.; Zhou, Y.; Xu, Y. Comparative analysis of oligosaccharides in the milk of humans and animals by using LC-QE-HF-MS. Food Chem. X 2023, 18, 100705. [Google Scholar] [CrossRef]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G., Jr.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Miqdady, M.; Al Mistarihi, J.; Azaz, A.; Rawat, D. Prebiotics in the infant microbiome: The past, present, and future. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 1. [Google Scholar] [CrossRef] [PubMed]
- Adjibade, M.; Davisse-Paturet, C.; Divaret-Chauveau, A.; Adel-Patient, K.; Raherison, C.; Dufourg, M.-N.; Lioret, S.; Charles, M.-A.; de Lauzon-Guillain, B. Enrichment of Formula in Probiotics or Prebiotics and Risk of Infection and Allergic Diseases up to Age 5.5 Years in the Nationwide Etude Longitudinale Française depuis l’Enfance (ELFE) Cohort. J. Nutr. 2022, 152, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Bottacini, F.; Cao, L.; Kuipers, B.; Schoterman, M.; van Sinderen, D. Galacto-oligosaccharides as infant prebiotics: Production, application, bioactive activities, and future perspectives. Crit. Rev. Food Sci. Nutr. 2023, 63, 753–766. [Google Scholar] [CrossRef]
- Kong, C.; Faas, M.M.; de Vos, P.; Akkerman, R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct. 2020, 11, 9445–9467. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.-R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- van Leeuwen, S.S. Challenges and pitfalls in human milk oligosaccharide analysis. Nutrients 2019, 11, 2684. [Google Scholar] [CrossRef]
- Selvamani, S.; Dailin, D.J.; Gupta, V.K.; Wahid, M.; Keat, H.C.; Natasya, K.H.; Malek, R.A.; Haque, S.; Sayyed, R.; Abomoelak, B. An insight into probiotics bio-route: Translocation from the mother’s gut to the mammary gland. Appl. Sci. 2021, 11, 7247. [Google Scholar] [CrossRef]
- Kajzer, J.; Oliver, J.; Marriage, B. Gastrointestinal tolerance of formula supplemented with oligosaccharides. FASEB J. 2016, 30, 671–674. [Google Scholar]
- Puccio, G.; Alliet, P.; Cajozzo, C.; Janssens, E.; Corsello, G.; Sprenger, N.; Wernimont, S.; Egli, D.; Gosoniu, L.; Steenhout, P. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 624. [Google Scholar] [CrossRef] [PubMed]
- Bode, L. Human milk oligosaccharides at the interface of maternal–infant health. Breastfeed. Med. 2018, 13, S-7–S-8. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; Devitt, A.A.; Kajzer, J.A.; Baggs, G.E.; Borschel, M.W. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2′-fucosyllactose. Nutrients 2018, 10, 1346. [Google Scholar] [CrossRef]
- Akkerman, R.; Faas, M.M.; de Vos, P. Non-digestible carbohydrates in infant formula as a substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation. Crit. Rev. Food Sci. Nutr. 2019, 59, 1486–1497. [Google Scholar] [CrossRef]
- Alliet, P.; Vandenplas, Y.; Roggero, P.; Jespers, S.N.; Peeters, S.; Stevens, J.-P.; Kortman, G.A.; Amico, M.; Berger, B.; Sprenger, N. Safety and efficacy of a probiotic-containing infant formula supplemented with 2′-fucosyllactose: A double-blind randomized controlled trial. Nutr. J. 2022, 21, 11. [Google Scholar] [CrossRef]
- IFIC. Food and Health Survey. Available online: https://foodinsight.org/2022-food-and-health-survey/ (accessed on 1 July 2023).
- Vandenplas, Y.; Berger, B.; Carnielli, V.P.; Ksiazyk, J.; Lagström, H.; Sanchez Luna, M.; Migacheva, N.; Mosselmans, J.-M.; Picaud, J.-C.; Possner, M. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 2018, 10, 1161. [Google Scholar] [CrossRef]
- Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of the galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 2015, 114, 586–595. [Google Scholar] [CrossRef]
- ISAPP. Prebiotics. Available online: https://isappscience.org/for-scientists/resources/prebiotics/ (accessed on 1 July 2023).
- Shahramian, I.; Kalvandi, G.; Javaherizadeh, H.; Khalili, M.; Noori, N.M.; Delaramnasab, M.; Bazi, A. The effects of prebiotic supplementation on weight gain, diarrhea, constipation, fever, and respiratory tract infections in the first year of life. J. Pediatr. Child Health 2018, 54, 875–880. [Google Scholar] [CrossRef]
- Ban, O.H.; Bang, W.Y.; Jeon, H.J.; Jung, Y.H.; Yang, J.; Kim, D.H. Potential of Bifidobacterium lactis IDCC 4301 isolated from breast milk-fed infant feces as a probiotic and functional ingredient. Food Sci. Nutr. 2023, 11, 1952–1964. [Google Scholar] [CrossRef]
- Swartwout, B.; Luo, X.M. Implications of probiotics on the maternal-neonatal interface: Gut microbiota, immunomodulation, and autoimmunity. Front. Immunol. 2018, 9, 2840. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, B.; Kesavelu, D.; Yadav, B. Gut Microbiota Composition in Indian and Western Infants (0–24 Months): A Systematic Review. Nutr. Diet. Suppl. 2023, 15, 25–46. [Google Scholar] [CrossRef]
- Gay, M.C.; Koleva, P.T.; Slupsky, C.M.; Toit, E.D.; Eggesbo, M.; Johnson, C.C.; Wegienka, G.; Shimojo, N.; Campbell, D.E.; Prescott, S.L. Worldwide variation in human milk metabolome: Indicators of breast physiology and maternal lifestyle? Nutrients 2018, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- Estorninos, E.; Lawenko, R.B.; Palestroque, E.; Sprenger, N.; Benyacoub, J.; Kortman, G.A.; Boekhorst, J.; Bettler, J.; Cercamondi, C.I.; Berger, B. Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: A randomized controlled trial. Am. J. Clin. Nutr. 2022, 115, 142–153. [Google Scholar] [CrossRef] [PubMed]
- WHO. Infant and Young Child Feeding. Available online: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding (accessed on 1 July 2023).
- Nagpal, R.; Tsuji, H.; Takahashi, T.; Nomoto, K.; Kawashima, K.; Nagata, S.; Yamashiro, Y. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol. 2017, 8, 1388. [Google Scholar] [CrossRef] [PubMed]
- Attri, S.; Nagpal, R.; Goel, G. High throughput sequence profiling of gut microbiome in Northern Indian infants during the first four months and its global comparison. Meta Gene 2018, 17, 184–191. [Google Scholar] [CrossRef]
- Huey, S.L.; Jiang, L.; Fedarko, M.W.; McDonald, D.; Martino, C.; Ali, F.; Russell, D.G.; Udipi, S.A.; Thorat, A.; Thakker, V. Nutrition and the gut microbiota in 10-to 18-month-old children living in urban slums of Mumbai, India. mSphere 2020, 5, e00731-20. [Google Scholar] [CrossRef]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef]
- Berger, B.; Porta, N.; Foata, F.; Grathwohl, D.; Delley, M.; Moine, D.; Champagne, A.; Siegwald, L.; Descombes, P.; Alliet, P. Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. mBio 2020, 11, e03196-19. [Google Scholar] [CrossRef]
- Praticò, G.; Capuani, G.; Tomassini, A.; Baldassarre, M.E.; Delfini, M.; Micheli, A. Exploring human breast milk composition by NMR-based metabolomics. Nat. Prod. Res. 2014, 28, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.C. Structures and metabolic properties of bovine milk oligosaccharides and their potential in the development of novel therapeutics. Front. Nutr. 2019, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Sundekilde, U.K.; Downey, E.; O’Mahony, J.A.; O’Shea, C.-A.; Ryan, C.A.; Kelly, A.L.; Bertram, H.C. The effect of gestational and lactational age on the human milk metabolome. Nutrients 2016, 8, 304. [Google Scholar] [CrossRef]
- McGuire, M.K.; Meehan, C.L.; McGuire, M.A.; Williams, J.E.; Foster, J.; Sellen, D.W.; Kamau-Mbuthia, E.W.; Kamundia, E.W.; Mbugua, S.; Moore, S.E. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017, 105, 1086–1100. [Google Scholar] [CrossRef]
- Ojo-Okunola, A.; Cacciatore, S.; Nicol, M.P.; du Toit, E. The determinants of the human milk metabolome and its role in infant health. Metabolites 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Thomson, P.; Medina, D.A.; Garrido, D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol. 2018, 75, 37–46. [Google Scholar] [CrossRef] [PubMed]
- James, K.; Bottacini, F.; Contreras, J.I.S.; Vigoureux, M.; Egan, M.; Motherway, M.O.C.; Holmes, E.; van Sinderen, D. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci. Rep. 2019, 9, 15427. [Google Scholar] [CrossRef]
- Hegar, B.; Wibowo, Y.; Basrowi, R.W.; Ranuh, R.G.; Sudarmo, S.M.; Munasir, Z.; Atthiyah, A.F.; Widodo, A.D.; Supriatmo, K.M. The role of two human milk oligosaccharides, 2′-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 330–340. [Google Scholar] [CrossRef]
- Giorgetti, A.; Paganini, D.; Nyilima, S.; Kottler, R.; Frick, M.; Karanja, S.; Hennet, T.; Zimmermann, M.B. The effects of 2′-fucosyllactose and lacto-N-neotetraose, galactooligosaccharides, and maternal human milk oligosaccharide profile on iron absorption in Kenyan infants. Am. J. Clin. Nutr. 2023, 117, 64–72. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Huo, Y.; Cui, X.; He, R.; Han, B.; Wang, Z.; Song, Y.; Lv, X.; Zhang, J. Comprehensive investigation of milk oligosaccharides in different mammalian species and the effect of breed and lactation period on sheep milk oligosaccharides. Food Res. Int. 2023, 172, 113132. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Safety of 2′-O-fucosyllactose as a novel food ingredient pursuant to Regulation (EC) No 258/97. EFSA J. 2015, 13, 4184. [Google Scholar]
- EFSA Panel on Nutrition, N.F.; Allergens, F.; Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of the extension of the use of 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) as novel foods in food supplements for infants pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07257. [Google Scholar] [CrossRef] [PubMed]
- Weinborn, V.; Li, Y.; Shah, I.M.; Yu, H.; Dallas, D.C.; German, J.B.; Mills, D.A.; Chen, X.; Barile, D. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int. Dairy J. 2020, 102, 104583. [Google Scholar] [CrossRef]
- Saeed, A.; Ali, H.; Yasmin, A.; Baig, M.; Ullah, A.; Kazmi, A.; Ahmed, M.A.; Albadrani, G.M.; El-Demerdash, F.M.; Bibi, M. Unveiling the Antibiotic Susceptibility and Antimicrobial Potential of Bacteria from Human Breast Milk of Pakistani Women: An Exploratory Study. BioMed Res. Int. 2023, 2023, 6399699. [Google Scholar] [CrossRef]
- Bunesova, V.; Lacroix, C.; Schwab, C. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol. 2016, 16, 248. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.K.; Martin, F.-P.; Donnicola, D.; Julita, M.; Berger, B.; Sprenger, N. Human milk oligosaccharide-stimulated Bifidobacterium species contribute to preventing later respiratory tract infections. Microorganisms 2021, 9, 1939. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Bottacini, F.; Egan, M.; Chamignon, C.; Tondereau, V.; Moriez, R.; Knol, J.; Langella, P.; Eutamene, H.; Smokvina, T. The infant-derived Bifidobacterium bifidum strain CNCM I-4319 strengthens gut functionality. Microorganisms 2020, 8, 1313. [Google Scholar] [CrossRef]
- Milani, C.; Lugli, G.A.; Duranti, S.; Turroni, F.; Bottacini, F.; Mangifesta, M.; Sanchez, B.; Viappiani, A.; Mancabelli, L.; Taminiau, B. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 2014, 80, 6290–6302. [Google Scholar] [CrossRef]
- Lestari, S.; Sadiq, A.; Safitri, W.; Dewi, S.; Prastiyanto, M. The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methicillin-resistant Staphylococcus aureus. In Proceedings of the Journal of Physics: Conference Series, the 1st International Seminar on Smart Molecule of Natural Resources, Malang, Indonesia, 11–12 July 2019; p. 012021. [Google Scholar]
- Schwab, C.; Ruscheweyh, H.-J.; Bunesova, V.; Pham, V.T.; Beerenwinkel, N.; Lacroix, C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during L-fucose and fucosyllactose degradation. Front. Microbiol. 2017, 8, 95. [Google Scholar] [CrossRef]
- Jost, T.; Lacroix, C.; Braegger, C.; Chassard, C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 2015, 73, 426–437. [Google Scholar] [CrossRef]
- Salli, K.; Anglenius, H.; Hirvonen, J.; Hibberd, A.A.; Ahonen, I.; Saarinen, M.T.; Tiihonen, K.; Maukonen, J.; Ouwehand, A.C. The effect of 2′-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci. Rep. 2019, 9, 13232. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.C.; Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 2017, 19, 1366–1378. [Google Scholar] [CrossRef] [PubMed]
- Spicer, S.K.; Moore, R.E.; Lu, J.; Guevara, M.A.; Marshall, D.R.; Manning, S.D.; Damo, S.M.; Townsend, S.D.; Gaddy, J.A. Antibiofilm activity of human milk oligosaccharides against multidrug-resistant and susceptible isolates of Acinetobacter baumannii. ACS Infect. Dis. 2021, 7, 3254–3263. [Google Scholar] [CrossRef] [PubMed]
- Mejia, M.E.; Ottinger, S.; Vrbanac, A.; Babu, P.; Zulk, J.J.; Moorshead, D.; Bode, L.; Nizet, V.; Patras, K.A. Human milk oligosaccharides reduce murine group B Streptococcus vaginal colonization with minimal impact on the vaginal microbiota. Msphere 2022, 7, e00885-21. [Google Scholar] [CrossRef] [PubMed]
- Jarzynka, S.; Spott, R.; Tchatchiashvili, T.; Ueberschaar, N.; Martinet, M.G.; Strom, K.; Kryczka, T.; Wesołowska, A.; Pletz, M.W.; Olędzka, G. Human Milk Oligosaccharides Exhibit Biofilm Eradication Activity against Matured Biofilms Formed by Different Pathogen Species. Front. Microbiol. 2022, 12, 794441. [Google Scholar] [CrossRef]
- Kong, C.; de Jong, A.; de Haan, B.J.; Kok, J.; de Vos, P. Human milk oligosaccharides and non-digestible carbohydrates reduce pathogen adhesion to intestinal epithelial cells by decoy effects or by attenuating bacterial virulence. Food Res. Int. 2022, 151, 110867. [Google Scholar] [CrossRef]
- Tarbell, J.; Cancel, L. The glycocalyx and its significance in human medicine. J. Intern. Med. 2016, 280, 97–113. [Google Scholar] [CrossRef]
- Craft, K.M.; Thomas, H.C.; Townsend, S.D. Sialylated variants of lacto-N-tetraose exhibit antimicrobial activity against Group B Streptococcus. Org. Biomol. Chem. 2019, 17, 1893–1900. [Google Scholar] [CrossRef]
- Lin, A.E.; Autran, C.A.; Szyszka, A.; Escajadillo, T.; Huang, M.; Godula, K.; Prudden, A.R.; Boons, G.-J.; Lewis, A.L.; Doran, K.S. Human milk oligosaccharides inhibit growth of group B Streptococcus. J. Biol. Chem. 2017, 292, 11243–11249. [Google Scholar] [CrossRef]
- Chen, P.; Reiter, T.; Huang, B.; Kong, N.; Weimer, B.C. Prebiotic oligosaccharides potentiate host protective responses against L. Monocytogenes infection. Pathogens 2017, 6, 68. [Google Scholar] [CrossRef]
- Bhowmik, A.; Chunhavacharatorn, P.; Bhargav, S.; Malhotra, A.; Sendrayakannan, A.; Kharkar, P.S.; Nirmal, N.P.; Chauhan, A. Human Milk Oligosaccharides as Potential Antibiofilm Agents: A Review. Nutrients 2022, 14, 5112. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Singh, B.; Rokana, N.; Singh, N.; Kaur, J.; Singh, A.; Panwar, H. Bio-therapeutics from human milk: Prospects and perspectives. J. Appl. Microbiol. 2021, 131, 2669–2687. [Google Scholar] [CrossRef]
- Yu, Z.-T.; Nanthakumar, N.N.; Newburg, D.S. The human milk oligosaccharide 2′-fucosyllactose quenches campylobacter jejuni–induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J. Nutr. 2016, 146, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Craft, K.M.; Townsend, S.D. Synthesis of lacto-N-tetraose. Carbohydr. Res. 2017, 440, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.S.; Rimer, J.M.; Good, M. The role of human milk oligosaccharides and probiotics on the neonatal microbiome and risk of necrotizing enterocolitis: A narrative review. Nutrients 2020, 12, 3052. [Google Scholar] [CrossRef] [PubMed]
- Autran, C.A.; Kellman, B.P.; Kim, J.H.; Asztalos, E.; Blood, A.B.; Spence, E.C.H.; Patel, A.L.; Hou, J.; Lewis, N.E.; Bode, L. Human milk oligosaccharide composition predicts risk of necrotizing enterocolitis in preterm infants. Gut 2018, 67, 1064–1070. [Google Scholar] [CrossRef]
- Koromyslova, A.; Tripathi, S.; Morozov, V.; Schroten, H.; Hansman, G.S. Human norovirus inhibition by a human milk oligosaccharide. Virology 2017, 508, 81–89. [Google Scholar] [CrossRef]
- Laucirica, D.R.; Triantis, V.; Schoemaker, R.; Estes, M.K.; Ramani, S. Milk oligosaccharides inhibit human rotavirus infectivity in MA104 cells. J. Nutr. 2017, 147, 1709–1714. [Google Scholar] [CrossRef]
- Ackerman, D.L.; Craft, K.M.; Doster, R.S.; Weitkamp, J.r.-H.; Aronoff, D.M.; Gaddy, J.A.; Townsend, S.D. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect. Dis. 2017, 4, 315–324. [Google Scholar] [CrossRef]
- Tampah-Naah, A.M.; Kumi-Kyereme, A.; Amo-Adjei, J. Maternal challenges of exclusive breastfeeding and complementary feeding in Ghana. PLoS ONE 2019, 14, e0215285. [Google Scholar] [CrossRef] [PubMed]
- Whipps, M.D.; Yoshikawa, H.; Demirci, J.R.; Hill, J. Estimating the impact of in-hospital infant formula supplementation on breastfeeding success. Breastfeed. Med. 2021, 16, 530–538. [Google Scholar] [CrossRef]
- Gold, M.S.; Quinn, P.J.; Campbell, D.E.; Peake, J.; Smart, J.; Robinson, M.; O’Sullivan, M.; Vogt, J.K.; Pedersen, H.K.; Liu, X. Effects of an amino acid-based formula supplemented with two human milk oligosaccharides on growth, tolerability, safety, and gut microbiome in infants with cow’s milk protein allergy. Nutrients 2022, 14, 2297. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Pedersen, H.K.; Martin, F.-P.; Siegwald, L.; Pallejà Caro, A.; Eklund, A.C.; Jia, W.; Zhang, H.; Berger, B.; Sprenger, N. An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow’s Milk Protein Allergy. Int. J. Mol. Sci. 2023, 24, 11422. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Prabhu, P.N.; Benefiel, A.C.; Miller, M.J.; Chow, J.; Davis, S.R.; Gaskins, H.R. Galacto-oligosaccharides may directly enhance intestinal barrier function through the modulation of goblet cells. Mol. Nutr. Food Res. 2015, 59, 566–573. [Google Scholar] [CrossRef]
- Matsuki, T.; Tajima, S.; Hara, T.; Yahagi, K.; Ogawa, E.; Kodama, H. Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef. Microbes 2016, 7, 453–461. [Google Scholar] [CrossRef]
- Holst, A.Q.; Myers, P.; Rodríguez-García, P.; Hermes, G.D.; Melsaether, C.; Baker, A.; Jensen, S.R.; Parschat, K. Infant Formula Supplemented with Five Human Milk Oligosaccharides Shifts the Fecal Microbiome of Formula-Fed Infants Closer to That of Breastfed Infants. Nutrients 2023, 15, 3087. [Google Scholar] [CrossRef]
- Marzorati, M.; Ghyselinck, J.; Van den Abbeele, P.; Maruszak, A.; Harthoorn, L. Galactooligosaccharide (GOS) Reduces Branched Short-Chain Fatty Acids, Ammonium, and pH in a Short-Term Colonic Fermentation Model. Appl. Microbiol. 2023, 3, 90–103. [Google Scholar] [CrossRef]
- Akbari, P.; Braber, S.; Alizadeh, A.; Verheijden, K.A.; Schoterman, M.H.; Kraneveld, A.D.; Garssen, J.; Fink-Gremmels, J. Galacto-oligosaccharides protect the intestinal barrier by maintaining the tight junction network and modulating the inflammatory responses after a challenge with the mycotoxin deoxynivalenol in human Caco-2 cell monolayers and B6C3F1 mice. J. Nutr. 2015, 145, 1604–1613. [Google Scholar] [CrossRef]
- Akbari, P.; Fink-Gremmels, J.; Willems, R.H.; Difilippo, E.; Schols, H.A.; Schoterman, M.H.; Garssen, J.; Barber, S. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: Insight into the role of structure and size: Structure–activity relationships of non-digestible oligosaccharides. Eur. J. Nutr. 2017, 56, 1919–1930. [Google Scholar] [CrossRef]
- Ranucci, G.; Buccigrossi, V.; Borgia, E.; Piacentini, D.; Visentin, F.; Cantarutti, L.; Baiardi, P.; Felisi, M.; Spagnuolo, M.I.; Zanconato, S. Galacto-oligosaccharide/polydextrose enriched formula protects against respiratory infections in infants at high risk of atopy: A randomized clinical trial. Nutrients 2018, 10, 286. [Google Scholar] [CrossRef]
- Salminen, S.; Endo, A.; Isolauri, E.; Scalabrin, D. Early gut colonization with lactobacilli and Staphylococcus in infants: The hygiene hypothesis extended. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Grüber, C.; van Stuivenberg, M.; Mosca, F.; Moro, G.; Chirico, G.; Braegger, C.P.; Riedler, J.; Yavuz, Y.; Boehm, G.; Wahn, U. Immunoactive prebiotics transiently prevent the occurrence of early atopic dermatitis among low-atopy-risk infants. J. Allergy Clin. Immunol. 2015, 136, 1696–1698.e1. [Google Scholar] [CrossRef] [PubMed]
- Neumer, F.; Urraca, O.; Alonso, J.; Palencia, J.; Varea, V.; Theis, S.; Rodriguez-Palmero, M.; Moreno-Muñoz, J.A.; Guarner, F.; Veereman, G. Long-term safety and efficacy of prebiotic enriched infant formula—A randomized controlled trial. Nutrients 2021, 13, 1276. [Google Scholar] [CrossRef]
- Zhu, B.; Zheng, S.; Lin, K.; Xu, X.; Lv, L.; Zhao, Z.; Shao, J. Effects of infant formula supplemented with prebiotics and OPO on infancy fecal microbiota: A pilot randomized clinical trial. Front. Cell. Infect. Microbiol. 2021, 11, 650407. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, M.I.A.; Milani, R.F.; de Paiva, E.L.; Morgano, M.A. Influence of various ingredients on mineral bioaccessibility in infant formula and whole milk. Int. Dairy J. 2020, 110, 104808. [Google Scholar] [CrossRef]
- Bode, L.; Contractor, N.; Barile, D.; Pohl, N.; Prudden, A.R.; Boons, G.-J.; Jin, Y.-S.; Jennewein, S. Overcoming the limited availability of human milk oligosaccharides: Challenges and opportunities for research and application. Nutr. Rev. 2016, 74, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Edmunds, G.; Gibbons, C.; Zhang, J.; Gadi, M.R.; Zhu, H.; Fang, J.; Liu, X.; Kong, Y.; Wang, P.G. Toward automated enzymatic synthesis of oligosaccharides. Chem. Rev. 2018, 118, 8151–8187. [Google Scholar] [CrossRef] [PubMed]
- Zeuner, B.; Teze, D.; Muschiol, J.; Meyer, A.S. Synthesis of human milk oligosaccharides: Protein engineering strategies for improved enzymatic transglycosylation. Molecules 2019, 24, 2033. [Google Scholar] [CrossRef]
- Bandara, M.D.; Stine, K.J.; Demchenko, A.V. Chemical synthesis of human milk oligosaccharides: Lacto-N-neohexaose (Galβ1→ 4GlcNAcβ1→) 2 3, 6Galβ1→ 4Glc. Org. Biomol. Chem. 2020, 18, 1747–1753. [Google Scholar] [CrossRef]
- Bych, K.; Mikš, M.H.; Johanson, T.; Hederos, M.J.; Vigsnæs, L.K.; Becker, P. Production of HMOs using microbial hosts—From cell engineering to large scale production. Curr. Opin. Biotechnol. 2019, 56, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, J.-J.; Yun, E.J.; Kwak, S.; Kim, K.H.; Jin, Y.-S. Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb. Cell Factories 2018, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Yan, J.; Chen, X.; Wang, F.; Cao, H. Chemoenzymatic synthesis of lacto-N-tetrasaccharide and sialyl lacto-N-tetrasaccharides. Carbohydr. Res. 2015, 401, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Guo, Y.; Liu, Y.; Li, L.; Zhang, Q.; Wen, L.; Wang, X.; Kondengaden, S.M.; Wu, Z.; Zhou, J. Chemoenzymatic synthesis of a library of human milk oligosaccharides. J. Org. Chem. 2016, 81, 5851–5865. [Google Scholar] [CrossRef]
- Zeuner, B.; Nyffenegger, C.; Mikkelsen, J.D.; Meyer, A.S. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnol. 2016, 33, 355–360. [Google Scholar] [CrossRef]
- Marriage, B.J.; Buck, R.H.; Goehring, K.C.; Oliver, J.S.; Williams, J.A. Infants fed a lower calorie formula with 2′ FL show growth and 2′ FL uptake like breastfed infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 649. [Google Scholar] [CrossRef]
- Goehring, K.C.; Marriage, B.J.; Oliver, J.S.; Wilder, J.A.; Barrett, E.G.; Buck, R.H. Similar to those who are breastfed, infants fed a formula containing 2′-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 2016, 146, 2559–2566. [Google Scholar] [CrossRef]
- Steenhout, P.; Sperisen, P.; Martin, F.P.; Sprenger, N.; Wernimont, S.; Pecquet, S.; Berger, B. Term infant formula supplemented with human milk oligosaccharides (2′ Fucosyllactose and lacto-N-neotetraose) shifts stool microbiota and metabolic signatures closer to that of breastfed infants. FASEB J. 2016, 30, 275–277. [Google Scholar]
- Storm, H.M.; Shepard, J.; Czerkies, L.M.; Kineman, B.; Cohen, S.S.; Reichert, H.; Carvalho, R. 2′-Fucosyllactose is well tolerated in a 100% whey, partially hydrolyzed infant formula with Bifidobacterium lactis: A randomized controlled trial. Glob. Pediatr. Health 2019, 6, 2333794X19833995. [Google Scholar]
- Parshat, K.; Melsaether, C.; Jäpelt, K.R.; Jennewein, S. Clinical evaluation of 16-week supplementation with 5HMO-mix in healthy-term human infants to determine tolerability, safety, and effect on growth. Nutrients 2021, 13, 2871. [Google Scholar] [CrossRef]
- Bosheva, M.; Tokodi, I.; Krasnow, A.; Pedersen, H.K.; Lukjancenko, O.; Eklund, A.C.; Grathwohl, D.; Sprenger, N.; Berger, B.; Cercamondi, C.I. Infant formula with a specific blend of five human milk oligosaccharides drives the gut microbiota development and improves gut maturation markers: A randomized controlled trial. Front. Nutr. 2022, 9, 920362. [Google Scholar] [PubMed]
- Vandenplas, Y.; Żołnowska, M.; Berni Canani, R.; Ludman, S.; Tengelyi, Z.; Moreno-Álvarez, A.; Goh, A.E.; Gosoniu, M.L.; Kirwan, B.-A.; Tadi, M. Effects of an extensively hydrolyzed formula supplemented with two human milk oligosaccharides on growth, tolerability, safety and infection risk in infants with cow’s milk protein allergy: A randomized, multicenter trial. Nutrients 2022, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Lasekan, J.; Choe, Y.; Dvoretskiy, S.; Devitt, A.; Zhang, S.; Mackey, A.; Wulf, K.; Buck, R.; Steele, C.; Johnson, M. Growth and gastrointestinal tolerance in healthy term infants fed milk-based infant formula supplemented with five human milk oligosaccharides (HMOs): A randomized multicenter trial. Nutrients 2022, 14, 2625. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.R.; Buck, R.H. Infants Fed Breastmilk or 2′-FL Supplemented Formula Have Similar Systemic Levels of Microbiota-Derived Secondary Bile Acids. Nutrients 2023, 15, 2339. [Google Scholar] [CrossRef] [PubMed]
- Berti, C.; Socha, P. Infant and Young Child Feeding Practices and Health. Nutrients 2023, 15, 1184. [Google Scholar] [CrossRef] [PubMed]
- NIH. What Is Weaning and How Do I Do It? Available online: https://www.nichd.nih.gov/health/topics/breastfeeding/conditioninfo/weaning (accessed on 1 July 2023).
- AAP. Why Do Infants Need Baby Formula Instead of Cow’s Milk? Available online: https://www.healthychildren.org/English/ages-stages/baby/formula-feeding/Pages/Why-Formula-Instead-of-Cows-Milk.aspx (accessed on 1 July 2023).
- NHS. A New Campaign Promotes Advice to Introduce Babies to Solid Food. Available online: https://www.gov.uk/government/news/new-campaign-promotes-advice-to-introduce-babies-to-solid-food (accessed on 1 July 2023).
- Differding, M.K.; Doyon, M.; Bouchard, L.; Perron, P.; Guérin, R.; Asselin, C.; Massé, E.; Hivert, M.F.; Mueller, N.T. Potential interaction between timing of infant complementary feeding and breastfeeding duration in the determination of early childhood gut microbiota composition and BMI. Pediatr. Obes. 2020, 15, e12642. [Google Scholar] [CrossRef] [PubMed]
- Pluymen, L.P.; Wijga, A.H.; Gehring, U.; Koppelman, G.H.; Smit, H.A.; Van Rossem, L. Early introduction of complementary foods and childhood overweight in breastfed and formula-fed infants in the Netherlands: The PIAMA birth cohort study. Eur. J. Nutr. 2018, 57, 1985–1993. [Google Scholar]
- Giovannini, M.; Verduci, E.; Gregori, D.; Ballali, S.; Soldi, S.; Ghisleni, D.; Riva, E.; Group, P.T.S. Prebiotic effect of an infant formula supplemented with galacto-oligosaccharides: Randomized multicenter trial. J. Am. Coll. Nutr. 2014, 33, 385–393. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Hernell, O. An opinion on “staging” of infant formula: A developmental perspective on infant feeding. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 9–21. [Google Scholar] [CrossRef]
- Hugenholtz, F.; Ritari, J.; Nylund, L.; Davids, M.; Satokari, R.; De Vos, W.M. Feasibility of metatranscriptome analysis from infant gut microbiota: Adaptation to solid foods results in increased activity of firmicutes at six months. Int. J. Microbiol. 2017, 2017, 9547063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvamani, S.; Kapoor, N.; Ajmera, A.; El Enshasy, H.A.; Dailin, D.J.; Sukmawati, D.; Abomoelak, M.; Nurjayadi, M.; Abomoelak, B. Prebiotics in New-Born and Children’s Health. Microorganisms 2023, 11, 2453. https://doi.org/10.3390/microorganisms11102453
Selvamani S, Kapoor N, Ajmera A, El Enshasy HA, Dailin DJ, Sukmawati D, Abomoelak M, Nurjayadi M, Abomoelak B. Prebiotics in New-Born and Children’s Health. Microorganisms. 2023; 11(10):2453. https://doi.org/10.3390/microorganisms11102453
Chicago/Turabian StyleSelvamani, Shanmugaprakasham, Nidhi Kapoor, Arun Ajmera, Hesham Ali El Enshasy, Daniel Joe Dailin, Dalia Sukmawati, Mona Abomoelak, Muktiningsih Nurjayadi, and Bassam Abomoelak. 2023. "Prebiotics in New-Born and Children’s Health" Microorganisms 11, no. 10: 2453. https://doi.org/10.3390/microorganisms11102453
APA StyleSelvamani, S., Kapoor, N., Ajmera, A., El Enshasy, H. A., Dailin, D. J., Sukmawati, D., Abomoelak, M., Nurjayadi, M., & Abomoelak, B. (2023). Prebiotics in New-Born and Children’s Health. Microorganisms, 11(10), 2453. https://doi.org/10.3390/microorganisms11102453