Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Faeces Acquisition and Ethical Approval
2.2. Isolation and Confirmation of C. difficile Presence
2.3. DNA Extraction and 16s rDNA Amplicon Sequencing
2.4. Confirmation C. difficile Isolates and Toxin Gene Detection
2.5. Data Analysis
3. Results
3.1. Isolation and Confirmation of C. difficile Presence
3.2. Confirmation of C. difficile Strains and Toxin Research
3.3. Group Effect on Bacterial Microbiota
3.4. C. difficile Carriage Effect on Bacterial Microbiota
3.5. Sampling Time Effect on Bacterial Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furuya-Kanamori, L.; Marquess, J.; Yakob, L.; Riley, T.V.; Paterson, D.L.; Foster, N.F.; Huber, C.A.; Clements, A.C.A. Asymptomatic Clostridium difficile colonization: Epidemiology and clinical implications. BMC Infect. Dis. 2015, 15, 516. [Google Scholar] [CrossRef]
- Crobach, M.J.T.; Vernon, J.J.; Loo, V.G.; Kong, L.Y.; Péchiné, S.; Wilcox, M.H.; Kuijper, E.J. Understanding Clostridium difficile colonization. Clin. Microbiol. Rev. 2018, 31, e00021-17. [Google Scholar] [CrossRef]
- Khanna, S. Management of Clostridioides difficile infection in patients with inflammatory bowel disease. Intest. Res. 2021, 19, 265–274. [Google Scholar] [CrossRef]
- Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes 2017, 9, 55–60. [Google Scholar] [CrossRef]
- Singh, H.; Nugent, Z.; Yu, B.N.; Lix, L.M.; Targownik, L.E.; Bernstein, C.N. Higher incidence of Clostridium difficile infection among individuals with inflammatory bowel disease. Gastroenterology 2017, 153, 430–438.e2. [Google Scholar] [CrossRef]
- The ANTICIPATE Study Group; van Werkhoven, C.H.; Ducher, A.; Berkell, M.; Mysara, M.; Lammens, C.; Torre-Cisneros, J.; Rodríguez-Baño, J.; Herghea, D.; Cornely, O.A.; et al. Incidence and predictive biomarkers of Clostridioides difficile infection in hospitalized patients receiving broad-spectrum antibiotics. Nat. Commun. 2021, 12, 2240. [Google Scholar] [CrossRef]
- Friedman, N.D.; Pollard, J.; Stupart, D.; Knight, D.R.; Khajehnoori, M.; Davey, E.K.; Parry, L.; Riley, T.V. Prevalence of Clostridium difficile colonization among healthcare workers. BMC Infect. Dis. 2013, 13, 459. [Google Scholar] [CrossRef]
- Hell, M.; Sickau, K.; Chmelizek, G.; Kern, J.M.; Maass, M.; Huhulescu, S.; Allerberger, F. Absence of Clostridium difficile in asymptomatic hospital staff. Am. J. Infect. Control 2012, 40, 1023–1024. [Google Scholar] [CrossRef]
- Kato, H.; Kita, H.; Karasawa, T.; Maegawa, T.; Koino, Y.; Takakuwa, H.; Saikai, T.; Kobayashi, K.; Yamagishi, T.; Nakamura, S. Colonisation and transmission of Clostridium difficile in healthy individuals examined by PCR ribotyping and pulsed-field gel electrophoresis. J. Med. Microbiol. 2001, 50, 720–727. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- MetaHIT Consortium; Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, D.; Jiang, C.; Li, Z.; Wang, X.; Peng, Y. Insight into alteration of gut microbiota in clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe 2015, 34, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-H.; Yi, J.; Kim, J.-H.; Lee, S.; Moon, H.-W. Composition of gut microbiota in patients with toxigenic Clostridioides (Clostridium) difficile: Comparison between subgroups according to clinical criteria and toxin gene load. PLoS ONE 2019, 14, e0212626. [Google Scholar] [CrossRef]
- Jeon, Y.D.; Ann, H.W.; Lee, W.J.; Kim, J.H.; Seong, H.; Kim, J.H.; Ahn, J.Y.; Jeong, S.J.; Ku, N.S.; Yeom, J.S.; et al. Characteristics of faecal microbiota in korean patients with Clostridioides difficile-associated diarrhea. Infect. Chemother. 2019, 51, 365–375. [Google Scholar] [CrossRef]
- Milani, C.; Ticinesi, A.; Gerritsen, J.; Nouvenne, A.; Lugli, G.A.; Mancabelli, L.; Turroni, F.; Duranti, S.; Mangifesta, M.; Viappiani, A.; et al. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: A metagenomic study. Sci. Rep. 2016, 6, 25945. [Google Scholar] [CrossRef]
- Amrane, S.; Hocquart, M.; Afouda, P.; Kuete, E.; Pham, T.-P.-T.; Dione, N.; Ngom, I.I.; Valles, C.; Bachar, D.; Raoult, D.; et al. Metagenomic and culturomic analysis of gut Microbiota dysbiosis during Clostridium difficile infection. Sci. Rep. 2019, 9, 12807. [Google Scholar] [CrossRef] [PubMed]
- Gu, S. Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult chinese population. Microbes Infect. 2016, 9, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Sangster, W.; Hegarty, J.P.; Schieffer, K.M.; Wright, J.R.; Hackman, J.; Toole, D.R.; Lamendella, R.; Stewart, D.B. Bacterial and fungal microbiota changes distinguish C. difficile infection from other forms of diarrhea: Results of a prospective inpatient study. Front. Microbiol. 2016, 7, 789. [Google Scholar] [CrossRef]
- Stewart, D.B.; Wright, J.R.; Fowler, M.; McLimans, C.J.; Tokarev, V.; Amaniera, I.; Baker, O.; Wong, H.-T.; Brabec, J.; Drucker, R.; et al. Integrated meta-omics reveals a fungus-associated bacteriome and distinct functional pathways in Clostridioides difficile infection. mSphere 2019, 4, e00454-19. [Google Scholar] [CrossRef]
- Zheng, N.; Li, S.-H.; Dong, B.; Sun, W.; Li, H.-R.; Zhang, Y.-L.; Li, P.; Fang, Z.-W.; Chen, C.-M.; Han, X.-Y.; et al. Comparison of the gut microbiota of short-term and long-term medical workers and non-medical controls: A cross-sectional analysis. Clin. Microbiol. Infect. 2021, 27, 1285–1292. [Google Scholar] [CrossRef]
- Rodríguez, C.; Romero, E.; Garrido-Sanchez, L.; Alcaín-Martínez, G.; Andrade, R.; Taminiau, B.; Daube, G.; García-Fuentes, E. Microbiota insights in Clostridium difficile infection and inflammatory bowel disease. Gut Microbes 2020, 12, 1725220. [Google Scholar] [CrossRef]
- Lewis, S.J.; Heaton, K.W. Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroenterol. 1997, 32, 920–924. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Van Broeck, J.; Avesani, V.; Delmée, M.; Daube, G. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 2012, 18, 621–625. [Google Scholar] [CrossRef]
- Mutters, R.; Nonnenmacher, C.; Susin, C.; Albrecht, U.; Kropatsch, R.; Schumacher, S. Quantitative detection of Clostridium difficile in hospital environmental samples by real-time polymerase chain reaction. J. Hosp. Infect. 2009, 71, 43–48. [Google Scholar] [CrossRef]
- Gérard, A.; El-Hajjaji, S.; Burteau, S.; Fall, P.A.; Pirard, B.; Taminiau, B.; Daube, G.; Sindic, M. Study of the microbial diversity of a panel of belgian artisanal cheeses associated with challenge studies for Listeria monocytogenes. Food Microbiol. 2021, 100, 103861. [Google Scholar] [CrossRef]
- Ngo, J.; Taminiau, B.; Fall, P.A.; Daube, G.; Fontaine, J. Ear canal microbiota—A comparison between healthy dogs and atopic dogs without clinical signs of otitis externa. Vet. Dermatol. 2018, 29, 425-e140. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. AEM 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucl. Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Kouhsari, E.; Douraghi, M.; Barati, M.; Yaseri, H.; Talebi, M.; Abbasian, S.; Moqarabzadeh, V.; Amirmozafari, N. Rapid simultaneous molecular stool-based detection of toxigenic Clostridioides difficile by quantitative TaqMan Real-Time PCR assay. Clin. Lab. 2019, 65, 461–469. [Google Scholar] [CrossRef]
- Abekhti, A.; Taminau, B.; Djebbar, A.; Crevecoeur, S.; Daube, G. Identification of bacterial strains isolated from the traditional date product “Btana” produced in south regions of Algeria. Apppl. Biol. Sahar. Aereas 2021, 3, 11–26. [Google Scholar]
- Zhou, H.; He, K.; Chen, J.; Zhang, X. LinDA: Linear Models for Differential Abundance Analysis of Microbiome Compositional Data. Genome Biol. 2022, 23, 95. [Google Scholar] [CrossRef]
- Säll, O.; Johansson, K.; Norén, T. Low Colonization Rates of Clostridium Difficile among Patients and Healthcare Workers at Örebro university hospital in Sweden. APMIS 2015, 123, 240–244. [Google Scholar] [CrossRef]
- Martinez, E.; Taminiau, B.; Rodriguez, C.; Daube, G. Gut microbiota composition associated with Clostridioides difficile colonization and infection. Pathogens 2022, 11, 781. [Google Scholar] [CrossRef]
- Halfvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baeza, Y.; Walters, W.A.; Bramer, L.M.; D’Amato, M.; Bonfiglio, F.; McDonald, D.; Gonzalez, A.; et al. Dynamics of the Human Gut Microbiome in Inflammatory Bowel Disease. Nat. Microbiol. 2017, 2, 17004. [Google Scholar] [CrossRef]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The many faces of Enterococcus Spp.—Commensal, probiotic and opportunistic pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef]
- Romyasamit, C.; Thatrimontrichai, A.; Aroonkesorn, A.; Chanket, W.; Ingviya, N.; Saengsuwan, P.; Singkhamanan, K. Enterococcus Faecalis isolated from infant feces inhibits toxigenic Clostridioides (Clostridium) difficile. Front. Pediatr. 2020, 8, 572633. [Google Scholar] [CrossRef]
- García-Díez, J.; Saraiva, C. Use of starter cultures in foods from animal origin to improve their safety. IJERPH 2021, 18, 2544. [Google Scholar] [CrossRef]
- Gaca, A.O.; Lemos, J.A. Adaptation to Adversity: The intermingling of stress tolerance and pathogenesis in enterococci. Microbiol. Mol. Biol. Rev. 2019, 83, e00008-19. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, G.; Chen, H.; Li, H.; Li, S.; Zhang, C.; Pang, X.; Wang, L.; Zhao, L.; Shen, J. Quantification of human oral and fecal Streptococcus parasanguinis by use of quantitative real-time PCR targeting the groel gene. Front. Microbiol. 2019, 10, 2910. [Google Scholar] [CrossRef] [PubMed]
- Factors associated with Streptococcus mutans pathogenicity in the oral cavity. Biointerface Res. Appl. Chem. 2022, 13, 368. [CrossRef]
- Fishbein, S.R.; Robinson, J.I.; Hink, T.; Reske, K.A.; Newcomer, E.P.; Burnham, C.-A.D.; Henderson, J.P.; Dubberke, E.R.; Dantas, G. Multi-omics investigation of Clostridioides difficile-colonized patients reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 2022, 11, e72801. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.T.; Roesch, L.F.W.; Ördberg, M.; Ilonen, J.; Atkinson, M.A.; Schatz, D.A.; Triplett, E.W.; Ludvigsson, J. Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nat. Commun. 2019, 10, 3621. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Cariappa, M.P.; Kaur, M. Klebsiella Oxytoca: An emerging pathogen? Med. J. Armed Forces India 2016, 72, S59–S61. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The controversial role of human gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Rosero, J.A.; Killer, J.; Sechovcová, H.; Mrázek, J.; Benada, O.; Fliegerová, K.; Havlík, J.; Kopečný, J. Reclassification of Eubacterium rectale (hauduroy et al. 1937) prévot 1938 in a new genus Agathobacter gen. nov. as Agathobacter rectalis comb. nov., and description of Agathobacter ruminis sp. nov., isolated from the rumen contents of sheep and cows. Int. J. Syst. Evol. Microbiol. 2016, 66, 768–773. [Google Scholar] [CrossRef]
- Zuo, G.; Hao, B. Whole-genome-based phylogeny supports the objections against the reclassification of Eubacterium rectale to Agathobacter rectalis. Int. J. Syst. Evol. Microbiol. 2016, 66, 2451. [Google Scholar] [CrossRef]
- Bui, T.P.N.; Mannerås-Holm, L.; Puschmann, R.; Wu, H.; Troise, A.D.; Nijsse, B.; Boeren, S.; Bäckhed, F.; Fiedler, D.; deVos, W.M. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health. Nat. Commun. 2021, 12, 4798. [Google Scholar] [CrossRef]
- Konikoff, T.; Gophna, U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016, 24, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-Analyses of Human Gut Microbes Associated with Obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-Term Ecological Impacts of Antibiotic Administration on the Human Intestinal Microbiota. ISME J. 2007, 1, 56–66. [Google Scholar] [CrossRef] [PubMed]
GDH a | Toxins a | qPCR C. diff | Direct b | Indirect b | |
---|---|---|---|---|---|
IBD patients | |||||
T1 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 |
T2 | 1/9 | 1/9 | 1/9 | 1/9 | 1/9 |
T3 | 1/11 | 0/11 | 1/11 | 0/11 | 1/11 |
CDI patients | |||||
T1 | 14/15 | 8/15 | 14/15 | 9/15 | 9/15 |
T2 | 7/13 | 2/13 | 7/13 | 4/13 | 3/13 |
T3 | 4/12 | 1/12 | 4/12 | 1/12 | 1/12 |
HCWs | |||||
T1 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 |
T2 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 |
T3 | 0/3 | 0/3 | 0/3 | 0/3 | 0/3 |
Samples | Sanger Sequencing | tcdB | tcdA |
---|---|---|---|
IBD 10 T2 | C. difficile | Y | Y |
IBD 07 T3 | C. difficile | Y | Y |
CDI 02 T1 | C. difficile | N | N |
CDI 02 T2 | C. difficile | N | N |
CDI 03 T1 | C. difficile | N | N |
CDI 04 T1 | C. difficile | Y | Y |
CDI 05 T3 | C. difficile | N | N |
CDI 06 T1 | C. difficile | Y | Y |
CDI 07 T1 | C. difficile | Y | Y |
CDI 07 T2 | C. difficile | Y | Y |
CDI 07 T3 | C. difficile | Y | Y |
CDI 08 T1 | C. difficile | Y | Y |
CDI 08 T2 | C. difficile | Y | Y |
CDI 09 T1 | C. difficile | N | N |
CDI 10 T1 | C. difficile | N | N |
CDI 11 T2 | C. difficile | Y | Y |
CDI 15 T1 | C. difficile | Y | Y |
Genera | C. difficile-Negative | C. difficile-Positive | P adj (LinDA Models) |
---|---|---|---|
Lachnospiraceae_ge | 18.5% ± 13.2 | 14.4% ± 15.4% | NS (0.1478) |
Blautia | 13.7% ± 8.8% | 11.3% ± 12.8% | NS (0.0922) |
Bacteroides | 8.4% ± 9.7% | 9.5% ± 15.3% | NS (0.55) |
Faecalibacterium | 10.3% ± 11.1% | 4.6% ± 8.9% | NS (0.2120) |
Enterococcus | 0.3% ± 1.1% | 9.8% ± 26.4% | (0.0037) ** |
Streptococcus | 2.7% ± 7.1% | 5.7% ± 9.2% | NS (0.6089) |
Lachnoclostridium | 1.8% ± 2.9% | 5.0% ± 15.7% | NS (0.9720) |
Dorea | 1.7% ± 1.9% | 4.9% ± 12.7% | NS (0.1287) |
Escherichia-Shigella | 0.4% ± 1.0% | 4.2% ± 10.5% | NS (0.0681) |
Fusobacterium | 1.9% ± 11.8% | 2.0% ± 7.4% | NS (0.1309) |
Enterobacteriaceae_ge | 0.1% ± 0.2% | 3.5% ± 13.7% | (0.0223) * |
Intestinibacter | 1.1% ± 2.8% | 2.2% ± 5.1% | NS (0.4192) |
Lactobacillus | 1.9% ± 8.0% | 1.4% ± 3.2% | NS (0.2338) |
Akkermansia | 1.3% ± 4.8% | 1.3% ± 5.9% | NS (0.2690) |
Clostridium_sensu_stricto_1 | 0.8% ± 1.3% | 1.7% ± 3.8% | NS (0.5143) |
Fusicatenibacter | 1.9% ± 3.3% | 0.5% ± 1.3% | (0.0171) * |
Ruminococcus | 1.6% ± 2.6% | 0.7% ± 1.6% | NS (0.0533) |
Agathobacter | 2.1% ± 3.2% | 0.2% ± 0.6% | (0.0302) * |
Ruminococcaceae_ge | 1.1% ± 1.2% | 1.1% ± 4.8% | (0.0348) * |
Prevotella | 1.5% ± 5.5% | 0.6% ± 1.4% | NS (0.9842) |
Romboutsia | 1.6% ± 3.4% | 0.3% ± 0.9% | NS (0.0148) |
Clostridia_ge | 1.5% ± 1.4% | 0.4% ± 0.5% | (0.0131) * |
Anaerostipes | 1.6% ± 1.6% | 0.3% ± 0.5% | (0.0032) ** |
Oscillospirales_ge | 1.2% ± 1.8% | 0.6% ± 1.3% | NS (0.4386) |
Coprococcus | 1.5% ± 1.8% | 0.4% ± 0.8% | NS (0.1309) |
Erysipelatoclostridium | 1.1% ± 5.8% | 0.7% ± 1.2% | NS (0.9156) |
Erysipelotrichaceae_ge | 0.8% ± 4.9% | 0.8% ± 2.3% | NS (0.6146) |
Subdoligranulum | 1.0% ± 1.7% | 0.4% ± 1.0% | NS (0.0719) |
Clostridia_UCG-014_ge | 0.8% ± 2.3% | 0.5% ± 2.6% | NS (0.9156) |
Lachnospiraceae_NK4A136_group | 1.2% ± 5.4% | 0.1% ± 0.5% | (0.0085) ** |
Veillonella | 0.4% ± 0.9% | 0.9% ± 2.3% | NS (0.8942) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, E.; Crevecoeur, S.; Thirion, C.; Grandjean, J.; Fall, P.A.; Hayette, M.-P.; Michel, M.; Taminiau, B.; Louis, E.; Daube, G. Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field. Microorganisms 2023, 11, 2527. https://doi.org/10.3390/microorganisms11102527
Martinez E, Crevecoeur S, Thirion C, Grandjean J, Fall PA, Hayette M-P, Michel M, Taminiau B, Louis E, Daube G. Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field. Microorganisms. 2023; 11(10):2527. https://doi.org/10.3390/microorganisms11102527
Chicago/Turabian StyleMartinez, Elisa, Sebastien Crevecoeur, Carine Thirion, Jessica Grandjean, Papa Abdoulaye Fall, Marie-Pierre Hayette, Moutschen Michel, Bernard Taminiau, Edouard Louis, and Georges Daube. 2023. "Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field" Microorganisms 11, no. 10: 2527. https://doi.org/10.3390/microorganisms11102527
APA StyleMartinez, E., Crevecoeur, S., Thirion, C., Grandjean, J., Fall, P. A., Hayette, M. -P., Michel, M., Taminiau, B., Louis, E., & Daube, G. (2023). Gut Microbiota Associated with Clostridioides difficile Carriage in Three Clinical Groups (Inflammatory Bowel Disease, C. difficile Infection and Healthcare Workers) in Hospital Field. Microorganisms, 11(10), 2527. https://doi.org/10.3390/microorganisms11102527