The Reciprocal Interplay between Infections and Inherited Metabolic Disorders
Abstract
:1. Introduction
2. Infections Directly Affect the Cellular Metabolic Pathway through Disruption of Intermediates
2.1. Urea Cycle Disorders
2.2. Fatty Acids Oxidation Disorders
3. Diet Regimen Contributes to Alter Immune Response by Reducing Micro- and Macronutrients’ Availability
4. The Altered Metabolic Pathways Expressed in Lymphocytes May Affect the Immune Response to Infections
4.1. Altered Energy Production
4.1.1. Mitochondrial Diseases
4.1.2. Organic Acidemias
4.1.3. Glycogen Storage Diseases
4.2. Altered Ligand-Receptor Interaction
Congenital Disorders of Glycosilation
Type of Disorders | Cellular Alteration | Biochemical Alteration | Type of Infection | Reference |
---|---|---|---|---|
Mitochondrial disorders | ||||
DNA depleting syndromes | decreased natural killer and CD8 T cells | hypogammaglobulinemia | pulmonary infections | [50,51] |
Barth Syndrome | persistent or intermittent neutropenia | N/A | invasive aspergillosis, cutaneous zygomycosis | [53] |
Leigh Syndrome | decreased B cells and memory T cells | N/A | viral airway infections, RSV bronchiolitis, otitis media, sepsis | [54] |
MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) Syndrome | T cells altered function | N/A | COVID-19 infection | [55,56] |
Congenital glycosilation defects | ||||
ALG12 (Asparagine-Linked Glycosylation 12)-CDG | decreased B cells | decreased IgG, IgM, IgA | pneumonia, otitis media, ear/nose infections, sepsis | [77] |
MOGS (Mannosyl-Oligosaccharide Glycosidase)-CDG | B and T cells, lymphocytic proliferation, neutropenia | decreased IgA, IgM, IgG | repeated sepsis by E. coli | [78] |
SLC35C1-CDG | decreased B and T cell, neutrophilia, low neutrophilic mobility | N/A | respiratory infections mild to severe periodontitis, severe and/or localized cellulitis, gastroenteritis, recurrent sepsis | [79] |
PGM3 (Phosphoglucomutase 3)-CDG | lymphopenia, with reverted CD4/CD8 ratio, eosinophilia congenital neutropenia, normal NK cells | high IgE level | respiratory tract, skin and oral infections, cutaneous abscesses by bacteria, viruses and mycetes | [80] |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saudubray, J.-M.; García-Cazorla, Á. Clinical Approach to Inborn Errors of Metabolism in Paediatrics. In Inborn Metabolic Diseases Diagnosis and Treatment, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–70. [Google Scholar]
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J. ICIMD Advisory Group An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2020, 44, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Saudubray, J.; Sedel, F.; Walter, J.H. Clinical approach to treatable inborn metabolic diseases: An introduction. J. Inherit. Metab. Dis. 2006, 29, 261–274. [Google Scholar] [CrossRef] [PubMed]
- A Dixon, M.; Leonard, J.V. Intercurrent illness in inborn errors of intermediary metabolism. Arch. Dis. Child. 1992, 67, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Saudubray, J.M.; Garcia-Cazorla, À. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr. Clin. N. Am. 2018, 65, 179–208. [Google Scholar] [CrossRef]
- Wasyluk, W.; Zwolak, A. Metabolic Alterations in Sepsis. J. Clin. Med. 2021, 10, 2412. [Google Scholar] [CrossRef]
- de Boer, L.; Cambi, A.; Verhagen, L.M.; de Haas, P.; van Karnebeek, C.D.M.; Blau, N.; Ferreira, C.R. Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Mol. Genet. Metab. 2023, 139, 107582. [Google Scholar] [CrossRef]
- Weinberg, S.E.; Sena, L.A.; Chandel, N.S. Mitochondria in the Regulation of Innate and Adaptive Immunity. Immunity 2015, 42, 406–417. [Google Scholar] [CrossRef]
- Angajala, A.; Lim, S.; Phillips, J.B.; Kim, J.-H.; Yates, C.; You, Z.; Tan, M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights into Immuno-Metabolism. Front. Immunol. 2018, 9, 1605. [Google Scholar] [CrossRef]
- Kapnick, S.M.; Pacheco, S.E.; McGuire, P.J. The emerging role of immune dysfunction in mitochondrial diseases as a paradigm for understanding immunometabolism. Metabolism 2018, 81, 97–112. [Google Scholar] [CrossRef]
- Xie, J.-H.; Li, Y.-Y.; Jin, J. The essential functions of mitochondrial dynamics in immune cells. Cell. Mol. Immunol. 2020, 17, 712–721. [Google Scholar] [CrossRef]
- Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: Beyond ATP. Nat. Rev. Immunol. 2017, 17, 608–620. [Google Scholar] [CrossRef]
- van der Windt, G.J.; Pearce, E.L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 2012, 249, 27–42. [Google Scholar] [CrossRef]
- Rosenblum, M.D.; Way, S.S.; Abbas, A.K. Regulatory T cell memory. Nat. Rev. Immunol. 2015, 16, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Weisel, N.M.; Joachim, S.M.; Smita, S.; Callahan, D.; Elsner, R.A.; Conter, L.J.; Chikina, M.; Farber, D.L.; Weisel, F.J.; Shlomchik, M.J. Surface phenotypes of naive and memory B cells in mouse and human tissues. Nat. Immunol. 2021, 23, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.A.; Volpi, S.; Sims, K.B.; Walter, J.E.; Traggiai, E. Powering the Immune System: Mitochondria in Immune Function and Deficiency. J. Immunol. Res. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Breda, C.N.d.S.; Davanzo, G.G.; Basso, P.J.; Câmara, N.O.S.; Moraes-Vieira, P.M.M. Mitochondria as central hub of the immune system. Redox Biol. 2019, 26, 101255. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Häberle, J.; Kido, J.; Mitsubuchi, H.; Endo, F. Urea cycle disorders-update. J. Hum. Genet. 2019, 64, 833–847. [Google Scholar] [CrossRef]
- Merritt, J.L.; Brody, L.L.; Pino, G.; Rinaldo, P. Newborn screening for proximal urea cycle disorders: Current evidence supporting recommendations for newborn screening. Mol. Genet. Metab. 2018, 124, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Häberle, J.; Burlina, A.; Chakrapani, A.; Dixon, M.; Karall, D.; Lindner, M.; Mandel, H.; Martinelli, D.; Pintos-Morell, G.; Santer, R.; et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J. Inherit. Metab. Dis. 2019, 42, 1192–1230. [Google Scholar] [CrossRef]
- Machado, M.C.; Pinheiro da Silva, F. Hyperammonemia due to urea cycle disorders: A potentially fatal condition in the intensive care setting. J. Intensive Care 2014, 22. [Google Scholar] [CrossRef]
- Mc Guire, P.; Tarasenko, T.N.; Wang, T.; Levy, E.; Zerfas, P.M.; Moran, T.; Lee, H.S.; Bequette, B.J.; Diaz, G.A. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency. Dis. Model. Mech. 2013, 7, 205–213. [Google Scholar] [CrossRef]
- Lichter-Konecki, U.; Caldovic, L.; Morizono, H.; Simpson, K.; Ah Mew, N.; MacLeod, E. Ornithine Transcarbamylase Deficiency; Adam, M.P., Ed.; GeneReviews; University of Washington: Seattle, WA, USA, 2013. [Google Scholar]
- Newsholme, E.A. The Glucose/Fatty Acid Cycle and Physical Exhaustion. CIBA Found Symp. 1981, 82, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Houten, S.M.; Wanders, R.J.A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 2010, 33, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Knottnerus, S.J.G.; Bleeker, J.C.; Wüst, R.C.I.; Ferdinandusse, S.; Ijlst, L.; Wijburg, F.A.; Wanders, R.J.A.; Visser, G.; Houtkooper, R.H. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev. Endocr. Metab. Disord. 2018, 19, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Berke, G. The binding and lysis of target cells by cytotoxic lymphocytes: Molecular and cellular aspects. Annu. Rev. Immunol. 1994, 12, 735–773. [Google Scholar] [CrossRef] [PubMed]
- Raud, B.; McGuire, P.J.; Jones, R.G.; Sparwasser, T.; Berod, L. Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts. Immunol. Rev. 2018, 283, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Gessner, B.D.; Gillingham, M.B.; Wood, T.; Koeller, D.M. Association of a Genetic Variant of Carnitine Palmitoyltransferase 1A with Infections in Alaska Native Children. J. Pediatr. 2013, 163, 1716–1721. [Google Scholar] [CrossRef]
- Tarasenko, T.N.; Cusmano-Ozog, K.; McGuire, P.J. Tissue acylcarnitine status in a mouse model of mitochondrial β-oxidation deficiency during metabolic decompensation due to influenza virus infection. Mol. Genet. Metab. 2018, 125, 144–152. [Google Scholar] [CrossRef]
- MacDonald, A.; van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.; Gizewska, M.; van Spronsen, F.J. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Van Wegberg, A.M.J.; Macdonald, A.; Ahring, K.; BéLanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef]
- Beisel, W.R. Single nutrients and immunity. Am. J. Clin. Nutr. 1982, 35, 417–468. [Google Scholar] [CrossRef] [PubMed]
- Passwell, J.; Gazit, E.; Efter, T.; Modan, M.; Lilos, P.; Cohen, B.E. Immunologic studies in phenylketonuria. Acta Pediatr. Scand. 1976, 65, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Ryan, W. Inhibition of the immune response by phenylalanine. JAMA 1965, 191, 295–296. [Google Scholar] [CrossRef]
- Gropper, S.S.; Chaung, H.C.; E Bernstein, L.; Trahms, C.; Rarback, S.; Weese, S.J. Immune status of children with phenylketonuria. J. Am. Coll. Nutr. 1995, 14, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, T.; Coskun, T.; Ozalp, I.; Ozkaya, E.; Ersoy, F. Immune function in children with classical phenylketonuria and tetrahydrobiopterin deficiencies. Indian Pediatr. 2003, 40, 822–833. [Google Scholar]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Kose, E.; Arslan, N. Vitamin/mineral and micronutrient status in patients with classical phenylketonuria. Clin. Nutr. 2018, 38, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadeh, M.; Sohrab, G.; Alaei, M.; Eini-Zinab, H.; Mohammadpour-Ahranjani, B.; Rastgoo, S.; Namkhah, Z. Growth and Nutritional Status of Phenylketonuric Children and Adolescents. BMC Pediatr. 2022, 22, 1–7. [Google Scholar] [CrossRef]
- Lubina, O.; Gailite, L.; Borodulina, J.; Auzenbaha, M. Nutrient Status among Latvian Children with Phenylketonuria. Children 2023, 10, 936. [Google Scholar] [CrossRef]
- Pimentel, F.B.; Alves, R.C.; Oliva-Teles, M.T.; Costa, A.S.G.; Fernandes, T.J.R.; Almeida, M.F.; Torres, D.; Delerue-Matos, C.; Oliveira, M.B.P.P. Targeting specific nutrient deficiencies in protein-restricted diets: Some practical facts in PKU dietary management. Food Funct. 2014, 5, 3151–3159. [Google Scholar] [CrossRef]
- Vafai, S.B.; Mootha, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Tragni, V.; Primiano, G.; Tummolo, A.; Beltrame, L.C.; La Piana, G.; Sgobba, M.N.; Cavalluzzi, M.M.; Paterno, G.; Gorgoglione, R.; Volpicella, M.; et al. Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules 2022, 27, 3494. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.L.; Poffenberger, M.C.; Chang, C.-H.; Jones, R.G. Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science 2013, 342, 1242454. [Google Scholar] [CrossRef] [PubMed]
- Galluzzi, L.; Kepp, O.; Kroemer, G. Mitochondria: Master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 780–788. [Google Scholar] [CrossRef]
- Sumbria, D.; Berber, E.; Mathayan, M.; Rouse, B.T. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front. Immunol. 2021, 11, 594963. [Google Scholar] [CrossRef]
- Parvaneh, N.; Quartier, P.; Rostami, P.; Casanova, J.-L.; de Lonlay, P. Inborn errors of metabolism underlying primary immunodeficiencies. J. Clin. Immunol. 2014, 34, 753–771. [Google Scholar] [CrossRef]
- Finsterer, J. Hematological Manifestations of Primary Mitochondrial Disorders. Acta Haematol. 2007, 118, 88–98. [Google Scholar] [CrossRef]
- Hanaford, A.; Johnson, S.C. The immune system as a driver of mitochondrial disease pathogenesis: A review of evidence. Orphanet J. Rare Dis. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Scaglia, F. Mitochondrial DNA Depletion Syndromes: Review and Updates of Genetic Basis, Manifestations, and Therapeutic Options. Neurotherapeutics 2013, 10, 186–198. [Google Scholar] [CrossRef]
- Warris, A.; Verweij, P.E.; Barton, R.; Crabbe, D.C.G.; Evans, E.G.V.; Meis, J.F.G.M. Invasive aspergillosis in two patients with pearson syndrome. Pediatr. Infect. Dis. J. 1999, 18, 739–741. [Google Scholar] [CrossRef]
- Jefferies, L. Barth syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2013, 163, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Zadoo, S.; Mohammed, A.; Pacheco, S. Pediatric leigh syndrome: Evidence of immune dysfunction and successful treatment with immunoglobulin replacement. Ann. Allergy Asthma Immunol. 2022, 129, S143. [Google Scholar] [CrossRef]
- Walker, M.A.; Lareau, C.A.; Ludwig, L.S.; Karaa, A.; Sankaran, V.G.; Regev, A.; Mootha, V.K. Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells. N. Engl. J. Med. 2020, 383, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Sen, K.; Harrar, D.; Hahn, A.; Wells, E.M.; Gropman, A.L. Management considerations for stroke-like episodes in MELAS with concurrent COVID-19 infection. J. Neurol. 2021, 268, 3988–3991. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, J.; Schubert, R.; Horvàth, R.; Petersen, J.; Fütterer, N.; Malle, E.; Stumpf, A.; Gebhardt, B.R.; Koehl, U.; Schraven, B.; et al. Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency. Pediatr. Res. 2006, 60, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.; Lee, H.N.; Lee, S.; Kang, H.-C.; Lee, J.S.; Kim, H.D.; Lee, Y.-M. Cause of Death in Children with Mitochondrial Diseases. Pediatr. Neurol. 2016, 66, 82–88. [Google Scholar] [CrossRef]
- Garone, C.; Tadesse, S.; Hirano, M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 2011, 134, 3326–3332. [Google Scholar] [CrossRef]
- Tarasenko, T.N.; Pacheco, S.E.; Koenig, M.K.; Gomez-Rodriguez, J.; Kapnick, S.M.; Diaz, F.; Zerfas, P.M.; Barca, E.; Sudderth, J.; DeBerardinis, R.J.; et al. Cytochrome c Oxidase Activity Is a Metabolic Checkpoint that Regulates Cell Fate Decisions During T Cell Activation and Differentiation. Cell Metab. 2017, 25, 1254–1268.e7. [Google Scholar] [CrossRef]
- Ozand, P.T.; Gascon, G.G. Topical Review Article: Organic Acidurias: A Review. Part I. J. Child Neurol. 1991, 6, 196–219. [Google Scholar] [CrossRef]
- Nakamura, M.; Tokura, Y. Methylmalonic aciduria presenting with recurrent multiple molluscum contagiosum lesions. Dermato-Endocrinology 2010, 2, 60–61. [Google Scholar] [CrossRef]
- Okano, M.; Kishiyama, K.; Satake, N.; Kubo, S.; Ishikawa, N. A case of fulminant ecthyma gangrenosum associated with Pseudomonas aeruginosa infection in a patient with methylmalonic acidemia. Scand. J. Infect. Dis. 1994, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Najjarbashi, F.A.; Mesdaghi, M.; Alaei, M.; Shakiba, M.; Jami, A.; Ghadimi, F. A Study on the Humoral and Complement Immune System of Patients with Organic Acidemia. Iran. J. Allergy Asthma Immunol. 2015, 14, 638–641. [Google Scholar]
- Church, J.A.; Koch, R.; Shaw, K.N.; Nye, C.A.; Donnell, G.N. Immune functions in methylmalonic aciduria. J. Inherit. Metab. Dis. 1984, 7, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T. Glycogen storage diseases. In The Metabolic & Molecular Basis of Inherited Diseases; Scriver, C.R., Beaudet, A.L., Sly, W.S., Vale, D., Childs, B., Kinzler, K.W., Vogelstein, B., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 1521–1552. [Google Scholar]
- Laforêt, P.; Weinstein, D.A.; Smit, P.A. The glycogen storage diseases and related disorders. In Inborn Metabolic Diseases: Diagnosis and Treatment, 5th ed.; Saudubray, J.M., Berghe, G., Walter, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 115–139. [Google Scholar]
- Rake, J.; Visser, G.; Labrune, P.; Leonard, J.; Ullrich, K.; Smit, P. Glycogen storage disease type I: Diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur. J. Pediatr. 2002, 161, S20–S34. [Google Scholar] [CrossRef]
- Colonetti, K.; e Vairo, F.P.; Siebert, M.; Nalin, T.; Poloni, S.; Roesch, L.F.W.; de Souza, C.F.M.; Pinheiro, F.C.; Schwartz, I.V.D. Cytokine profiling in patients with hepatic glycogen storage disease: Are there clues for unsolved aspects? Cytokine 2023, 162, 156088. [Google Scholar] [CrossRef]
- Wicker, C.; Roda, C.; Perry, A.; Arnoux, J.B.; Brassier, A.; Castelle, M.; Servais, A.; Donadieu, J.; Bouchereau, J.; Pigneur, B.; et al. Infectious and digestive complications in glycogen storage disease type Ib: Study of a French cohort. Mol. Genet. Metab. Rep. 2020, 23, 100581. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.S.; Weinstein, D.A.; Lee, Y.M.; Mansfield, B.C.; Chou, J.Y. Molecular mechan- isms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 2014, 123, 2843–2853. [Google Scholar] [CrossRef]
- Veiga-Da-Cunha, M.; Chevalier, N.; Stephenne, X.; Defour, J.-P.; Paczia, N.; Ferster, A.; Achouri, Y.; Dewulf, J.P.; Linster, C.L.; Bommer, G.T.; et al. Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. Proc. Natl. Acad. Sci. USA 2019, 116, 1241–1250. [Google Scholar] [CrossRef]
- Rossi, A.; Miele, E.; Fecarotta, S.; Veiga-Da-Cunha, M.; Martinelli, M.; Mollica, C.; D’armiento, M.; Mozzillo, E.; Strisciuglio, P.; Derks, T.G.J.; et al. Crohn disease-like enterocolitis remission after empagliflozin treatment in a child with glycogen storage disease type Ib: A case report. Ital. J. Pediatr. 2021, 47, 1–9. [Google Scholar] [CrossRef]
- Stray-Pedersen, A.; Backe, P.H.; Sorte, H.S.; Mørkrid, L.; Chokshi, N.Y.; Erichsen, H.C.; Gambin, T.; Elgstøen, K.B.; Bjørås, M.; Wlodarski, M.W.; et al. PGM3 Mutations Cause a Congenital Disorder of Glycosylation with Severe Immunodeficiency and Skeletal Dysplasia. Am. J. Hum. Genet. 2014, 95, 96–107. [Google Scholar] [CrossRef]
- Francisco, R.; Pascoal, C.; Marques-Da-Silva, D.; Brasil, S.; Pimentel-Santos, F.M.; Altassan, R.; Jaeken, J.; Grosso, A.R.; Ferreira, V.d.R.; Videira, P.A. New Insights into Immunological Involvement in Congenital Disorders of Glycosylation (CDG) from a People-Centric Approach. J. Clin. Med. 2020, 9, 2092. [Google Scholar] [CrossRef]
- Pascoal, C.; Francisco, R.; Ferro, T.; Dos Reis Ferreira, V.; Jaeken, J.; Videira, P.A. CDG and immune response: From bedside to bench and back. J. Inherit. Metab. Dis. 2019, 43, 1–35. [Google Scholar] [CrossRef]
- Monticelli, M.; Ferro, T.; Jaeken, J.; Ferreira, V.D.R.; Videira, P.A. Immunological aspects of congenital disorders of glycosylation (CDG): A review. J. Inherit. Metab. Dis. 2016, 39, 765–780. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Block, T.M.; Guo, J.-T. Article Commentary: Viral Resistance of MOGS-CDG Patients Implies a Broad-Spectrum Strategy against Acute Virus Infections. Antivir. Ther. 2014, 20, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Haryadi, R.; Chan, K.F.; Teo, G.; Goh, J.; Pereira, N.A.; Feng, H.; Song, Z. Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant. Glycobiology 2012, 22, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Cuéllar, G.; Gauthier, J.; Désilets, V.; Lachance, C.; Lemire-Girard, M.; Rypens, F.; Le Deist, F.; Decaluwe, H.; Duval, M.; Bouron-Dal Soglio, D.; et al. A Novel PGM3 Mutation Is Associated with a Severe Phenotype of Bone Marrow Failure, Severe Combined Immunodeficiency, Skeletal Dysplasia, and Congenital Malformations. J. Bone Miner. Res. 2017, 32, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Germeshausen, M.; Zeidler, C.; Stuhrmann, M.; Lanciotti, M.; Ballmaier, M.; Welte, K.; Ivaskevicius, V.; Biswas, A.; Bevans, C.; Schroeder, V.; et al. Digenic mutations in severe congenital neutropenia. Haematologica 2010, 95, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Kiykim, A.; Baris, S.; Karakoc-Aydiner, E.; Ozen, A.O.; Ogulur, I.; Bozkurt, S.; Ataizi, C.C.; Boztug, K.; Barlan, I.B. G6PC3 Deficiency: Primary Immune Deficiency Beyond Just Neutropenia. J. Pediatr. Hematol. Oncol. 2015, 37, 616–622. [Google Scholar] [CrossRef]
- Eghbali, A.; Eshghi, P.; Malek, F.; Rezaei, N. Cardiac and Renal Malformations in a Patient with Sepsis and Severe Congenital Neutropenia. Iran. J. Pediatr. 2010, 20, 225–228. [Google Scholar]
- Mütze, U.; Gleich, F.; Barić, I.; Baumgartner, M.; Burlina, A.; Chapman, K.A.; Chien, Y.H.; Cortès-Saladelafont, E.; De Laet, C.; Dobbelaere, D.; et al. Impact of the SARS-CoV-2 pandemic on the health of individuals with intoxication-type metabolic diseas-es-Data from the E-IMD consortium. J. Inherit. Metab. Dis. 2023, 46, 220–231. [Google Scholar] [CrossRef]
- Tummolo, A.; Paterno, G.; Dicintio, A.; Stefanizzi, P.; Melpignano, L.; Aricò, M. COVID-19 and Inherited Metabolic Disorders: One-Year Experience of a Referral Center. Children 2021, 8, 781. [Google Scholar] [CrossRef] [PubMed]
- Francini-Pesenti, F.; Gugelmo, G.; Lenzini, L.; Vitturi, N. Nutrient Intake and Nutritional Status in Adult Patients with Inherited Metabolic Diseases Treated with Low-Protein Diets: A Review on Urea Cycle Disorders and Branched Chain Organic Acidemias. Nutrients 2020, 12, 3331. [Google Scholar] [CrossRef]
- Kanufre, V.C.; Soares, R.D.; Alves, M.R.; Aguiar, M.J.; Starling, A.L.; Norton, R.C. Metabolic syndrome in children and adolescents with phenylketonuria. J. Pediatr. 2015, 91, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Tankeu, A.T.; Pavlidou, D.C.; Superti-Furga, A.; Gariani, K.; Tran, C. Overweight and obesity in adult patients with phenylketonuria: A systematic review. Orphanet J. Rare Dis. 2023, 18, 1–9. [Google Scholar] [CrossRef]
- Tsoli, M.; Boutzios, G.; Kaltsas, G. Immune System Effects on the Endocrine System; Updated 2019. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279139 (accessed on 1 June 2023).
- Erdöl, Ş.; Sağlam, H. Endocrine Dysfunctions in Patients with Inherited Metabolic Diseases. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Taketani, T. Management and diagnosis of mitochondrial fatty acid oxidation disorders: Focus on very-long-chain acyl-CoA dehydrogenase deficiency. J. Hum. Genet. 2019, 64, 73–85. [Google Scholar] [CrossRef]
- Norris, M.K.; Scott, A.I.; Sullivan, S.; Chang, I.J.; Lam, C.; Sun, A.; Hahn, S.; Thies, J.M.; Gunnarson, M.; McKean, K.N.; et al. Tutorial: Triheptanoin and Nutrition Management for Treatment of Long-Chain Fatty Acid Oxidation Disorders. J. Parenter. Enter. Nutr. 2020, 45, 230–238. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Groer, M.; Dutra, S.V.O.; Sarkar, A.; McSkimming, D.I. Gut Microbiota and Immune System Interactions. Microorganisms 2020, 8, 1587. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Verduci, E.; Moretti, F.; Bassanini, G.; Banderali, G.; Rovelli, V.; Casiraghi, M.; Morace, G.; Borgo, F.; Borghi, E. Phenylketonuric diet negatively impacts on butyrate production. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Mancilla, V.J.; Mann, A.E.; Zhang, Y.; Allen, M.S. The Adult Phenylketonuria (PKU) Gut Microbiome. Microorganisms 2021, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Colonetti, K.; Bento dos Santos, B.; Nalin, T.; Moura de Souza, C.F.; Triplett, E.W.; Dobbler, P.T.; Schwartz, I.V.D.; Roesch, L.F.W. Hepatic glycogen storage diseases are associated to microbial dysbiosis. PLoS ONE 2019, 14, e0214582. [Google Scholar] [CrossRef]
- Ceccarani, C.; Bassanini, G.; Montanari, C.; Casiraghi, M.C.; Ottaviano, E.; Morace, G.; Biasucci, G.; Paci, S.; Borghi, E.; Verduci, E. Proteobacteria overgrowth and bu-tyrate-producing taxa depletion in the gut microbiota of glycogen storage disease type 1 patients. Metabolites 2020, 10, 133. [Google Scholar] [CrossRef]
- Montanari, C.; Parolisi, S.; Borghi, E.; Putignani, L.; Bassanini, G.; Zuvadelli, J.; Bonfanti, C.; Tummolo, A.; Vici, C.D.; Biasucci, G.; et al. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front. Physiol. 2021, 12, 716520. [Google Scholar] [CrossRef] [PubMed]
- Andreux, P.A.; Houtkooper, R.H.; Auwerx, J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 2013, 12, 465–483. [Google Scholar] [CrossRef] [PubMed]
- Buck, M.D.; O’Sullivan, D.; Geltink, R.I.K.; Curtis, J.D.; Chang, C.-H.; Sanin, D.E.; Qiu, J.; Kretz, O.; Braas, D.; Van Der Windt, G.J.; et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 2016, 166, 63–76. [Google Scholar] [CrossRef]
- Sukumar, M.; Liu, J.; Ji, Y.; Subramanian, M.; Crompton, J.G.; Yu, Z.; Roychoudhuri, R.; Palmer, D.C.; Muranski, P.; Karoly, E.D.; et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Investig. 2013, 123, 4479–4488. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tummolo, A.; Melpignano, L. The Reciprocal Interplay between Infections and Inherited Metabolic Disorders. Microorganisms 2023, 11, 2545. https://doi.org/10.3390/microorganisms11102545
Tummolo A, Melpignano L. The Reciprocal Interplay between Infections and Inherited Metabolic Disorders. Microorganisms. 2023; 11(10):2545. https://doi.org/10.3390/microorganisms11102545
Chicago/Turabian StyleTummolo, Albina, and Livio Melpignano. 2023. "The Reciprocal Interplay between Infections and Inherited Metabolic Disorders" Microorganisms 11, no. 10: 2545. https://doi.org/10.3390/microorganisms11102545
APA StyleTummolo, A., & Melpignano, L. (2023). The Reciprocal Interplay between Infections and Inherited Metabolic Disorders. Microorganisms, 11(10), 2545. https://doi.org/10.3390/microorganisms11102545