Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection of Novel Stx2 Subtypes
2.2. Collection of STEC Strains
2.3. Illumina and Oxford Nanopore Sequencing and Assembly
2.4. WGS-Based Characterization
2.5. Stx Subtyping
2.6. Cytotoxicity, Ciprofloxacin (Cip) Induction, and Activation Assays
2.7. Polymerase Chain Reaction (PCR) Primers to Detect All Described stx1 and stx2 Subtypes
2.8. Stx2n and Stx2o Pro-Phages Annotation and Discovery
2.9. Data Availability
3. Results
3.1. Identification of the Novel Stx2n Subtype
3.2. WGS-Based Characterization of Stx2n and Stx2o Strains
3.3. Detection of Shiga Toxin Production
3.4. Design and Testing of New OMNI PCR Primers
3.5. Identification of the Stx2n and Stx2o Pro-Phages in the Strains from This Study
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gill, A.; Dussault, F.; McMahon, T.; Petronella, N.; Wang, X.; Cebelinski, E.; Scheutz, F.; Weedmark, K.; Blais, B.; Carrillo, C. Characterization of Atypical Shiga Toxin Gene Sequences and Description of Stx2j, a New Subtype. J. Clin. Microbiol. 2022, 60, e0222921. [Google Scholar] [CrossRef]
- Bai, X.; Scheutz, F.; Dahlgren, H.M.; Hedenstrom, I.; Jernberg, C. Characterization of Clinical Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype in Sweden and Denmark. Microorganisms 2021, 9, 2374. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Pierard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Fu, S.; Zhang, J.; Fan, R.; Xu, Y.; Sun, H.; He, X.; Xu, J.; Xiong, Y. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci. Rep. 2018, 8, 6756. [Google Scholar] [CrossRef]
- Lacher, D.W.; Gangiredla, J.; Patel, I.; Elkins, C.A.; Feng, P.C. Use of the Escherichia coli Identification Microarray for Characterizing the Health Risks of Shiga Toxin-Producing Escherichia coli Isolated from Foods. J. Food Prot. 2016, 79, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bai, X.; Zhang, J.; Sun, H.; Fu, S.; Fan, R.; He, X.; Scheutz, F.; Matussek, A.; Xiong, Y. Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. Int. J. Med. Microbiol. 2020, 310, 151377. [Google Scholar] [CrossRef]
- Panel, E.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, e05967. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [PubMed]
- Souvorov, A.; Agarwala, R. SAUTE: Sequence assembly using target enrichment. BMC Bioinform. 2021, 22, 375. [Google Scholar] [CrossRef] [PubMed]
- Tolar, B.; Joseph, L.A.; Schroeder, M.N.; Stroika, S.; Ribot, E.M.; Hise, K.B.; Gerner-Smidt, P. An Overview of PulseNet USA Databases. Foodborne Pathog. Dis. 2019, 16, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.L.; Carleton, H.A.; Beal, J.; Tillman, G.E.; Lindsey, R.L.; Lauer, A.C.; Pightling, A.; Jarvis, K.G.; Ottesen, A.; Ramachandran, P.; et al. Use of Whole Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J. Food Prot. 2022, 85, 755–772. [Google Scholar] [CrossRef] [PubMed]
- Poates, A.; Truong, J.; Lindsey, R.; Griswold, T.; Williams-Newkirk, A.J.; Carleton, H.; Trees, E. Sequencing of Enteric Bacteria: Library Preparation Procedure Matters for Accurate Identification and Characterization. Foodborne Pathog. Dis. 2022, 19, 569–578. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Joensen, K.G.; Tetzschner, A.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef]
- Sabol, A.; Joung, Y.J.; VanTubbergen, C.; Ale, J.; Ribot, E.M.; Trees, E. Assessment of Genetic Stability During Serial In Vitro Passage and In Vivo Carriage. Foodborne Pathog. Dis. 2021, 18, 894–901. [Google Scholar] [CrossRef]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef]
- Hauser, J.R.; Atitkar, R.R.; Petro, C.D.; Lindsey, R.L.; Strockbine, N.; O’Brien, A.D.; Melton-Celsa, A.R. The Virulence of Escherichia coli O157:H7 Isolates in Mice Depends on Shiga Toxin Type 2a (Stx2a)-Induction and High Levels of Stx2a in Stool. Front. Cell. Infect. Microbiol. 2020, 10, 62. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R.; Darnell, S.C.; O’Brien, A.D. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect. Immun. 1996, 64, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Y.T.; Salvador, A.; Sun, X.; Wu, V.C.H. Prediction, Diversity, and Genomic Analysis of Temperate Phages Induced from Shiga Toxin-Producing Escherichia coli Strains. Front. Microbiol. 2019, 10, 3093. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, F.; Nielsen, E.M.; Frimodt-Moller, J.; Boisen, N.; Morabito, S.; Tozzoli, R.; Nataro, J.P.; Caprioli, A. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill. 2011, 16, 19889. [Google Scholar] [CrossRef]
- O’Brien, A.D.; Newland, J.W.; Miller, S.F.; Holmes, R.K.; Smith, H.W.; Formal, S.B. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 1984, 226, 694–696. [Google Scholar] [CrossRef]
- Koch, C.; Hertwig, S.; Lurz, R.; Appel, B.; Beutin, L. Isolation of a lysogenic bacteriophage carrying the stx1OX3 gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J. Clin. Microbiol. 2001, 39, 3992–3998. [Google Scholar] [CrossRef]
- Paton, A.W.; Beutin, L.; Paton, J.C. Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 1995, 153, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Bürk, C.; Dietrich, R.; Açar, G.; Moravek, M.; Bülte, M.; Märtlbauer, E. Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J. Clin. Microbiol. 2003, 41, 2106–2112. [Google Scholar] [CrossRef]
- Piérard, D.; Muyldermans, G.; Moriau, L.; Stevens, D.; Lauwers, S. Identification of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J. Clin. Microbiol. 1998, 36, 3317–3322. [Google Scholar] [CrossRef] [PubMed]
- Paton, A.W.; Paton, J.C.; Heuzenroeder, M.W.; Goldwater, P.N.; Manning, P.A. Cloning and nucleotide sequence of a variant Shiga-like toxin II gene from Escherichia coli OX3:H21 isolated from a case of sudden infant death syndrome. Microb. Pathog. 1992, 13, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Persson, S.; Olsen, K.E.; Ethelberg, S.; Scheutz, F. Subtyping method for Escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 2007, 45, 2020–2024. [Google Scholar] [CrossRef]
- Weinstein, D.L.; Jackson, M.P.; Samuel, J.E.; Holmes, R.K.; O’Brien, A.D. Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. J. Bacteriol. 1988, 170, 4223–4230. [Google Scholar] [CrossRef]
- Schmidt, H.; Scheef, J.; Morabito, S.; Caprioli, A.; Wieler, L.H.; Karch, H. A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl. Environ. Microbiol. 2000, 66, 1205–1208. [Google Scholar] [CrossRef]
- Leung, P.H.; Peiris, J.S.; Ng, W.W.; Robins-Browne, R.M.; Bettelheim, K.A.; Yam, W.C. A newly discovered verotoxin variant, VT2g, produced by bovine verocytotoxigenic Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 7549–7553. [Google Scholar] [CrossRef]
- Meng, Q.; Bai, X.; Zhao, A.; Lan, R.; Du, H.; Wang, T.; Shi, C.; Yuan, X.; Bai, X.; Ji, S.; et al. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China. BMC Microbiol. 2014, 14, 5. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence * | Amplicon Size (bp) | Reference |
---|---|---|---|
stx2-PS8-F | 5′-TCACYGGTTTCATCATATCTGG | 400 | This study |
stx2-PS7-R | 5′-GCCTGTCBCCASTTATCTGACA | ||
PS19 stx2f-F | 5′-GTACAGGGATGCAGATTGGGCG | 438 | This study |
PS20 stx2f-R | 5′-CTTTAATGGCCGCCCTGTCTCC | ||
PS17 eae-F | 5′-CGGCTATTTCCGCATGAGCGG | 221 | This study |
PS18 eae-R-NEW | 5′AGTTDACACCAAYWGTCRCCGC | ||
stx1 F3b | 5′-CTGATGATTGATAGTGGCACAGG | 283 | This study |
stx1 OMNI-R1 | 5′-GCGATTTATCTGCATCCCCGTAC |
Stx Subtype | CDC Isolate ID | BioSample | ST Type | O:(K):H Type | PNID | Assembly |
---|---|---|---|---|---|---|
Stx2j | 2010C-4332 | SAMN04377066 | 5662 | O158:H23 | PNUSAE001889 | GCA_012764415.1 |
Stx2j | 2012C-4221 | SAMN08579578 | 5350 | O162:H6 | None | GCA_003018235.1 |
Stx2j | 2019C-4307 | SAMN12361752 | 5736 | O32:K87:H2 | PNUSAE027323 | GCA_011901845.1 |
Stx2j | See PNUSAE | SAMN10170522 | 491 | ONT:H45 | PNUSAE018775 | GCA_003903075.2 |
Stx2j | See PNUSAE | SAMN07177511 | 5923 | O33:H14 | PNUSAE006803 | GCA_012463025.1 |
Stx2j | See PNUSAE | SAMN08595463 | 657 | O183: H18 | PNUSAE011983 | GCA_012253565.1 |
Stx2m | 2019C-3762 | SAMN11569941 | 9312 | O38:H39 | PNUSAE024072 | GCA_011950125.1 |
Stx2n * | 2013C-3244 | SAMN04578435 | 1385 | O1:K22:H4 1 | None | GCA_012711215.2 2 |
Stx2n * | 2017C-4317 | SAMN07709929 | 70 | O23:H15 | PNUSAE009425 | GCA_013342905.2 2 |
Stx2o | 2018C-3367 | SAMN08799860 | 80 | O75:H7 | PNUSAE012694 | GCA_012224845.2 2 |
Nucleotide\Amino Acid | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
stx2a | stx2b | stx2c | stx2d | stx2e | stx2f | stx2g | stx2h | stx2i | stx2j | stx2k | stx2l | stx2m | stx2n | stx2o | |
1. Stx2a | 91.9 | 98.4 | 96.9 | 92.2 | 70.8 | 94.2 | 91.7 | 93.2 | 89.5 | 94.4 | 95.5 | 93.2 | 87.9 | 89.7 | |
2. Stx2b | 95.3 | 92.2 | 93.4 | 89.4 | 70.6 | 91.4 | 92.2 | 89.2 | 89.2 | 91.3 | 90.0 | 90.6 | 87.8 | 90.2 | |
3. Stx2c | 99.2 | 95.4 | 97.4 | 91.9 | 70.5 | 93.1 | 91.7 | 92.4 | 89.6 | 94.7 | 94.8 | 92.2 | 88.1 | 89.7 | |
4. Stx2d | 98.4 | 96.0 | 98.5 | 92.1 | 70.5 | 94.0 | 92.2 | 92.9 | 90.2 | 96.1 | 94.8 | 91.5 | 88.2 | 90.2 | |
5. Stx2e | 95.2 | 94.2 | 94.9 | 95.7 | 74.8 | 92.2 | 90.2 | 94.7 | 88.3 | 93.8 | 95.0 | 88.9 | 86.9 | 88.8 | |
6. Stx2f | 81.9 | 81.2 | 81.4 | 82.0 | 84.1 | 71.4 | 71.2 | 71.3 | 71.1 | 71.0 | 71.5 | 71.1 | 72.2 | 70.4 | |
7. Stx2g | 97.0 | 95.1 | 96.5 | 97.1 | 95.9 | 82.2 | 91.9 | 94.5 | 88.2 | 92.9 | 92.8 | 91.2 | 87.0 | 89.1 | |
8. Stx2h | 95.2 | 95.3 | 95.0 | 95.6 | 94.4 | 81.8 | 95.5 | 92.0 | 92.1 | 92.8 | 91.1 | 92.1 | 91.4 | 94.1 | |
9. Stx2i | 95.9 | 93.7 | 95.4 | 96.1 | 97.3 | 82.3 | 96.5 | 95.4 | 88.6 | 96.5 | 95.1 | 90.0 | 88.1 | 89.4 | |
10. Stx2j | 93.5 | 93.2 | 93.7 | 94.2 | 92.6 | 82.7 | 92.7 | 93.5 | 92.5 | 90.6 | 89.8 | 89.2 | 88.1 | 90.9 | |
11. Stx2k | 97.2 | 95.4 | 97.3 | 98.2 | 97.2 | 82.2 | 96.8 | 95.9 | 97.9 | 94.1 | 95.5 | 90.9 | 88.1 | 90.3 | |
12. Stx2l | 96.8 | 94.1 | 96.4 | 97.1 | 97.3 | 82.3 | 96.2 | 94.7 | 97.3 | 93.9 | 97.8 | 89.9 | 87.4 | 89.9 | |
13. Stx2m | 95.7 | 95.1 | 95.3 | 95.5 | 94.3 | 82.0 | 96.1 | 94.8 | 94.5 | 92.1 | 95.0 | 93.8 | 87.7 | 88.9 | |
14. Stx2n | 93.2 | 93.1 | 93.4 | 93.6 | 92.6 | 83.9 | 93.5 | 95.0 | 93.1 | 91.8 | 93.9 | 92.4 | 93.2 | 91.4 | |
15. Stx2o | 94.3 | 94.0 | 94.5 | 94.7 | 93.6 | 81.8 | 94.5 | 96.9 | 94.3 | 92.8 | 95.2 | 93.8 | 93.8 | 94.6 |
Virulence Gene | Function | 2013C-3244 | 2017C-4317 | 2018C-3367 |
---|---|---|---|---|
stx2n | Shiga toxin 2 | + | + | − |
stx2o | Shiga toxin 2 | − | − | + |
chuA | Outer membrane hemin receptor | + | + | + |
focC | S fimbrial/F1C minor subunit | + | − | + |
fyuA * | Siderophore receptor | + | − | + |
gad | Glutamate decarboxylase | + | + | + |
iroN | Enterobactin siderophore receptor protein | + | − | + |
irp2 | High molecular weight protein 2 non-ribosomal peptide synthetase | + | − | + |
iss | Increased serum survival | + | − | + |
kpsE | Capsule polysaccharide export inner-membrane protein | + | + | + |
kpsMII_K5 | Polysialic acid transport protein; Group 2 capsule | + | + | + |
ompT | Outer membrane protease (protein protease 7) | + | − | + |
sfaD | S fimbrial/F1C minor subunit | + | − | + |
sfaS | S-fimbriae minor subunit | + | − | − |
sitA | Iron transport protein | + | + | + |
tcpC | Tir domain-containing protein | + | − | − |
terC | Tellurium ion resistance protein | + | + | + |
vat * | Vacuolating autotransporter toxin | + | − | + |
yfcV * | Fimbrial protein | + | − | + |
traT | Outer membrane protein complement resistance | − | + | − |
eilA | Salmonella HilA homolog | − | + | − |
neuC | Polysialic acid capsule biosynthesis protein | − | − | + |
clbB | Hybrid non-ribosomal peptide/polyketide megasynthase | − | − | + |
cnf1 | Cytotoxic necrotizing factor | − | − | + |
hra | Heat-resistant agglutinin | − | − | + |
ibeA | Invasin of brain endothelial cells | − | − | + |
mchB | Microcin H47 part of colicin H | − | − | + |
mchC | MchC protein | − | − | + |
mchF | ABC transporter protein MchF | − | − | + |
mcmA | Microcin M part of colicin H | − | − | + |
pic | serine protease autotransporters of Enterobacteriaceae (SPATE) | − | − | + |
usp | Uropathogenic specific protein | − | − | + |
Pathotype | STEC/UPECHM | STEC | STEC/UPECHM |
Stx Subtype | CDC Isolate ID | Log CD50/mL Supernatant | PCR Confirmation | Ciprofloxacin Induction |
---|---|---|---|---|
Stx2j | 2010C-4332 | 4.6 | + | No |
Stx2j | 2012C-4221 | 4.5 | + | Yes # |
Stx2j | 2019C-4307 | 3.4 | + | No |
Stx2m | 2019C-3762 | 3.2 | + | No |
Stx2n | 2013C-3244 | 3.2 | + | No |
Stx2n | 2017C-4317 | 2.0 ^ | + | No |
Stx2o | 2018C-3367 | 3.0 | + | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsey, R.L.; Prasad, A.; Feldgarden, M.; Gonzalez-Escalona, N.; Kapsak, C.; Klimke, W.; Melton-Celsa, A.; Smith, P.; Souvorov, A.; Truong, J.; et al. Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms 2023, 11, 2561. https://doi.org/10.3390/microorganisms11102561
Lindsey RL, Prasad A, Feldgarden M, Gonzalez-Escalona N, Kapsak C, Klimke W, Melton-Celsa A, Smith P, Souvorov A, Truong J, et al. Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms. 2023; 11(10):2561. https://doi.org/10.3390/microorganisms11102561
Chicago/Turabian StyleLindsey, Rebecca L., Arjun Prasad, Michael Feldgarden, Narjol Gonzalez-Escalona, Curtis Kapsak, William Klimke, Angela Melton-Celsa, Peyton Smith, Alexandre Souvorov, Jenny Truong, and et al. 2023. "Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States" Microorganisms 11, no. 10: 2561. https://doi.org/10.3390/microorganisms11102561
APA StyleLindsey, R. L., Prasad, A., Feldgarden, M., Gonzalez-Escalona, N., Kapsak, C., Klimke, W., Melton-Celsa, A., Smith, P., Souvorov, A., Truong, J., & Scheutz, F. (2023). Identification and Characterization of ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms, 11(10), 2561. https://doi.org/10.3390/microorganisms11102561