Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Sample Collection, Laboratory Processing, and Bacterial Identification
2.3. Multiplex-Touchdown Polymerase Chain Reaction (Multiplex Touchdown PCR) Phylotyping
2.4. Antibiotic Susceptibility Testing and Detection of Resistance Factors
2.5. Whole Genome Sequencing and Bioinformatic Tools
2.6. Statistical Analysis
3. Results
3.1. Study Population, Microbiological Results, and Confirmation of C. acnes Strains
3.2. Antimicrobial Susceptibility Test of C. acnes Isolates
3.3. Phylotyping of C. acnes Strains by Molecular Typing and Whole-Genome Sequencing
3.4. Whole Genome Sequencing of C. acnes Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitz-Gibbon, S.; Tomida, S.; Chiu, B.-H.; Nguyen, L.; Du, C.; Liu, M.; Elashoff, D.; Erfe, M.C.; Loncaric, A.; Kim, J.; et al. Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J. Investig. Dermatol. 2013, 133, 2152–2160. [Google Scholar] [CrossRef]
- Levy, O.; Iyer, S.; Atoun, E.; Peter, N.; Hous, N.; Cash, D.; Musa, F.; Narvani, A.A. Propionibacterium acnes: An underestimated etiology in the pathogenesis of osteoarthritis? J. Shoulder Elb. Surg. 2013, 22, 505–511. [Google Scholar] [CrossRef]
- Boisrenoult, P. Cutibacterium acnes prosthetic joint infection: Diagnosis and treatment. Orthop. Traumatol. Surg. Res. 2018, 104, S19–S24. [Google Scholar] [CrossRef]
- Portillo, M.E.; Corvec, S.; Borens, O.; Trampuz, A. Propionibacterium acnes: An Underestimated Pathogen in Implant-Associated Infections. BioMed Res. Int. 2013, 2013, 804391. [Google Scholar] [CrossRef]
- Gharamti, A.A.; Kanafani, Z.A. Cutibacterium (formerly Propionibacterium) acnes infections associated with implantable devices. Expert Rev. Anti-Infect. Ther. 2017, 15, 1083–1094. [Google Scholar] [CrossRef]
- Nakase, K.; Koizumi, J.; Midorikawa, R.; Yamasaki, K.; Tsutsui, M.; Aoki, S.; Nasu, Y.; Hirai, Y.; Nakaminami, H.; Noguchi, N. Cutibacterium acnes phylogenetic type IC and II isolated from patients with non-acne diseases exhibit high-level biofilm formation. Int. J. Med. Microbiol. 2021, 311, 151538. [Google Scholar] [CrossRef]
- Aubin, G.G.; Baud’Huin, M.; Lavigne, J.-P.; Brion, R.; Gouin, F.; Lepelletier, D.; Jacqueline, C.; Heymann, D.; Asehnoune, K.; Corvec, S. Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: A step toward understanding bone and joint infection development. Sci. Rep. 2017, 7, 42918. [Google Scholar] [CrossRef]
- McDowell, A. Over a Decade of recA and tly Gene Sequence Typing of the Skin Bacterium Propionibacterium acnes: What Have We Learnt? Microorganisms 2017, 6, 1. [Google Scholar] [CrossRef]
- Moore, N.F.; Batten, T.J.; Hutton, C.E.; White, W.J.; Smith, C.D. The management of the shoulder skin microbiome (Cutibacterium acnes) in the context of shoulder surgery: A review of the current literature. Shoulder Elb. 2021, 13, 592–599. [Google Scholar] [CrossRef]
- Nodzo, S.R.; Hohman, D.W.; Crane, J.K.; Duquin, T.R. Hemolysis as a clinical marker for propionibacterium acnes orthopedic infection. Am. J. Orthop. 2014, 43, E93–E97. [Google Scholar]
- McDowell, A.; Valanne, S.; Ramage, G.; Tunney, M.M.; Glenn, J.V.; McLorinan, G.C.; Bhatia, A.; Maisonneuve, J.-F.; Lodes, M.; Persing, D.H.; et al. Propionibacterium acnes Types I and II Represent Phylogenetically Distinct Groups. J. Clin. Microbiol. 2005, 43, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Tyner, H.; Patel, R. Hyaluronidase in Clinical Isolates of Propionibacterium acnes. Int. J. Bacteriol. 2015, 2015, 218918. [Google Scholar] [CrossRef] [PubMed]
- Kilian, M.; Scholz, C.F.P.; Lomholt, H.B. Multilocus Sequence Typing and Phylogenetic Analysis of Propionibacterium acnes. J. Clin. Microbiol. 2012, 50, 1158–1165. [Google Scholar] [CrossRef]
- Scholz, C.F.P.; Jensen, A.; Lomholt, H.B.; Brüggemann, H.; Kilian, M. A Novel High-Resolution Single Locus Sequence Typing Scheme for Mixed Populations of Propionibacterium acnes In Vivo. PLoS ONE 2014, 9, e104199. [Google Scholar] [CrossRef] [PubMed]
- McDowell, A.; Nagy, I.; Magyari, M.; Barnard, E.; Patrick, S. The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution. PLoS ONE 2013, 8, e70897. [Google Scholar] [CrossRef] [PubMed]
- Mayslich, C.; Grange, P.A.; Dupin, N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021, 9, 303. [Google Scholar] [CrossRef]
- McDowell, A.; Gao, A.; Barnard, E.; Fink, C.; Murray, P.I.; Dowson, C.G.; Nagy, I.; Lambert, P.A.; Patrick, S. A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. Microbiology 2011, 157 Pt 7, 1990–2003. [Google Scholar] [CrossRef]
- Brüggemann, H.; Lomholt, H.B.; Tettelin, H.; Kilian, M. CRISPR/cas Loci of Type II Propionibacterium acnes Confer Immunity against Acquisition of Mobile Elements Present in Type I P. acnes. PLoS ONE 2012, 7, e34171. [Google Scholar] [CrossRef]
- Scholz, C.F.P.; Brüggemann, H.; Lomholt, H.B.; Tettelin, H.; Kilian, M. Genome stability of Propionibacterium acnes: A comprehensive study of indels and homopolymeric tracts. Sci. Rep. 2016, 6, 20662. [Google Scholar] [CrossRef]
- Cobian, N.; Garlet, A.; Hidalgo-Cantabrana, C.; Barrangou, R. Comparative Genomic Analyses and CRISPR-Cas Characterization of Cutibacterium acnes Provide Insights into Genetic Diversity and Typing Applications. Front. Microbiol. 2021, 12, 758749. [Google Scholar] [CrossRef]
- Sivashankari, S.; Shanmughavel, P. Comparative genomics—A perspective. Bioinformation 2007, 1, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Asseray, N.; Papin, C.; Touchais, S.; Bemer, P.; Lambert, C.; Boutoille, D.; Tequi, B.; Gouin, F.; Raffi, F.; Passuti, N.; et al. Improving diagnostic criteria for Propionibacterium acnes osteomyelitis: A retrospective analysis. Scand. J. Infect. Dis. 2010, 42, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.-F.; Berthelot, P.; Fresard, A.; Cazorla, C.; Carricajo, A.; Vautrin, A.-C.; Fessy, M.-H.; Lucht, F. Arthroplastic and osteosynthetic infections due to Propionibacterium acnes: A retrospective study of 52 cases, 1995–2002. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, C.B.; Woodbridge, A.B.; Balestro, J.-C.Y.; Figtree, M.C.; Hudson, B.J.; Cass, B.; Young, A.A. Low rate of Propionibacterium acnes in arthritic shoulders undergoing primary total shoulder replacement surgery using a strict specimen collection technique. J. Shoulder Elb. Surg. 2015, 24, 1206–1211. [Google Scholar] [CrossRef]
- Boyle, K.K.; Nodzo, S.R.; Wright, T.E.; Crane, J.K.; Duquin, T.R. Hemolysis Is a Diagnostic Adjuvant for Propionibacterium acnes Orthopaedic Shoulder Infections. J. Am. Acad. Orthop. Surg. 2019, 27, 136–144. [Google Scholar] [CrossRef]
- Patel, M.S.; Singh, A.M.; Gregori, P.; Horneff, J.G.; Namdari, S.; Lazarus, M.D. Cutibacterium acnes: A threat to shoulder surgery or an orthopedic red herring? J. Shoulder Elb. Surg. 2020, 29, 1920–1927. [Google Scholar] [CrossRef]
- Barnard, E.; Nagy, I.; Hunyadkürti, J.; Patrick, S.; McDowell, A. Multiplex Touchdown PCR for Rapid Typing of the Opportunistic Pathogen Propionibacterium acnes. J. Clin. Microbiol. 2015, 53, 1149–1155. [Google Scholar] [CrossRef]
- Brazilian Committee on Antimicrobial Susceptibility Testing—BrCAST. Tabelas de Pontos de Corte Para Interpretação de CIMs e Diâmetros de Halos; Version 13; Brazilian Committee on Antimicrobial Susceptibility Testing: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Clinical and Laboratory Standards Institute. Quality Control Minimal Inhibitory Concentration (MIC) Limits for Broth Microdilution and MIC Interpretive Breakpoints; Supplement M27-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Grant, J.R.; Arantes, A.S.; Stothard, P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genom. 2012, 13, 202. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Lata, S.; Sharma, A.K.; Bagchi, S.; Kumar, M.; Sahu, S.K.; Sarkar, D.; Gupta, P.; Jana, K.; Gupta, U.D.; et al. The sensor kinase MtrB of Mycobacterium tuberculosis regulates hypoxic survival and establishment of infection. J. Biol. Chem. 2019, 294, 19862–19876. [Google Scholar] [CrossRef]
- Gannesen, A.V.; Zdorovenko, E.L.; Botchkova, E.A.; Hardouin, J.; Massier, S.; Kopitsyn, D.S.; Gorbachevskii, M.V.; Kadykova, A.A.; Shashkov, A.S.; Zhurina, M.V.; et al. Composition of the Biofilm Matrix of Cutibacterium acnes Acneic Strain RT5. Front. Microbiol. 2019, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, S.; Carlsson, J.; Mölling, P.; Gashi, N.; Andrén, O.; Andersson, S.-O.; Brzuszkiewicz, E.; Poehlein, A.; Al-Zeer, M.A.; Brinkmann, V.; et al. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue. Front. Microbiol. 2017, 8, 2241. [Google Scholar] [CrossRef]
- Bokshan, S.L.; Gomez, J.R.; Chapin, K.C.; Green, A.; Paxton, E.S. Reduced Time to Positive Cutibacterium acnes Culture Utilizing a Novel Incubation Technique: A Retrospective Cohort Study. J. Shoulder Elb. Arthroplast. 2019, 3, 2471549219840823. [Google Scholar] [CrossRef] [PubMed]
- Namdari, S.; Nicholson, T.; Abboud, J.; Lazarus, M.; Ramsey, M.L.; Williams, G.; Parvizi, J. Cutibacterium acnes is less commonly identified by next-generation sequencing than culture in primary shoulder surgery. Shoulder Elb. 2020, 12, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Garzón, A.; Cabrera, E.; Cortes-Fraile, G.C.; León, A.; Aguirre-Guataqui, K.; Linares-Linares, M.Y.; Ariza, B.; Valderrama-Beltrán, S.; Parra-Giraldo, C.M. In-house protocol and performance of MALDI-TOF MS in the early diagnosis of bloodstream infections in a fourth-level hospital in Colombia: Jumping to full use of this technology. Int. J. Infect. Dis. 2020, 101, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kametani, I.; Higaki, S.; Yamagishi, T. Identification of Propionibacterium acnes by polymerase chain reaction for amplification of 16S ribosomal RNA and lipase genes. Anaerobe 2003, 9, 5–10. [Google Scholar] [CrossRef]
- Boyle, K.K.; Marzullo, B.J.; Yergeau, D.A.; Nodzo, S.R.; Crane, J.K.; Duquin, T.R. Pathogenic genetic variations of C. acnes are associated with clinically relevant orthopedic shoulder infections. J. Orthop. Res. 2020, 38, 2731–2739. [Google Scholar] [CrossRef]
- Salar-Vidal, L.; Aguilera-Correa, J.J.; Brüggemann, H.; Achermann, Y.; Esteban, J.; ESGIAI (ESCMID Study Group for Implant-Associated Infections) for the Study of Cutibacterium Infections. Microbiological Characterization of Cutibacterium acnes Strains Isolated from Prosthetic Joint Infections. Antibiotics 2022, 11, 1260. [Google Scholar] [CrossRef]
- McLaughlin, J.; Watterson, S.; Layton, A.M.; Bjourson, A.J.; Barnard, E.; McDowell, A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019, 7, 128. [Google Scholar] [CrossRef]
- Anagnostakos, K.; Thiery, A.; Meyer, C.; Sahan, I. Positive Microbiological Findings at the Site of Presumed Aseptic Revision Arthroplasty Surgery of the Hip and Knee Joint: Is a Surgical Revision Always Necessary? BioMed Res. Int. 2020, 2020, 2162136. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, R.E.; Harrison, D.; Hsu, J.E. Cutibacterium acnes Isolates from Deep Tissue Specimens Retrieved during Revision Shoulder Arthroplasty: Similar Colony Morphology Does Not Indicate Clonality. J. Clin. Microbiol. 2020, 58, e00121-19. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, M.F.; Piper, K.E.; McDowell, A.; Patrick, S.; Mandrekar, J.N.; Rouse, M.S.; Steckelberg, J.M.; Patel, R. Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopedic implants. Diagn. Microbiol. Infect. Dis. 2009, 64, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, M.-A.; Corvec, S.; Saint-Jean, M.; Bourdès, V.; Nguyen, J.-M.; Khammari, A.; Dreno, B. Decrease in Diversity of Propionibacterium acnes Phylotypes in Patients with Severe Acne on the Back. Acta Derm. Venereol. 2018, 98, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Lomholt, H.B.; Kilian, M. Population Genetic Analysis of Propionibacterium acnes Identifies a Subpopulation and Epidemic Clones Associated with Acne. PLoS ONE 2010, 5, e12277. [Google Scholar] [CrossRef]
- Liew-Littorin, C.; Brüggemann, H.; Davidsson, S.; Nilsdotter-Augustinsson, Å.; Hellmark, B.; Söderquist, B. Clonal diversity of Cutibacterium acnes (formerly Propionibacterium acnes) in prosthetic joint infections. Anaerobe 2019, 59, 54–60. [Google Scholar] [CrossRef]
- Gong, Y.; Li, Y.; Liu, X.; Ma, Y.; Jiang, L. A review of the pangenome: How it affects our understanding of genomic variation, selection and breeding in domestic animals? J. Anim. Sci. Biotechnol. 2023, 14, 73. [Google Scholar] [CrossRef]
- Lee, J.; Quaintance, K.E.G.; Schuetz, A.N.; Shukla, D.R.; Cofield, R.H.; Sperling, J.W.; Patel, R.; Sanchez-Sotelo, J. Correlation between hemolytic profile and phylotype of Cutibacterium acnes (formerly Propionibacterium acnes) and orthopedic implant infection. Shoulder Elb. 2020, 12, 390–398. [Google Scholar] [CrossRef]
- Rocha, J.; Henriques, I.; Gomila, M.; Manaia, C.M. Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings. Sci. Rep. 2022, 12, 10441. [Google Scholar] [CrossRef]
- He, H.; Zahrt, T.C. Identification and Characterization of a Regulatory Sequence Recognized by Mycobacterium tuberculosis Persistence Regulator MprA. J. Bacteriol. 2005, 187, 202–212. [Google Scholar] [CrossRef]
- Jordan, S.; Junker, A.; Helmann, J.D.; Mascher, T. Regulation of LiaRS-Dependent Gene Expression in Bacillus subtilis: Identification of Inhibitor Proteins, Regulator Binding Sites, and Target Genes of a Conserved Cell Envelope Stress-Sensing Two-Component System. J. Bacteriol. 2006, 188, 5153–5166. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-D.; Liu, C.-J.; Huang, S.-H.; Li, X.-R.; Yang, E.; Luo, Y.-Y. Cloning, expression and characterization of two S-ribosylhomocysteine lyases from Lactobacillus plantarum YM-4-3: Implication of conserved and divergent roles in quorum sensing. Protein Expr. Purif. 2018, 145, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Corvec, S.; Guillouzouic, A.; Aubin, G.G.; Touchais, S.; Grossi, O.; Gouin, F.; Bémer, P. Rifampin-Resistant Cutibacterium (formerly Propionibacterium) namnetense Superinfection after Staphylococcus aureus Bone Infection Treatment. J. Bone Jt. Infect. 2018, 3, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Furustrand Tafin, U.; Corvec, S.; Betrisey, B.; Zimmerli, W.; Trampuz, A. Role of Rifampin against Propionibacterium acnes Biofilm In Vitro and in an Experimental Foreign-Body Infection Model. Antimicrob. Agents Chemother. 2012, 56, 1885–1891. [Google Scholar] [CrossRef]
- Both, A.; Klatte, T.O.; Lübke, A.; Büttner, H.; Hartel, M.J.; Grossterlinden, L.G.; Rohde, H. Growth of Cutibacterium acnes is common on osteosynthesis material of the shoulder in patients without signs of infection. Acta Orthop. 2018, 89, 580–584. [Google Scholar] [CrossRef]
Demographics and Clinical Characteristics | Patients | p-Value | ||
---|---|---|---|---|
C. acnes Positive on Cultures % (n = 23) | C. acnes Negative on Cultures % (n = 61) | Total % (n = 84) | ||
Gender | ||||
Male | 78 (18) | 44 (27) | 54 (45) | 0.005 |
Female | 22 (5) | 56 (34) | 46 (39) | - |
Mean age (SD # ±) | 44.6 (±16) | 54.1 (±15) | 51.5 (±17) | 0.005 |
Arthrotomy (n = 30) | 50.5 (±15.2) | 59.8 (±18.9) | 57.3 (±15) | |
Arthroscopy (n = 54) | 40.8 (±14.7) | 50.9 (±14.4) | 48.3 (±19) | |
Comorbidities and habits | ||||
Smoking habits | 13 (3) | 13.1 (8) | 13 (11) | 0.723 |
Chronic alcoholism | 13 (3) | 14.7 (9) | 14.2 (12) | 0.880 |
Cardiovascular disease | 34.7 (8) | 44.2 (27) | 41.6 (35) | 0.590 |
Diabetes mellitus | 13 (3) | 36 (22) | 29.7 (25) | 0.073 |
Types of surgery a | ||||
Arthroscopy | 47.8 (11) | 37.7 (23) | 40.5 (34) | 0.550 |
Arthrotomy | 52.2 (12) | 62.2 (38) | 59.5 (50) | - |
Type of orthopedic implant b | ||||
Metallic | 56.5 (13) | 47.5 (29) | 50 (42) | 0.833 |
Non-metallic | 43.5 (10) | 45.9 (28) | 45.2 (38) | - |
Signs of surgical site infection | 4.4 (1) | 3.2 (2) | 3.5 (3) | 0.671 |
Intraoperative abnormality | 0 (0) | 0 (0) | 0 (0) | - |
Clinical follow-up: Infection c | ||||
No evidence of infection | 95.6 (22) | 93.4 (57) | 94 (79) | 0.723 |
Probable contamination | 4.4 (1) | 3.2 (2) | 3.5 (3) | 0.671 |
Probable infection | 0 (0) | 1.6 (1) | 1.1 (1) | - |
Confirmed infection | 0 (0) | 1.6 (1) | 1.1 (1) $ | - |
Isolate ID | Sample Source | # SLST | & MLST | Virulence Factor | Biofilm Formation | CRISPR-Cas Systems | Stress Response | Resistance | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
clpS | dppB | hyl | PNAG | EF-Tu | EF-G | rcsB | luxS2 | acsA | luxS2 | casC | fucA | MprA | LiaR | mprA1 | qacA | ||||
6.1 | Bone fragment | K1 | ST69 CC72 type II | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
6.3 | Bone fragment | F1 | ST2 CC2 type IA2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
22.3 | Bone fragment | H1 | ST5 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
30.3 | Bone fragment | H1 | ST42 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
34.2 | Bursa | H1 | ST5 CC5 type IB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
42.2 | Bone fragment | H1 | ST5 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
64.1 | Bursa | H1 | ST5 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
76.1 | Bone fragment | H1 | ST5 CC5 type IB | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
83.3 | Bursa | H1 | ST5 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
CACO1 | Healthy skin | A1 | ST1 CC1 type IA1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
CACO15 | Healthy skin | H1 | ST42 CC5 type IB | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurihara, M.N.L.; Santos, I.N.M.; Eisen, A.K.A.; Caleiro, G.S.; Araújo, J.d.; Sales, R.O.d.; Pignatari, A.C.; Salles, M.J. Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity. Microorganisms 2023, 11, 2594. https://doi.org/10.3390/microorganisms11102594
Kurihara MNL, Santos INM, Eisen AKA, Caleiro GS, Araújo Jd, Sales ROd, Pignatari AC, Salles MJ. Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity. Microorganisms. 2023; 11(10):2594. https://doi.org/10.3390/microorganisms11102594
Chicago/Turabian StyleKurihara, Mariana Neri Lucas, Ingrid Nayara Marcelino Santos, Ana Karolina Antunes Eisen, Giovana Santos Caleiro, Jansen de Araújo, Romário Oliveira de Sales, Antônio Carlos Pignatari, and Mauro José Salles. 2023. "Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity" Microorganisms 11, no. 10: 2594. https://doi.org/10.3390/microorganisms11102594
APA StyleKurihara, M. N. L., Santos, I. N. M., Eisen, A. K. A., Caleiro, G. S., Araújo, J. d., Sales, R. O. d., Pignatari, A. C., & Salles, M. J. (2023). Phenotypic and Genotypic Characterization of Cutibacterium acnes Isolated from Shoulder Surgery Reveals Insights into Genetic Diversity. Microorganisms, 11(10), 2594. https://doi.org/10.3390/microorganisms11102594