Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Cultures
2.2. Experimental Design
2.3. DNA Extraction, PCR Amplification, and Illumina Miseq Pyrosequencing
2.4. Processing of Pyrosequencing Data
2.5. Statistical Analysis
2.5.1. Bacterioplankton Community Composition Analyses
2.5.2. Particle-Association Niche Index
3. Results
3.1. Effect of Surfactin on C. curvisetus
3.2. Bacterioplankton Community Composition
3.3. General Patterns of Bacterioplankton Alpha Diversity
3.4. Abundant, Rare, and Sensitive OTUs
3.5. Effect of Size Fraction, Cultivation Period, Changes in Algal Cell, and Surfactin Concentration on the Bacterioplankton Community
3.6. Lifestyle Transition of Bacterioplankton
4. Discussion
4.1. Inhibition Effect of Surfactin on Harmful Algae
4.2. Effects of Surfactin on Bacterioplankton Communities
4.3. Sensitive Bacterial Taxa Associated with Surfactin on a Temporal Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Size-Fraction | Surfactin Concentration | Cultivation Period | Raw Reads | Clean Reads | OTU Numbers |
---|---|---|---|---|---|
Particle-attached bacterioplankton | Control | 0 h | 58,626 | 57,675 | 140 |
24 h | 83,029 | 81,607 | 161 | ||
48 h | 89,206 | 87,793 | 280 | ||
72 h | 73,336 | 72,260 | 240 | ||
96 h | 66,999 | 65,830 | 214 | ||
0 mg/h | 0 h | 58,626 | 57,675 | 140 | |
24 h | 93,061 | 91,474 | 194 | ||
48 h | 86,710 | 85,373 | 312 | ||
72 h | 58,132 | 57,194 | 201 | ||
96 h | 84,574 | 83,353 | 255 | ||
2 mg/h | 0 h | 58,626 | 57,675 | 140 | |
24 h | 80,285 | 79,119 | 282 | ||
48 h | 94,814 | 93,409 | 295 | ||
72 h | 114,815 | 112,780 | 318 | ||
96 h | 69,284 | 68,173 | 228 | ||
3 mg/h | 0 h | 58,626 | 57,675 | 140 | |
24 h | 70,615 | 69,275 | 246 | ||
Free-living bacerioplankton | Control | 0 h | 70,927 | 69,692 | 300 |
24 h | 81,048 | 79,802 | 328 | ||
48 h | 85,595 | 84,288 | 458 | ||
72 h | 96,288 | 94,789 | 431 | ||
96 h | 73,925 | 72,435 | 357 | ||
0 mg/h | 0 h | 70,927 | 69,692 | 300 | |
24 h | 90,509 | 88,976 | 409 | ||
48 h | 92,050 | 90,149 | 368 | ||
72 h | 82,260 | 80,953 | 276 | ||
96 h | 105,669 | 103,971 | 331 | ||
2 mg/h | 0 h | 70,927 | 69,692 | 300 | |
24 h | 78,420 | 77,285 | 344 | ||
48 h | 92,290 | 90,956 | 209 | ||
72 h | 69,320 | 68,329 | 230 | ||
96 h | 86,369 | 85,100 | 174 | ||
3 mg/h | 0 h | 70,927 | 69,692 | 300 | |
24 h | 76,432 | 75,244 | 321 |
Life Mode | Abundance/Rare | OTU | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|---|---|
PA/FL | Abundance | Otu81 | Bacteroidetes | Cytophagia | Cytophagales | Cyclobacteriaceae | Algoriphagus |
PA | Abundance | Otu26 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Loktanella |
PA | Abundance | Otu36206 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Phyllobacteriaceae | unclassified |
PA/FL | Abundance | Otu66 | Proteobacteria | Alphaproteobacteria | Caulobacterales | Hyphomonadaceae | Oceanicaulis |
PA/FL | Abundance | Otu82 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | unclassified |
PA/FL | Abundance | Otu85 | Proteobacteria | Alphaproteobacteria | Caulobacterales | Hyphomonadaceae | Maricaulis |
PA | Rare | Otu36165 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Litoreibacter |
PA | Rare | Otu932 | Proteobacteria | Gammaproteobacteria | unclassified | unclassified | unclassified |
PA | / | Otu11054 | Bacteroidetes | Sphingobacteriia | Sphingobacteriales | Saprospiraceae | Phaeodactylibacter |
PA | / | Otu47 | Bacteroidetes | Flavobacteriia | Flavobacteriales | unclassified | unclassified |
PA | / | Otu38331 | Planctomycetes | Phycisphaerae | Phycisphaerales | Phycisphaeraceae | Phycisphaera |
PA | / | Otu34460 | Proteobacteria | Alphaproteobacteria | Rhodospirillales | Rhodospirillaceae | unclassified |
PA | / | Otu36340 | Proteobacteria | Alphaproteobacteria | Rhodospirillales | Rhodospirillaceae | Oceanibaculum |
PA | / | Otu38329 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Oceanicola |
PA | / | Otu71 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Rhizobiales_incertae_sedis | Amorphus |
PA | / | Otu194 | Proteobacteria | Gammaproteobacteria | Alteromonadales | Alteromonadaceae | Alteromonas |
FL | Abundance | Otu29 | Actinobacteria | Actinobacteria | Actinomycetales | Microbacteriaceae | Pontimonas |
FL | Abundance | Otu25 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Oceanicola |
FL | Abundance | Otu40 | Proteobacteria | Gammaproteobacteria | Gammaproteobacteria_incertae_sedis | Gammaproteobacteria_incertae_sedis_unclassified | Congregibacter |
FL | Rare | Otu38334 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Bradyrhizobiaceae | Bradyrhizobium |
FL | Rare | Otu38348 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Phyllobacteriaceae | Hoeflea |
FL | Rare | Otu38352 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Phyllobacteriaceae | unclassified |
FL | Rare | Otu38361 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Hyphomicrobiaceae | Hyphomicrobium |
FL | Rare | Otu38373 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Bradyrhizobiaceae | Bosea |
FL | / | Otu3189 | Actinobacteria | Actinobacteria | Acidimicrobiales | Acidimicrobiaceae | Ilumatobacter |
FL | / | Otu13342 | Bacteroidetes | Cytophagia | Cytophagales | Flammeovirgaceae | Fabibacter |
FL | / | Otu47 | Bacteroidetes | Flavobacteriia | Flavobacteriales | unclassified | unclassified |
FL | / | Otu3347 | Planctomycetes | Planctomycetia | Planctomycetales | Planctomycetaceae | Rhodopirellula |
FL | / | Otu34446 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | unclassified |
FL | / | Otu34460 | Proteobacteria | Alphaproteobacteria | Rhodospirillales | Rhodospirillaceae | unclassified |
FL | / | Otu36177 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | unclassified |
FL | / | Otu36181 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Sulfitobacter |
FL | / | Otu36183 | Proteobacteria | Alphaproteobacteria | Caulobacterales | Hyphomonadaceae | Glycocaulis |
FL | / | Otu36190 | Proteobacteria | Alphaproteobacteria | Rhodospirillales | Rhodospirillaceae | unclassified |
FL | / | Otu36196 | Proteobacteria | Alphaproteobacteria | unclassified | unclassified | unclassified |
FL | / | Otu36233 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Rhizobiales_incertae_sedis | Amorphus |
FL | / | Otu36340 | Proteobacteria | Alphaproteobacteria | Rhodospirillales | Rhodospirillaceae | Oceanibaculum |
FL | / | Otu38329 | Proteobacteria | Alphaproteobacteria | Rhodobacterales | Rhodobacteraceae | Oceanicola |
FL | / | Otu71 | Proteobacteria | Alphaproteobacteria | Rhizobiales | Rhizobiales_incertae_sedis | Amorphus |
FL | / | Otu194 | Proteobacteria | Gammaproteobacteria | Alteromonadales | Alteromonadaceae | Alteromonas |
FL | / | Otu204 | Proteobacteria | Gammaproteobacteria | Gammaproteobacteria_incertae_sedis | Gammaproteobacteria_incertae_sedis_unclassified | Pseudohaliea |
FL | / | Otu55 | Proteobacteria | Gammaproteobacteria | Alteromonadales | Alteromonadaceae | Aliiglaciecola |
FL | / | Otu56 | Proteobacteria | Gammaproteobacteria | Alteromonadales | Alteromonadaceae | Marinobacter |
FL | / | Otu84 | Proteobacteria | Gammaproteobacteria | Gammaproteobacteria_incertae_sedis | Gammaproteobacteria_incertae_sedis_unclassified | Pseudohaliea |
FL | / | Otu892 | Proteobacteria | Gammaproteobacteria | Oceanospirillales | unclassified | unclassified |
FL | / | Otu894 | Proteobacteria | Gammaproteobacteria | unclassified | unclassified | unclassified |
References
- Glibert, P.M.; Anderson, D.M.; Gentien, P.; Granéli, E.; Sellner, K.G. The global, complex phenomena of harmful algal blooms. Oceanography 2005, 18, 136–147. [Google Scholar] [CrossRef]
- Sengco, M.R. Prevention and control of Karenia brevis blooms. Harmful Algae 2009, 8, 623–628. [Google Scholar] [CrossRef]
- Ahn, C.Y.; Joung, S.H.; Jeon, J.W.; Kim, H.S.; Yoon, B.D.; Oh, H.K. Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnol. Lett. 2003, 25, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gong, L.; Liang, S.; Han, X.; Zhu, C.; Li, Y. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 2005, 4, 433–443. [Google Scholar] [CrossRef]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31, 488–494. [Google Scholar] [CrossRef]
- Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 1999, 51, 553–563. [Google Scholar] [CrossRef]
- Ohno, A.; Ano, T.; Shoda, M. Production of a lipopeptide antibiotic, surfactin, by recombinant Bacillus subtilis in solid state fermentation. Biotechnol. Bioeng. 1995, 47, 209–214. [Google Scholar] [CrossRef]
- Shaligram, N.S.; Singhal, R.S. Surfactin–A review on biosynthesis, fermentation, purification and applications. Food Technol. Biotechnol. 2010, 48, 119–134. [Google Scholar]
- Sun, X.X.; Choi, J.K.; Kim, E.K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. J. Exp. Mar. Biol. Ecol. 2004, 304, 35–49. [Google Scholar] [CrossRef]
- Gustafsson, S.; Hultberg, M.; Figueroa, R.I.; Rengefors, K. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 2009, 8, 857–863. [Google Scholar] [CrossRef]
- Shao, Q.; Lin, Z.; Zhou, C.; Zhu, P.; Yan, X. Succession of bacterioplankton communities over complete Gymnodinium-diatom bloom cycles. Sci. Total Environ. 2020, 709, 135951. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Sahu, B.K.; Das, A.K.; Vinithkumar, N.V.; Kirubagaran, R. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands. Environ. Monit. Assess. 2015, 187, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Treasurer, J.W.; Hannah, F.; Cox, D. Impact of a phytoplankton bloom on mortalities and feeding response of farmed Atlantic salmon, Salmo salar, in west Scotland. Aquaculture 2003, 218, 103–113. [Google Scholar] [CrossRef]
- Yang, C.Z.; Albright, L.J. Effects of the harmful diatom, Chaetoceros concavicornis on respiration of rainbow trout Oncorhynchus mykiss. Dis. Aquat. Org. 1992, 14, 105–114. [Google Scholar] [CrossRef]
- Albright, L.J.; Yang, C.Z.; Johnson, S. Sub-lethal concentrations of the harmful diatoms, Chaetoceros concavicornis and C. convolutus, increase mortality rates of penned Pacific salmon. Aquaculture 1993, 117, 215–225. [Google Scholar] [CrossRef]
- Satinsky, B.M.; Crump, B.C.; Smith, C.B.; Sharma, S.; Zielinski, B.L.; Doherty, M.; Meng, J.; Sun, S.; Medeiros, P.M.; Paul, J.H.; et al. Microspatial gene expression patterns in the Amazon River Plume. Proc. Natl. Acad. Sci. USA 2014, 111, 11085–11090. [Google Scholar] [CrossRef]
- King, G.M.; Kostka, J.E.; Hazen, T.C.; Sobecky, P.A. Microbial responses to the Deepwater Horizon oil spill: From coastal wetlands to the deep sea. Annu. Rev. Mar. Sci. USA 2015, 7, 377–401. [Google Scholar] [CrossRef]
- Stocker, R.; Seymour, J.R. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 2012, 76, 792–812. [Google Scholar] [CrossRef]
- Simon, H.M.; Smith, M.W.; Herfort, L. Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front. Microbiol. 2014, 5, 466. [Google Scholar] [CrossRef]
- Grossart, H.P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep. 2010, 2, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chao, J.; Gong, Y.; Wang, Y.; Wilhelm, S.W.; Gao, G. Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: High overlap between free-living and particle-attached assemblages. Limnol. Oceanogr. 2017, 62, 1366–1382. [Google Scholar] [CrossRef]
- Lynch, M.D.J.; Neufeld, J.D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015, 13, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Grime, J.P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 1998, 86, 902–910. [Google Scholar] [CrossRef]
- Guillard, R. Culture of Marine Invertebrate Animals; Plenum Press: New York, NY, USA; London, UK, 1975. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, 590–596. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; Hara, B.O.; Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.; Maintainer, H.W. The vegan package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- Galand, P.E.; Casamayor, E.O.; Kirchman, D.L.; Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl. Acad. Sci. USA 2009, 106, 22427–22432. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Yu, Z.; Wilkinson, D.M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 2015, 9, 2068–2077. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Gorley, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; Plymouth Marine Laboratory: Plymouth, UK, 2014. [Google Scholar]
- Salazar, G.; Cornejo-Castillo, F.M.; Borrull, E.; Díez-Vives, C.; Lara, E.; Vaqué, D.; Arrieta, J.M.; Duarte, C.M.; Gasol, J.M.; Acinas, S.G. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 2015, 24, 5692–5706. [Google Scholar] [CrossRef] [PubMed]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Alzeer, J.; Hadeed, K.A. Ethanol and its Halal status in food industries. Trends Food Sci. Technol. 2016, 100, 14–20. [Google Scholar] [CrossRef]
- El Jay, A. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum. Bull. Environ. Contam. Toxicol. 1996, 57, 191–198. [Google Scholar] [CrossRef]
- Gong, L.; Wang, X.; Li, Y.; Zhu, C. The influence of rhamnolioid on the growth of diatom and its selective algal growth inhibitory action. China Environ. Sci. 2006, 26, 96–100. [Google Scholar]
- Nielsen, L.E.; Kadavy, D.R.; Rajagopal, S.; Drijber, R.; Nickerson, K.W. Survey of extreme solvent tolerance in gram-positive cocci: Membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ. Microbiol. 2005, 71, 5171–5176. [Google Scholar] [CrossRef]
- Sheppard, J.D.; Jumarie, C.; Cooper, D.G.; Laprade, R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta (BBA) Biomembr. 1991, 1064, 13–23. [Google Scholar] [CrossRef]
- Hosono, K.; Suzuki, H. Acylpeptides, the inhibitors of cyclic adenosine 3’, 5’-monophosphate phosphodiesterase. J. Antibiot. 1983, 36, 667–673. [Google Scholar] [CrossRef]
- Lang, S.; Wagner, F. Biological activities of biosurfactants. Biosurfactants Prod. Prop. Appl. 1993, 7, 251–268. [Google Scholar]
- Li, J.; Gu, L.; Bai, S.; Wang, J.; Su, L.; Wei, B.; Zhang, L.; Fang, J. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea. Biogeosciences 2021, 18, 113–133. [Google Scholar] [CrossRef]
- Salazar, G.; Cornejo-Castillo, F.M.; Benítez-Barrios, V.; Fraile-Nuez, E.; Álvarez-Salgado, X.A.; Duarte, C.M.; Gasol, J.M.; Acinas, S.G. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016, 10, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Suter, E.A.; Pachiadaki, M.; Taylor, G.T.; Astor, Y.; Edgcomb, V.P. Free-living chemoautotrophic and particle-attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 2018, 20, 693–712. [Google Scholar] [CrossRef]
- Crespo, B.G.; Pommier, T.; Fernández-Gómez, B.; Pedrós-Alió, C. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen 2013, 2, 541–552. [Google Scholar] [CrossRef]
- Milici, M.; Vital, M.; Tomasch, J.; Badewien, T.H.; Giebel, H.A.; Plumeier, I.; Wang, H.; Pieper, D.H.; Wagner-Döbler, I.; Simon, M. Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: Evidence of dispersal limitation in the Bransfield Strait. Limnol. Oceanogr. 2017, 62, 1080–1095. [Google Scholar] [CrossRef]
- Teeling, H.; Fuchs, B.M.; Becher, D.; Klockow, C.; Gardebrecht, A.; Bennke, C.M.; Kassabgy, M.; Huang, S.; Mann, A.J.; Waldmann, J.; et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012, 336, 608–611. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Shen, L.; Chen, H.; Hou, F.; Zhou, X.; Zhang, D.; Zhu, X. Microbial community dynamics and assembly follow trajectories of an early-spring diatom bloom in a semienclosed bay. Appl. Environ. Microbiol. 2018, 84, e01000-18. [Google Scholar] [CrossRef]
- Yung, C.M.; Ward, C.S.; Davis, K.M.; Johnson, Z.I.; Hunt, D.E. Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl. Environ. Microbiol. 2016, 82, 3431. [Google Scholar] [CrossRef]
- Schmidt, M.L.; White, J.D.; Denef, V.J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 2016, 18, 1212–1226. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Sun, S.; Sharma, S.; Kiene, R.P.; Moran, M.A. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ. Microbiol. 2012, 14, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Von Scheibner, M.; Dörge, P.; Biermann, A.; Sommer, U.; Hoppe, H.G.; Jürgens, K. Impact of warming on phyto-bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ. Microbiol. 2014, 16, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Kube, M.; Teeling, H.; Richter, M.; Lombardot, T.; Allers, E.; Würdemann, C.A.; Quast, C.; Kuhl, H.; Knaust, F.; et al. Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 2006, 8, 2201–2213. [Google Scholar] [CrossRef] [PubMed]
- González, J.M.; Fernández-Gómez, B.; Fernàndez-Guerra, A.; Gómez-Consarnau, L.; Sánchez, O.; Coll-Lladó, M.; Campo, J.; Escudero, J.; Rodríguez-Martínez, R.; Alonso-Sáez, L.; et al. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl. Acad. Sci. USA 2008, 105, 8724–8729. [Google Scholar] [CrossRef] [PubMed]
- D’ambrosio, L.; Ziervogel, K.; MacGregor, B.; Teske, A.; Arnosti, C. Composition and enzymatic function of particle-associated and free-living bacteria: A coastal/offshore comparison. ISME J. 2014, 8, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Turley, C.M.; Stutt, E.D. Depth-related cell-specific bacterial leucine incorporation rates on particles and its biogeochemical significance in the Northwest Mediterranean. Limnol. Oceanogr. 2000, 45, 419–425. [Google Scholar] [CrossRef]
- Liu, S.; Riesen, A.; Liu, Z. Differentiating the role of different-sized microorganisms in peptide decomposition during incubations using size-fractioned coastal seawater. J. Exp. Mar. Biol. Ecol. 2015, 472, 97–106. [Google Scholar] [CrossRef]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef]
- Stocker, R. Marine microbes see a sea of gradients. Science 2012, 338, 628–633. [Google Scholar] [CrossRef]
- Luo, H.; Moran, M.A. How do divergent ecological strategies emerge among marine bacterioplankton lineages? Trends Microbiol. 2015, 23, 577–584. [Google Scholar] [CrossRef]
- Fortunato, C.S.; Eiler, A.; Herfort, L.; Needoba, J.A.; Peterson, T.D.; Crump, B.C. Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME J. 2013, 7, 1899–1911. [Google Scholar] [CrossRef] [PubMed]
- Pedrós-Alió, C. Marine microbial diversity: Can it be determined? Trends Microbiol. 2006, 14, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Richlen, M.L.; Sehein, T.R.; Kulis, D.M.; Anderson, D.M.; Cai, Z. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. 2018, 9, 1201. [Google Scholar] [CrossRef] [PubMed]
- Weinbauer, M.G.; Christen, R.; Höfle, M.G. The response of Vibrio-and Rhodobacter-related populations of the NW Mediterranean Sea to additions of dissolved organic matter, phages, or dilution. Microb. Ecol. 2006, 51, 336–344. [Google Scholar] [CrossRef]
- Hugerth, L.W.; Larsson, J.; Alneberg, J.; Lindh, M.V.; Legrand, C.; Pinhassi, J.; Andersson, A.F. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Giovannoni, S.J.; Thrash, J.C.; Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 2014, 8, 1553–1565. [Google Scholar] [CrossRef]
- Schindler, D.W. Whole-ecosystem experiments: Replication versus realism: The need for ecosystem-scale experiments. Ecosystems 1998, 1, 323–334. [Google Scholar] [CrossRef]
Factors | All Bacteria (n = 28) | PA Bacteria (n = 14) | FL Bacteria (n = 14) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SF | CP | AC | SC | CP | AC | SC | CP | AC | SC | |||
OTU number | 10.07 ** | 0.01 | 1.15 | 0.03 | 1.10 | 3.15 | 1.80 | 0.63 | 0.05 | 1.22 | ||
Chao 1 | 2.41 | 0.45 | 0.02 | 0.18 | 3.04 | 0.05 | 3.40 | 1.36 | 0.01 | 3.47 | ||
Shannon–Wiener | 0.32 | 2.10 | 4.39 * | 11.46 ** | 6.03 * | 5.57 * | 3.00 | 0.28 | 3.96 | 9.13 * | ||
Simpson | 0.01 | 1.90 | 3.40 | 11.26 ** | 3.33 | 0.91 | 2.37 | 0.36 | 2.34 | 9.50 ** |
PERMANOVA | ALL | PA | FL | ||||
---|---|---|---|---|---|---|---|
All | Abundant | Rare | All | Abundant | Rare | ||
Size-fraction | 0.238 ** | - | - | - | - | - | - |
Cultivation period | 0.065 | 0.371 | 0.228 * | 0.127 ** | 0.277 | 0.063 | 0.095 |
Changes in algal cell | 0.04 | 0.11 | 0.13 | 0.19 * | 0.07 | 0.05 | 0.08 |
Surfactin concentration | 0.138 ** | 0.320 * | 0.339 ** | 0.109 * | 0.445 ** | 0.359 ** | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Q.; Zhu, Z.; Zhou, C. Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure. Microorganisms 2023, 11, 2596. https://doi.org/10.3390/microorganisms11102596
Shao Q, Zhu Z, Zhou C. Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure. Microorganisms. 2023; 11(10):2596. https://doi.org/10.3390/microorganisms11102596
Chicago/Turabian StyleShao, Qianwen, Zhujun Zhu, and Chengxu Zhou. 2023. "Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure" Microorganisms 11, no. 10: 2596. https://doi.org/10.3390/microorganisms11102596
APA StyleShao, Q., Zhu, Z., & Zhou, C. (2023). Alteration in Community Dynamics of Chaetoceros curvisetus and Bacterioplankton Communities in Response to Surfactin Exposure. Microorganisms, 11(10), 2596. https://doi.org/10.3390/microorganisms11102596