Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Culture Conditions
2.2. Reagents
2.3. Antifungal Susceptibility Assay
2.4. Synergy Assay
2.5. Sequence Alignment and Inhibitor Binding Site Identification
2.6. Physicochemical and ADME Properties Prediction
3. Results
3.1. Antifungal Activity of Human Hsp90 Inhibitors
3.1.1. N-Terminal Domain Inhibitors
3.1.2. C-Terminal Domain Inhibitors
3.1.3. Combination with Fluconazole and Caspofungin
3.2. Physicochemical Properties of Human Hsp90 Inhibitors
3.3. Binding Sites of Human Hsp90 Inhibitors in Candida
3.3.1. Multiple Sequences Alignment
3.3.2. Computational Models Comparison
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef]
- Lortholary, O.; Desnos-Ollivier, M.; Sitbon, K.; Fontanet, A.; Bretagne, S.; Dromer, F.; French Mycosis Study Group. Recent Exposure to Caspofungin or Fluconazole Influences the Epidemiology of Candidemia: A Prospective Multicenter Study Involving 2441 Patients. Antimicrob. Agents Chemother. 2011, 55, 532–538. [Google Scholar] [CrossRef]
- Pfaller, M.A. Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates With Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Ostrowsky, B.; Greenko, J.; Adams, E.; Quinn, M.; O’Brien, B.; Chaturvedi, V.; Berkow, E.; Vallabhaneni, S.; Forsberg, K.; Chaturvedi, S.; et al. Candida Auris Isolates Resistant to Three Classes of Antifungal Medications—New York, 2019. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 6–9. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Chen, B.; Zhong, D.; Monteiro, A. Comparative Genomics and Evolution of the HSP90 Family of Genes across All Kingdoms of Organisms. BMC Genom. 2006, 7, 156. [Google Scholar] [CrossRef]
- Meyer, P.; Prodromou, C.; Hu, B.; Vaughan, C.; Roe, S.M.; Panaretou, B.; Piper, P.W.; Pearl, L.H. Structural and Functional Analysis of the Middle Segment of Hsp90: Implications for ATP Hydrolysis and Client Protein and Cochaperone Interactions. Mol. Cell 2003, 11, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Csermely, P.; Kahn, C.R. The 90-Kda Heat Shock Protein (Hsp-90) Possesses an ATP Binding Site and Autophosphorylating Activity. J. Biol. Chem. 1991, 266, 4943–4950. [Google Scholar] [CrossRef] [PubMed]
- Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 Chaperone Machinery. Nat. Rev. Mol. Cell Biol. 2017, 18, 345–360. [Google Scholar] [CrossRef]
- Jhaveri, K.; Taldone, T.; Modi, S.; Chiosis, G. Advances in the Clinical Development of Heat Shock Protein 90 (Hsp90) Inhibitors in Cancers. Biochim. Biophys. Acta BBA Mol. Cell Res. 2012, 1823, 742–755. [Google Scholar] [CrossRef]
- Bohush, A.; Bieganowski, P.; Filipek, A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 4976. [Google Scholar] [CrossRef] [PubMed]
- Geller, R.; Taguwa, S.; Frydman, J. Broad Action of Hsp90 as a Host Chaperone Required for Viral Replication. Biochim. Biophys. Acta 2012, 1823, 698–706. [Google Scholar] [CrossRef]
- Sun, H.; Zhuo, X.; Zhao, X.; Yang, Y.; Chen, X.; Yao, C.; Du, A. The Heat Shock Protein 90 of Toxoplasma Gondii Is Essential for Invasion of Host Cells and Tachyzoite Growth. Parasite 2017, 24, 22. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.V.; Agatsuma, T.; Nakano, H. Targeting of the Protein Chaperone, HSP90, by the Transformation Suppressing Agent, Radicicol. Oncogene 1998, 16, 2639–2645. [Google Scholar] [CrossRef]
- Kitson, R.R.A.; Moody, C.J. Learning from Nature: Advances in Geldanamycin- and Radicicol-Based Inhibitors of Hsp90. J. Org. Chem. 2013, 78, 5117–5141. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, A.; Blagg, B.S.J. Novobiocin and Additional Inhibitors of the Hsp90 C-Terminal Nucleotide-Binding Pocket. Curr. Med. Chem. 2008, 15, 2702–2717. [Google Scholar] [CrossRef]
- Zhao, H.; Brandt, G.E.; Galam, L.; Matts, R.L.; Blagg, B.S.J. Identification and Initial SAR of Silybin: An Hsp90 Inhibitor. Bioorg. Med. Chem. Lett. 2011, 21, 2659–2664. [Google Scholar] [CrossRef]
- Oh, S.H.; Woo, J.K.; Yazici, Y.D.; Myers, J.N.; Kim, W.-Y.; Jin, Q.; Hong, S.S.; Park, H.-J.; Suh, Y.-G.; Kim, K.-W.; et al. Structural Basis for Depletion of Heat Shock Protein 90 Client Proteins by Deguelin. J. Natl. Cancer Inst. 2007, 99, 949–961. [Google Scholar] [CrossRef]
- Nguyen, C.-T.; Ann, J.; Sahu, R.; Byun, W.S.; Lee, S.; Nam, G.; Park, H.-J.; Park, S.; Kim, Y.-J.; Kim, J.Y.; et al. Discovery of Novel Anti-Breast Cancer Agents Derived from Deguelin as Inhibitors of Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett. 2020, 30, 127374. [Google Scholar] [CrossRef]
- Moses, M.A.; Henry, E.C.; Ricke, W.A.; Gasiewicz, T.A. The Heat Shock Protein 90 Inhibitor, Epigallocatechin Gallate, Has Anti-Cancer Activity in a Novel Human Prostate Cancer Progression Model. Cancer Prev. Res. 2015, 8, 249–257. [Google Scholar] [CrossRef]
- Cowen, L.E.; Lindquist, S. Hsp90 Potentiates the Rapid Evolution of New Traits: Drug Resistance in Diverse Fungi. Science 2005, 309, 2185–2189. [Google Scholar] [CrossRef]
- O’Meara, T.R.; Robbins, N.; Cowen, L.E. The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends Microbiol. 2017, 25, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Iyer, K.R.; Pardeshi, L.; Muñoz, J.F.; Robbins, N.; Cuomo, C.A.; Wong, K.H.; Cowen, L.E. Genetic Analysis of Candida auris Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance. mBio 2019, 10, e02529-18. [Google Scholar] [CrossRef]
- Kaneko, Y.; Ohno, H.; Imamura, Y.; Kohno, S.; Miyazaki, Y. The Effects of an Hsp90 Inhibitor on the Paradoxical Effect. Jpn. J. Infect. Dis. 2009, 62, 392–393. [Google Scholar] [CrossRef] [PubMed]
- Singh-Babak, S.D.; Babak, T.; Diezmann, S.; Hill, J.A.; Xie, J.L.; Chen, Y.-L.; Poutanen, S.M.; Rennie, R.P.; Heitman, J.; Cowen, L.E. Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida Glabrata. PloS Pathog. 2012, 8, e1002718. [Google Scholar] [CrossRef] [PubMed]
- Whitesell, L.; Robbins, N.; Huang, D.S.; McLellan, C.A.; Shekhar-Guturja, T.; LeBlanc, E.V.; Nation, C.S.; Hui, R.; Hutchinson, A.; Collins, C.; et al. Structural Basis for Species-Selective Targeting of Hsp90 in a Pathogenic Fungus. Nat. Commun. 2019, 10, 402. [Google Scholar] [CrossRef]
- Li, L.; An, M.; Shen, H.; Huang, X.; Yao, X.; Liu, J.; Zhu, F.; Zhang, S.; Chen, S.; He, L.; et al. The Non-Geldanamycin Hsp90 Inhibitors Enhanced the Antifungal Activity of Fluconazole. Am. J. Transl. Res. 2015, 7, 2589–2602. [Google Scholar]
- Singh, S.D.; Robbins, N.; Zaas, A.K.; Schell, W.A.; Perfect, J.R.; Cowen, L.E. Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida Albicans via Calcineurin. PloS Pathog. 2009, 5, e1000532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, W.; Tan, J.; Sun, Y.; Wan, Z.; Li, R. Antifungal Activity of Geldanamycin Alone or in Combination with Fluconazole against Candida Species. Mycopathologia 2013, 175, 273–279. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Rezaie, S.; Daie Ghazvini, R.; Hashemi, S.J.; Badali, H.; Foroumadi, A.; Diba, K.; Chowdhary, A.; Meis, J.F.; Khodavaisy, S. In Vitro Interaction of Geldanamycin with Triazoles and Echinocandins Against Common and Emerging Candida Species. Mycopathologia 2019, 184, 607–613. [Google Scholar] [CrossRef]
- Cowen, L.E.; Singh, S.D.; Köhler, J.R.; Collins, C.; Zaas, A.K.; Schell, W.A.; Aziz, H.; Mylonakis, E.; Perfect, J.R.; Whitesell, L.; et al. Harnessing Hsp90 Function as a Powerful, Broadly Effective Therapeutic Strategy for Fungal Infectious Disease. Proc. Natl. Acad. Sci. USA 2009, 106, 2818–2823. [Google Scholar] [CrossRef] [PubMed]
- Rakelly de Oliveira, D.; Relison Tintino, S.; Morais Braga, M.F.B.; Boligon, A.A.; Linde Athayde, M.; Douglas Melo Coutinho, H.; de Menezes, I.R.A.; Fachinetto, R. In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin. BioMed Res. Int. 2015, 2015, 292797. [Google Scholar] [CrossRef]
- Chen, M.; Zhai, L.; Arendrup, M.C. In Vitro Activity of 23 Tea Extractions and Epigallocatechin Gallate against Candida Species. Med. Mycol. 2015, 53, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, J.M.; Irshad, M.; Shreaz, S.; Karched, M. Synergistic Effects of Tea Polyphenol Epigallocatechin 3-O-Gallate and Azole Drugs against Oral Candida Isolates. J. Mycol. Med. 2019, 29, 158–167. [Google Scholar] [CrossRef]
- Marcyk, P.T.; LeBlanc, E.V.; Kuntz, D.A.; Xue, A.; Ortiz, F.; Trilles, R.; Bengtson, S.; Kenney, T.M.G.; Huang, D.S.; Robbins, N.; et al. Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. J. Med. Chem. 2021, 64, 1139–1169. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wu, T.; Liu, L.; Jiang, H.; Zhang, Y.; Cui, H.; Sun, Y.; Qin, Q.; Sun, Y.; Gao, Z.; et al. Species-Selective Targeting of Fungal Hsp90: Design, Synthesis, and Evaluation of Novel 4,5-Diarylisoxazole Derivatives for the Combination Treatment of Azole-Resistant Candidiasis. J. Med. Chem. 2022, 65, 5539–5564. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; de Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef]
- Walker, L.A.; Gow, N.A.R.; Munro, C.A. Elevated Chitin Content Reduces the Susceptibility of Candida Species to Caspofungin. Antimicrob. Agents Chemother. 2013, 57, 146–154. [Google Scholar] [CrossRef]
- Ene, I.V.; Adya, A.K.; Wehmeier, S.; Brand, A.C.; MacCallum, D.M.; Gow, N.A.R.; Brown, A.J.P. Host Carbon Sources Modulate Cell Wall Architecture, Drug Resistance and Virulence in a Fungal Pathogen. Cell. Microbiol. 2012, 14, 1319–1335. [Google Scholar] [CrossRef]
- Chew, S.Y.; Ho, K.L.; Cheah, Y.K.; Sandai, D.; Brown, A.J.P.; Than, L.T.L. Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Candida glabrata. Int. J. Mol. Sci. 2019, 20, 3172. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.; Sood, P.; Lenardon, M.D.; Milne, G.; Olson, J.; Jensen, G.; Wolf, J.; Casadevall, A.; Adler-Moore, J.; Gow, N.A.R. The Viscoelastic Properties of the Fungal Cell Wall Allow Traffic of AmBisome as Intact Liposome Vesicles. mBio 2018, 9, e02383-17. [Google Scholar] [CrossRef]
- Walker, L.A.; Munro, C.A. Caspofungin Induced Cell Wall Changes of Candida Species Influences Macrophage Interactions. Front. Cell. Infect. Microbiol. 2020, 10, 164. [Google Scholar] [CrossRef]
- Burt, E.T.; Daly, R.; Hoganson, D.; Tsirulnikov, Y.; Essmann, M.; Larsen, B. Isolation and Partial Characterization of Hsp90 from Candida Albicans. Ann. Clin. Lab. Sci. 2003, 33, 86–93. [Google Scholar] [PubMed]
- Galocha, M.; Costa, I.V.; Teixeira, M.C. Carrier-Mediated Drug Uptake in Fungal Pathogens. Genes 2020, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Loge, C.; Besse, B.; Hennequin, C.; Le Pape, P. Screening for Amino Acid Substitutions in the Candida Albicans Erg11 Protein of Azole-Susceptible and Azole-Resistant Clinical Isolates: New Substitutions and a Review of the Literature. Diagn. Microbiol. Infect. Dis. 2010, 66, 373–384. [Google Scholar] [CrossRef]
- Ceballos Garzon, A.; Amado, D.; Robert, E.; Parra Giraldo, C.M.; Le Pape, P. Impact of Calmodulin Inhibition by Fluphenazine on Susceptibility, Biofilm Formation and Pathogenicity of Caspofungin-Resistant Candida glabrata. J. Antimicrob. Chemother. 2020, 75, 1187–1193. [Google Scholar] [CrossRef]
- Pape, P.L.; Pagniez, F.; Abdala, H. A New Automatized Fluorometric Assay for Anti-Leishmania Drug Screening. Acta Parasitol. 2002, 47, 79–81. [Google Scholar]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Elion, G.B.; Singer, S.; Hitchings, G.H. Antagonists of Nucleic Acid Derivatives. VIII Synergism in Combinations of Biochemically Related Antimetabolites. J. Biol. Chem. 1954, 208, 477–488. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, Antagonism, and What the Chequerboard Puts between Them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Jiang, B.; Ketela, T.; Lemieux, S.; Veillette, K.; Martel, N.; Davison, J.; Sillaots, S.; Trosok, S.; Bachewich, C.; et al. Genome-Wide Fitness Test and Mechanism-of-Action Studies of Inhibitory Compounds in Candida Albicans. PLoS Pathog. 2007, 3, e92. [Google Scholar] [CrossRef]
- Mansfield, B.E.; Oltean, H.N.; Oliver, B.G.; Hoot, S.J.; Leyde, S.E.; Hedstrom, L.; White, T.C. Azole Drugs Are Imported By Facilitated Diffusion in Candida Albicans and Other Pathogenic Fungi. PLoS Pathog. 2010, 6, e1001126. [Google Scholar] [CrossRef] [PubMed]
- Campoli, P.; Perlin, D.S.; Kristof, A.S.; White, T.C.; Filler, S.G.; Sheppard, D.C. Pharmacokinetics of Posaconazole Within Epithelial Cells and Fungi: Insights Into Potential Mechanisms of Action During Treatment and Prophylaxis. J. Infect. Dis. 2013, 208, 1717–1728. [Google Scholar] [CrossRef]
- Ali, M.M.U.; Roe, S.M.; Vaughan, C.; Meyer, P.; Panaretou, B.; Piper, P.W.; Prodromou, C.; Pearl, L.H. Crystal Structure of an Hsp90-Nucleotide-P23/Sba1 Closed Chaperone Complex. Nature 2006, 440, 1013–1017. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Xu, C.; Yu, F.; Zhou, H.; Zhao, Y.; Zhang, J.; Cai, J.; Mao, C.; Tang, L.; et al. Structure Insights into Mechanisms of ATP Hydrolysis and the Activation of Human Heat-Shock Protein 90. Acta Biochim. Biophys. Sin. 2012, 44, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, C.E.; Russo, A.A.; Schneider, C.; Rosen, N.; Hartl, F.U.; Pavletich, N.P. Crystal Structure of an Hsp90-Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent. Cell 1997, 89, 239–250. [Google Scholar] [CrossRef]
- Millson, S.H.; Chua, C.-S.; Roe, S.M.; Polier, S.; Solovieva, S.; Pearl, L.H.; Sim, T.-S.; Prodromou, C.; Piper, P.W. Features of the Streptomyces Hygroscopicus HtpG Reveal How Partial Geldanamycin Resistance Can Arise with Mutation to the ATP Binding Pocket of a Eukaryotic Hsp90. FASEB J. 2011, 25, 3828–3837. [Google Scholar] [CrossRef]
- Roe, S.M.; Prodromou, C.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Structural Basis for Inhibition of the Hsp90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin. J. Med. Chem. 1999, 42, 260–266. [Google Scholar] [CrossRef]
- Austin, C.; Pettit, S.N.; Magnolo, S.K.; Sanvoisin, J.; Chen, W.; Wood, S.P.; Freeman, L.D.; Pengelly, R.J.; Hughes, D.E. Fragment Screening Using Capillary Electrophoresis (CEfrag) for Hit Identification of Heat Shock Protein 90 ATPase Inhibitors. J. Biomol. Screen. 2012, 17, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Brough, P.A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J.E.; Cheung, K.-M.J.; Collins, I.; Davies, N.G.M.; Drysdale, M.J.; et al. 4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. J. Med. Chem. 2008, 51, 196–218. [Google Scholar] [CrossRef]
- Ernst, J.T.; Liu, M.; Zuccola, H.; Neubert, T.; Beaumont, K.; Turnbull, A.; Kallel, A.; Vought, B.; Stamos, D. Correlation between Chemotype-Dependent Binding Conformations of HSP90α/β and Isoform Selectivity-Implications for the Structure-Based Design of HSP90α/β Selective Inhibitors for Treating Neurodegenerative Diseases. Bioorg. Med. Chem. Lett. 2014, 24, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, J.C.; Hills, T.; Senisterra, G.; Wernimont, A.K.; Mackenzie, C.; Norcross, N.R.; Ferguson, M.A.J.; Wyatt, P.G.; Gilbert, I.H.; Hui, R. Exploring the Trypanosoma Brucei Hsp83 Potential as a Target for Structure Guided Drug Design. PLoS Negl. Trop. Dis. 2013, 7, e2492. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Van de Water, R.; Hong, K.; Lamer, R.B.; Weichert, K.W.; Sandoval, C.M.; Kasibhatla, S.R.; Boehm, M.F.; Chao, J.; Lundgren, K.; et al. EC144 Is a Potent Inhibitor of the Heat Shock Protein 90. J. Med. Chem. 2012, 55, 7786–7795. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Thwin, A.C.; Nadel, C.M.; Tse, E.; Gates, S.N.; Gestwicki, J.E.; Southworth, D.R. The Structure of an Hsp90-Immunophilin Complex Reveals Cochaperone Recognition of the Client Maturation State. Mol. Cell 2021, 81, 3496–3508.e5. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Sgobba, M.; Degliesposti, G.; Ferrari, A.M.; Rastelli, G. Structural Models and Binding Site Prediction of the C-Terminal Domain of Human Hsp90: A New Target for Anticancer Drugs. Chem. Biol. Drug Des. 2008, 71, 420–433. [Google Scholar] [CrossRef]
- Sgobba, M.; Forestiero, R.; Degliesposti, G.; Rastelli, G. Exploring the Binding Site of C-Terminal Hsp90 Inhibitors. J. Chem. Inf. Model. 2010, 50, 1522–1528. [Google Scholar] [CrossRef]
- Matts, R.L.; Dixit, A.; Peterson, L.B.; Sun, L.; Voruganti, S.; Kalyanaraman, P.; Hartson, S.D.; Verkhivker, G.M.; Blagg, B.S.J. Elucidation of the Hsp90 C-Terminal Inhibitor Binding Site. ACS Chem. Biol. 2011, 6, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Cuyàs, E.; Verdura, S.; Micol, V.; Joven, J.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Revisiting Silibinin as a Novobiocin-like Hsp90 C-Terminal Inhibitor: Computational Modeling and Experimental Validation. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2019, 132, 110645. [Google Scholar] [CrossRef]
- Gorska, M.; Popowska, U.; Sielicka-Dudzin, A.; Kuban-Jankowska, A.; Sawczuk, W.; Knap, N.; Cicero, G.; Wozniak, F. Geldanamycin and Its Derivatives as Hsp90 Inhibitors. Front. Biosci. Landmark Ed. 2012, 17, 2269–2277. [Google Scholar] [CrossRef]
- Shen, C.-H.; Hsieh, C.-C.; Jiang, K.-Y.; Lin, C.-Y.; Chiang, N.-J.; Li, T.-W.; Yen, C.-T.; Chen, W.-J.; Hwang, D.-Y.; Chen, L.-T. AUY922 Induces Retinal Toxicity through Attenuating TRPM1. J. Biomed. Sci. 2021, 28, 55. [Google Scholar] [CrossRef]
- Soti, C.; Vermes, A.; Haystead, T.A.J.; Csermely, P. Comparative Analysis of the ATP-Binding Sites of Hsp90 by Nucleotide Affinity Cleavage: A Distinct Nucleotide Specificity of the C-Terminal ATP-Binding Site. Eur. J. Biochem. 2003, 270, 2421–2428. [Google Scholar] [CrossRef]
- Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018, 10, 1936. [Google Scholar] [CrossRef] [PubMed]
- Morio, F.; Pagniez, F.; Besse, M.; Gay-andrieu, F.; Miegeville, M.; Le Pape, P. Deciphering Azole Resistance Mechanisms with a Focus on Transcription Factor-Encoding Genes TAC1, MRR1 and UPC2 in a Set of Fluconazole-Resistant Clinical Isolates of Candida albicans. Int. J. Antimicrob. Agents 2013, 42, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Piper, P.W.; Millson, S.H. Mechanisms of Resistance to Hsp90 Inhibitor Drugs: A Complex Mosaic Emerges. Pharmaceuticals 2011, 4, 1400–1422. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Jiang, Y.; Lee, H.F.; Schwartz, S.J.; Sun, D. (-)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Mol. Pharm. 2009, 6, 1152–1159. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, K.Y.; Kim, Y.W.; Choi, Y.J.; Lee, J.-E.; Choi, C.M.; Baek, I.-J.; Rho, J.K.; Lee, J.C. P-Glycoprotein Confers Acquired Resistance to 17-DMAG in Lung Cancers with an ALK Rearrangement. BMC Cancer 2015, 15, 553. [Google Scholar] [CrossRef]
- Zhang, H.; Neely, L.; Lundgren, K.; Yang, Y.-C.; Lough, R.; Timple, N.; Burrows, F. BIIB021, a Synthetic Hsp90 Inhibitor, Has Broad Application against Tumors with Acquired Multidrug Resistance. Int. J. Cancer 2010, 126, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Jodoin, J.; Demeule, M.; Béliveau, R. Inhibition of the Multidrug Resistance P-Glycoprotein Activity by Green Tea Polyphenols. Biochim. Biophys. Acta BBA Mol. Cell Res. 2002, 1542, 149–159. [Google Scholar] [CrossRef]
- Dinić, J.; Podolski-Renić, A.; Jovanović, M.; Musso, L.; Tsakovska, I.; Pajeva, I.; Dallavalle, S.; Pešić, M. Novel Heat Shock Protein 90 Inhibitors Suppress P-Glycoprotein Activity and Overcome Multidrug Resistance in Cancer Cells. Int. J. Mol. Sci. 2019, 20, 4575. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, N.; Xia, D.; Xu, S.; Dai, W.; Tong, Y.; Wang, L.; Jiang, Z.; You, Q.; Xu, X. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chem. Biol. 2021, 28, 1446–1459.e6. [Google Scholar] [CrossRef] [PubMed]
Species | Isolates | IC50 (µM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VRC | GA | RA | NVP-AUY922 | SNX-5422 | BIIB021 | EGCG | SIL | DG | NB | ||
C. albicans | SC5314 | <0.25 | 24.0 ± 6.2 | 27.5 ± 2.9 | 18.0 ± 3.8 | >100 | >100 | 18.0 ± 3.8 | >100 | >100 | >100 |
CAAL118 | <0.25 | 28.6 ± 5.3 | >100 | 34.4 ± 13.2 | >100 | >100 | 35.3 ± 10.7 | >100 | >100 | >100 | |
CAAL16 | <0.25 | 20.3 ± 1.2 | 32.4 ± 7.5 | 36.0 ± 6.9 | >100 | >100 | 32.9 ± 5.5 | >100 | >100 | >100 | |
CAAL93 | <0.25 | 17.9 ± 7.1 | 25.2 ± 5.3 | 34.4 ± 4.1 | >100 | >100 | 15.1 ± 11.7 | >100 | >100 | >100 | |
CAAL97 | <0.25 | 29.8 ± 0.7 | 37.4 ± 3.4 | 37.7 ± 3.2 | 51.8 ± 7.2 | >100 | 29.1 ± 7.5 | >100 | >100 | >100 | |
CAAL2 | >25 | 3.5 ± 1.2 | 49.4 ± 8.5 | 47.3 ± 15.2 | 55.1 ± 6.1 | >100 | 58.1 ± 17.7 | >100 | >100 | >100 | |
CAAL28 | >25 | 24.9 ± 9.3 | >100 | >100 | >100 | >100 | 48.8 ± 4.9 | >100 | >100 | >100 | |
CAAL111 | ND | 23.3 ± 2.2 | >100 | >100 | >100 | >100 | 30.4 ± 8.1 | >100 | >100 | >100 | |
CAAL117 | ND | 25.3 ± 0.9 | >100 | 38.5 ± 7.9 | >100 | >100 | 28.6 ± 10.3 | >100 | >100 | >100 | |
Mean ± SD | - | 14.0 ± 11.3 | - | - | - | >100 | 35.4 ± 15.7 | >100 | >100 | >100 | |
C. glabrata | CAGL1 | 7.10 ± 2.28 | >10 | >100 | >100 | >100 | >100 | 2.9 ± 1.1 | >100 | >100 | >100 |
CAGL2 | <0.25 | >10 | >100 | >100 | >100 | >100 | 3.3 ± 2.1 | >100 | >100 | >100 | |
CAGL3 | <0.25 | >10 | >100 | >100 | >100 | >100 | 3.8 ± 1.5 | >100 | >100 | >100 | |
CAGL4 | <0.25 | >10 | 53.1 ± 13.8 | >100 | >100 | >100 | 4.8 ± 3.6 | >100 | >100 | >100 | |
CAGL22 | ND | 6.4 ± 0.3 | >100 | >100 | >100 | >100 | 1.59 ± 1.45 | >100 | >100 | >100 | |
CAGL27 | ND | 10.6 ± 4.5 | >100 | >100 | >100 | >100 | 0.82 ± 0.19 | >100 | >100 | >100 | |
Mean ± SD | - | - | - | >100 | >100 | >100 | 3.12 ± 2.34 | >100 | >100 | >100 | |
C. tropicalis | CATR1 | <0.25 | 29.1 ± 2.1 | >100 | >100 | >100 | >100 | 22.3 ± 5.4 | >100 | >100 | >100 |
CATR2 | <0.25 | 33.1 ± 2.1 | >100 | 66.4 ± 14.2 | >100 | >100 | 31.6 ± 6.3 | >100 | >100 | >100 | |
CATR3 | 2.79 ± 0.25 | 32.3 ± 2.9 | >100 | 34.9 ± 4.3 | >100 | >100 | 52.0 ± 14.2 | >100 | >100 | >100 | |
CATR4 | 25.4 ± 5.33 | 29.0 ± 4.9 | >100 | 30.9 ± 3.9 | >100 | >100 | 56.8 ± 14.8 | >100 | >100 | >100 | |
Mean ± SD | - | 30.9 ± 3.6 | >100 | - | >100 | >100 | 39.0 ± 14.8 | >100 | >100 | >100 | |
C. parapsilosis | CAPA1 | 7.61 ± 3.04 | 21.6 ± 3.1 | >100 | 42.5 ± 6.8 | >100 | >100 | 15.5 ± 5.0 | >100 | >100 | >100 |
CAPA17 | <0.25 | 11.7 ± 9.4 | 32.7 ± 2.3 | 30.3 ± 1.6 | >100 | >100 | >100 | >100 | >100 | >100 | |
CAPA2 | 5.33 ± 2.79 | 9.6 ± 5.6 | >100 | >100 | >100 | >100 | 18.1 ± 8.0 | >100 | >100 | >100 | |
CAPA3 | <0.25 | 10.4 ± 8.3 | 30.8 ± 5.0 | 25.8 ± 3.8 | >100 | >100 | >100 | >100 | >100 | >100 | |
Mean ± SD | - | 12.1 ± 8.0 | - | - | >100 | >100 | - | >100 | >100 | >100 | |
C. krusei | CAKR1 | <0.25 | 26.2 ± 2.2 | >100 | 30.5 ± 2.8 | >100 | >100 | 3.9 ± 0.9 | >100 | >100 | >100 |
CAKR2 | <0.25 | >10 | >100 | 28.8 ± 10.2 | >100 | >100 | 2.5 ± 0.7 | >100 | >100 | >100 | |
CAKR3 | <0.25 | 22.3 ± 7.6 | >100 | 35.4 ± 5.4 | >100 | >100 | 3.0 ± 0.5 | >100 | >100 | >100 | |
CAKR4 | 0.46 ± 0.00 | 27.8 ± 4.2 | >100 | 32.5 ± 2.3 | >100 | >100 | 5.3 ± 3.4 | >100 | >100 | >100 | |
Mean ± SD | - | - | >100 | 32.2 ± 5.2 | >100 | >100 | 3.8 ± 2.1 | >100 | >100 | >100 |
Isolates | Species | IC50 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FLC a | FLC/GA b | FICI c | FLC/RA b | FICI | FLC/AUY922 b | FICI | FLC/SNX-5422 b | FICI | FLC/EGCG b | FICI | ||
C. albicans | CAAL2 | 101 | 0.9/1 | 0.44 | 0.9/10 | 0.25 | 0.9/10 | 0.32 | 0.9/10 | 0.21 | 0.9/10 | 0.26 |
CSP a | CSP/GA b | FICI c | CSP/RA b | FICI | CSP/AUY922 b | FICI | CSP/SNX5422 b | FICI | CSP/EGCG b | FICI | ||
C. glabrata | CAGL22 | 5 | 0.18/10 | 1.8 | 0.24/100 | 1.1 | 0.74/100 | 1.3 | 5/101 | NI | 0.68/0.5 | 3.8 |
CAGL27 | 5 | 0.20/10 | 1.8 | 0.24/100 | 1.1 | 0.63/100 | 1.5 | 5/101 | NI | 0.23/0.25 | 0.46 |
Compounds | Target Location | Mechanism for Drug Entry in Cell | MW a | Log Po/w b | Log S c | Drug-Likeness d |
---|---|---|---|---|---|---|
Micafungin | Cell membrane | Extracellular target | 1270.27 | −3.04 (exp.: 0) | −6.63 ± 1.86 poorly soluble | No |
Caspofungin | Cell membrane | Extracellular target | 1093.31 | −1.82 (exp.: 0) | −6.38 ± 1.89 poorly soluble | No |
Amphotericin B | Cell membrane | Extracellular target | 924.08 | −0.39 (exp.: 0.8) | −2.88 ± 5.11 soluble | No |
Anidulafungin | Cell membrane | Extracellular target | 1140.24 | −0.34 (exp.: 2.9) | −8.57 ± 1.20 poorly soluble | No |
Flucytosine | Nucleus | Purine/cytosine permease Fcy2 and homologous [53] | 129.09 | 0 (exp.: −1.1) | −0.73 ± 0.65 very soluble | Yes |
Fluconazole | Endoplasmic reticulum | Azole-specific energy-independent facilitated diffusion [54] | 306.27 | 0.88 (exp.: 0.5) | −2.45 ± 0.98 soluble | Yes |
Voriconazole | Endoplasmic reticulum | Azole-specific energy-independent facilitated diffusion [54] | 349.31 | 2.40 | −3.77 ± 1.46 soluble | Yes |
Posaconazole | Endoplasmic reticulum | Diffusion into the plasma membrane but mechanism undefined [55] | 700.78 | 3.33 (exp.: 5.5) | −7.33 ± 1.08 poorly soluble | No |
Itraconazole | Endoplasmic reticulum | Azole-specific energy-independent facilitated diffusion [54] | 705.63 | 4.71 (exp.: 5.66) | −8.11 ± 0.98 poorly soluble | No |
EGCG | Cell wall Cytoplasm | Unidentified | 458.37 | 1.01 | −3.66 ± 1.21 soluble | No |
GA | Cell wall Cytoplasm | Unidentified | 560.64 | 1.57 | −4.18 ± 0.90 moderately soluble | No |
AUY922 | Cell wall Cytoplasm | Unidentified | 465. 54 | 3.36 | −5.81 ± 1.24 moderately soluble | Yes |
RA | Cell wall Cytoplasm | Unidentified | 364.78 | 2.51 | −4.12 ± 1.11 moderately soluble | Yes |
SNX-2112 | Cell wall Cytoplasm | Unidentified | 464.48 | 3.49 | −5.54 ± 0.42 moderately soluble | Yes |
SNX-5422 | Cell wall Cytoplasm | Unidentified | 521.53 | 3.13 | −5.70 ± 0.64 moderately soluble | No (prodrug) |
BIIB021 | Cell wall Cytoplasm | Unidentified | 318.76 | 1.81 | −3.95 ± 0.94 soluble | Yes |
SIL | Cell wall Cytoplasm | Unidentified | 482.44 | 1.92 | −4.47 ± 0.32 moderately soluble | Yes |
Identity (%) | Human α | C. albicans | C. tropicalis | C. parapsilosis | C. glabrata | S. cerevisiae |
---|---|---|---|---|---|---|
Hsp90 total | ||||||
Human α | 60.5 | 60.2 | 60.6 | 59.5 | 59.8 | |
C. albicans | 60.5 | 95.1 | 92.4 | 82.5 | 82.7 | |
C. tropicalis | 60.2 | 95.1 | 93.2 | 82.4 | 82.7 | |
C. parapsilosis | 60.6 | 92.4 | 93.2 | 82.4 | 83.5 | |
C. glabrata | 59.5 | 82.5 | 82.4 | 82.4 | 90.7 | |
S. cerevisiae | 59.8 | 82.7 | 82.7 | 83.5 | 90.7 | |
N-terminal domain | ||||||
Human α | 67.7 | 67.2 | 66.8 | 65.9 | 65.1 | |
C. albicans | 67.7 | 97.2 | 96.8 | 85.8 | 85.8 | |
C. tropicalis | 67.2 | 97.2 | 96.3 | 86.2 | 86.2 | |
C. parapsilosis | 66.8 | 96.8 | 96.3 | 86.7 | 86.7 | |
C. glabrata | 65.9 | 85.8 | 86.2 | 86.7 | 92.6 | |
S. cerevisiae | 65.1 | 85.8 | 86.2 | 86.7 | 92.6 | |
C-terminal domain | ||||||
Human α | 48.9 | 48.7 | 49.5 | 48.9 | 50.0 | |
C. albicans | 48.9 | 93.4 | 90.2 | 77.6 | 79.2 | |
C. tropicalis | 48.7 | 93.4 | 90.2 | 78.1 | 78.1 | |
C. parapsilosis | 49.5 | 90.2 | 90.2 | 75.4 | 77.6 | |
C. glabrata | 48.9 | 77.6 | 78.1 | 75.4 | 89.0 | |
S. cerevisiae | 50.0 | 79.2 | 78.1 | 77.6 | 89.0 |
Ligand | Methods for Investigate the Interaction | Protein | PDB Code | % Identity of Residues Involved in the Drug–Protein Interaction | Ref. |
---|---|---|---|---|---|
ATP | X-ray diffraction | S. cerevisiae Hsp82 | 2CG9 | 100% | [56] |
Human Hsp90 alpha | 3T0Z | [57] | |||
GA | X-ray diffraction | Human Hsp90 alpha | 1YET | 100% | [58] |
S. cerevisiae Hsp82 | 2YGF | [59] | |||
RA | X-ray diffraction | S. cerevisiae Hsp82 | 1BGQ | 100% | [60] |
Human Hsp90 alpha | 4EGK | [61] | |||
C. albicans Hsp90 | 6CJL | [27] | |||
AUY922 | X-ray diffraction | Human Hsp90 alpha | 2VCI | 95% | [62] |
C. albicans Hsp90 homolog | 6CJS | [27] | |||
SNX-5422 | |||||
SNX-2112 | X-ray diffraction | Human Hsp90 alpha | 4NH7 | 100% | [63] |
C. albicans Hsp90 homolog | 6CJR | [27] | |||
BIIB021 | X-ray diffraction | T. brucei Hsp83 | 3O6O | 100% | [64] |
Human Hsp90 alpha | 3QDD | [65] |
Ligand | Methods for Investigating the Interaction | Computational Model | % Identity of Residues Involved in the Drug–Protein Interaction | Ref. | |
---|---|---|---|---|---|
ATP | Homology model (hHsp90α) | Sgobba et al., 2008 | 87% | [69] | |
NB | Homology model (hHsp90α) Molecular docking | Sgobba et al., 2010 | Cluster1 62.5% Cluster2 75% | [70] | |
Matts et al., 2011 | 12.5% | [71] | |||
Cuyàs et al., 2019 | Closed conformation: Cluster1 74% Cluster2 92% Cluster3 67% | Open conformation: Cluster1 85% Cluster3 100% Cluster4 62% | [72] | ||
SIL | Homology model (hHsp90α) Molecular docking | Cuyàs et al., 2019 | Closed conformation: Cluster1 75% Cluster2 64% Cluster3 77% Cluster4 38% Cluster5 80% Cluster6 76% | Open conformation: Cluster1 77% Cluster2 79% Cluster3 75% | [72] |
DG | Not investigated | ||||
EGCG | Not investigated |
Position (hHsp90α) | aa | Candida Species Concerned | Nature | pH-Neutral Charge | MW | Ligand Binding | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (1) | (2) | (1) | (2) | (1) | (2) | ||||
560 | K | A | C. albicans | Basic | Aliphatic | (+) | uncharged non-polar | 146.19 | 89.09 | NB | [71] |
T | C. tropicalis | Basic | Hydroxylic | (+) | uncharged polar | 146.19 | 119.12 | ||||
Q | C. parapsilosis | Basic | Amide | (+) | uncharged polar | 146.19 | 146.15 | ||||
E | C. glabrata | Basic | Acid | (+) | (−) | 146.19 | 147.13 | ||||
582 | K | Q | Candida sp. | Basic | Amide | (+) | uncharged polar | 146.19 | 146.15 | NB | [70] |
590 | N | Y | C. albicans, C. tropicalis, C. parapsilosis | Amide | Aromatic | uncharged polar | uncharged polar | 132.12 | 181.19 | NB | [71] |
H | C. glabrata | Amide | Basic | uncharged polar | (+) | 132.12 | 155.16 | ||||
591 | R | K | Candida sp. | Basic | Basic | (+) | (+) | 174.20 | 146.19 | NB | [71] |
594 | T | D | Candida sp. | Hydroxylic | Acid | uncharged non-polar | (−) | 119.12 | 133.10 | NB | [71] |
607 | T | S | Candida sp. | Hydroxylic | Hydroxylic | uncharged non-polar | uncharged polar | 119.12 | 105.09 | NB | [70] |
622 | N | T | C. albicans, C. tropicalis, C. parapsilosis | Amide | Hydroxylic | uncharged polar | uncharged polar | 132.12 | 119.12 | NB | [72] |
S | C. glabrata | Amide | Hydroxylic | uncharged polar | uncharged polar | 132.12 | 105.09 | ||||
623 | S | T | C. albicans, C. tropicalis, C. parapsilosis | Hydroxylic | Hydroxylic | uncharged polar | uncharged polar | 105.09 | 119.12 | NB et SIL | [72] |
625 | M | S | Candida sp. | Sulphuric | Hydroxylic | uncharged non-polar | uncharged polar | 149.21 | 105.09 | NB | [72] |
629 | A | S | Candida sp. | Aliphatic | Hydroxylic | uncharged non-polar | uncharged polar | 89.09 | 105.09 | NB | [70,72] |
630 | A | S | Candida sp. | Aliphatic | Hydroxylic | uncharged non-polar | uncharged polar | 89.09 | 105.09 | NB | [72] |
673 | S | T | Candida sp. | Hydroxylic | Hydroxylic | uncharged polar | uncharged polar | 105.09 | 119.12 | SIL | [72] |
677 | S | T | C. albicans, C. tropicalis, C. glabrata | Hydroxylic | Hydroxylic | uncharged polar | uncharged polar | 105.09 | 119.12 | ATP | |
679 | E | D | C. albicans, C. tropicalis, C. parapsilosis | Acid | Acid | (−) | (−) | 147.13 | 133.10 | ATP, NB | [70] |
682 | Q | S | Candida sp. | Amide | Hydroxylic | uncharged polar | uncharged polar | 146.15 | 105.09 | NB | [71] |
686 | N | H | C. albicans, C. tropicalis, C. parapsilosis | Amide | Basic | uncharged polar | (+) | 132.12 | 155.16 | NB | [71] |
S | C. glabrata | Amide | Hydroxylic | uncharged polar | uncharged polar | 132.12 | 105.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouges, C.; Asad, M.; Laurent, A.D.; Marchand, P.; Le Pape, P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms 2023, 11, 2837. https://doi.org/10.3390/microorganisms11122837
Rouges C, Asad M, Laurent AD, Marchand P, Le Pape P. Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms. 2023; 11(12):2837. https://doi.org/10.3390/microorganisms11122837
Chicago/Turabian StyleRouges, Célia, Mohammad Asad, Adèle D. Laurent, Pascal Marchand, and Patrice Le Pape. 2023. "Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast?" Microorganisms 11, no. 12: 2837. https://doi.org/10.3390/microorganisms11122837
APA StyleRouges, C., Asad, M., Laurent, A. D., Marchand, P., & Le Pape, P. (2023). Is the C-Terminal Domain an Effective and Selective Target for the Design of Hsp90 Inhibitors against Candida Yeast? Microorganisms, 11(12), 2837. https://doi.org/10.3390/microorganisms11122837