Exploring Alternative Treatment Choices for Multidrug-Resistant Clinical Strains of Helicobacter pylori in Mongolia
Abstract
:1. Introduction
2. Results
2.1. Sample and Antibiotic Resistance Distribution
2.2. Genotypic Determination of Antibiotic Resistance
2.3. Quinolone Resistance
2.4. Rifabutin Resistance
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Population
5.2. Isolation and Culture
5.3. Antibiotic Susceptibility Test
5.4. DNA Extraction and Next-Generation Sequencing
5.5. Statistical Analysis
5.6. Nucleotide Sequence Accession Numbers
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of Antibiotic Resistance in Helicobacter pylori: A Systematic Review and Meta-analysis in World Health Organization Regions. Gastroenterology 2018, 155, 1372–1382.e17. [Google Scholar] [CrossRef] [PubMed]
- Dang, B.N.; Graham, D.Y. Helicobacter pylori infection and antibiotic resistance: A WHO high priority? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Tuan, V.P.; Narith, D.; Tshibangu-Kabamba, E.; Dung, H.D.Q.; Viet, P.T.; Sokomoth, S.; Binh, T.T.; Sokhem, S.; Tri, T.D.; Ngov, S.; et al. A Next-Generation Sequencing-Based Approach to Identify Genetic Determinants of Antibiotic Resistance in Cambodian Helicobacter pylori Clinical Isolates. J. Clin. Med. 2019, 8, 858. [Google Scholar] [CrossRef]
- WHO. International Classification of Disease 11th Revision: Helicobacter pylori; World Health Organization: Geneva, Switzerland, 2021.
- Kwon, D.H.; Dore, M.P.; Kim, J.J.; Kato, M.; Lee, M.; Wu, J.Y.; Graham, D.Y. High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 2003, 47, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef] [PubMed]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Tshibangu-Kabamba, E.; Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance—From biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 613–629. [Google Scholar] [CrossRef]
- Moore, R.A.; Beckthold, B.; Wong, S.; Kureishi, A.; Bryan, L.E. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 1995, 39, 107–111. [Google Scholar] [CrossRef]
- Mori, H.; Suzuki, H.; Matsuzaki, J.; Masaoka, T.; Kanai, T. Acquisition of double mutation in gyrA caused high resistance to sitafloxacin in Helicobacter pylori after unsuccessful eradication with sitafloxacin-containing regimens. United Eur. Gastroenterol. J. 2018, 6, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Bolor-Erdene, M.; Namdag, B.; Yamaoka, Y.; Jav, S. Antibiotic resistance of Helicobacter pylori in Mongolia. J. Infect. Dev. Ctries. 2017, 11, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Azzaya, D.; Gantuya, B.; Oyuntsetseg, K.; Davaadorj, D.; Matsumoto, T.; Akada, J.; Yamaoka, Y. High Antibiotic Resistance of Helicobacter pylori and Its Associated Novel Gene Mutations among the Mongolian Population. Microorganisms 2020, 8, 1062. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, I.; Mori, B.; Santos, A.; Konishi, J.; Teles, C.; Costa, A. What are the immunopharmacological effects of furazolidone? A systematic review. Immunopharmacol. Immunotoxicol. 2021, 43, 674–679. [Google Scholar] [CrossRef]
- McOsker, C.C.; Fitzpatrick, P.M. Nitrofurantoin: Mechanism of action and implications for resistance development in common uropathogens. J. Antimicrob. Chemother. 1994, 33 (Suppl. A), 23–30. [Google Scholar] [CrossRef]
- Akada, J.K.; Shirai, M.; Fujii, K.; Okita, K.; Nakazawa, T. In vitro anti-Helicobacter pylori activities of new rifamycin derivatives, KRM-1648 and KRM-1657. Antimicrob. Agents Chemother. 1999, 43, 1072–1076. [Google Scholar] [CrossRef]
- Heep, M.; Beck, D.; Bayerdörffer, E.; Lehn, N. Rifampin and Rifabutin Resistance Mechanism in Helicobacter pylori. Antimicrob. Agents Chemother. 1999, 43, 1497–1499. [Google Scholar] [CrossRef]
- Xiong, M.; Aljaberi, H.S.M.; Ansari, N.K.; Sun, Y.; Yin, S.; Nasifu, L.; Sun, H.; Xu, T.; Pan, Y.; Nie, Z.; et al. Phenotype and genotype analysis for Helicobacter pylori antibiotic resistance in outpatients: A retrospective study. Microbiol. Spectr. 2023, 11, e00550-23. [Google Scholar] [CrossRef]
- Nishizawa, T.; Suzuki, H.; Matsuzaki, J.; Muraoka, H.; Tsugawa, H.; Hirata, K.; Hibi, T. Helicobacter pylori resistance to rifabutin in the last 7 years. Antimicrob. Agents Chemother. 2011, 55, 5374–5375. [Google Scholar] [CrossRef]
- Zamani, M.; Rahbar, A.; Shokri-Shirvani, J. Resistance of Helicobacter pylori to furazolidone and levofloxacin: A viewpoint. World J. Gastroenterol. 2017, 23, 6920–6922. [Google Scholar] [CrossRef]
- Byambajav, T.O.; Bira, N.; Choijamts, G.; Davaadorj, D.; Gantuya, B.; Sarantuya, T.; Sarantuya, G.; Enkhtsetseg, A.; Erdenetsogt, D.; Battulga, A.; et al. Initial Trials With Susceptibility-Based and Empiric Anti-H. pylori Therapies in Mongolia. Front. Pharmacol. 2019, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P. Rifabutin for the Treatment of Helicobacter pylori Infection: A Review. Pathogens 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; Calvet, X. Review article: Rifabutin in the treatment of refractory Helicobacter pylori infection. Aliment. Pharmacol. Ther. 2012, 35, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Hu, W.L.; Cai, Y.; Zheng, W.F.; Du, Q.; Kim, J.J.; Kao, J.Y.; Dai, N.; Si, J.M. Outcomes of furazolidone- and amoxicillin-based quadruple therapy for Helicobacter pylori infection and predictors of failed eradication. World J. Gastroenterol. 2018, 24, 4596–4605. [Google Scholar] [CrossRef]
- Mohammadi, M.; Attaran, B.; Malekzadeh, R.; Graham, D.Y. Furazolidone, an Underutilized Drug for H. pylori Eradication: Lessons from Iran. Dig. Dis. Sci. 2017, 62, 1890–1896. [Google Scholar] [CrossRef]
- Miftahussurur, M.; Waskito, L.A.; Syam, A.F.; Nusi, I.A.; Siregar, G.; Richardo, M.; Bakry, A.F.; Rezkitha, Y.A.A.; Wibawa, I.D.N.; Yamaoka, Y.; et al. Alternative eradication regimens for Helicobacter pylori infection in Indonesian regions with high metronidazole and levofloxacin resistance. Infect. Drug Resist. 2019, 12, 345–358. [Google Scholar] [CrossRef]
- Su, Z.; Xu, H.; Zhang, C.; Shao, S.; Li, L.; Wang, H.; Wang, H.; Qiu, G. Mutations in Helicobacter pylori porD and oorD genes may contribute to furazolidone resistance. Croat. Med. J. 2006, 47, 410–415. [Google Scholar]
- Kwon, D.H.; Lee, M.; Kim, J.J.; Kim, J.G.; El-Zaatari, F.A.; Osato, M.S.; Graham, D.Y. Furazolidone- and nitrofurantoin-resistant Helicobacter pylori: Prevalence and role of genes involved in metronidazole resistance. Antimicrob. Agents Chemother. 2001, 45, 306–308. [Google Scholar] [CrossRef]
Sex | Total Strains Tested | Antibiotic-Resistant Strains, n (%) | ||||||
---|---|---|---|---|---|---|---|---|
n | AMX * | CLR * | MNZ * | LVF * | MINO * | RFB | FUR | |
Total | 361 | 43 (11.9) | 108 (29.9) | 284 (78.7) | 149 (41.3) | 1 (0.3) | 2 (0.6) | 0 (0) |
Female | 259 | 31 (11.7) | 85 (32.2) | 218 (82.5) | 113 (42.8) | 0 (0) | 1 (0.4) | 0 (0) |
Male | 94 | 12 (12.4) | 23 (23.7) | 66 (68.0) | 36 (37.1) | 1 (1.0) | 1 (1.0) | 0 (0) |
Unknown gender | 8 | 1 (12.5) | 2 (25) | 7 (87.5) | 4 (50) | 0 (0) | 0 (0) | 0 (0) |
Total Strains Tested | Antibiotic-Resistant Strains, n (%) | |||
---|---|---|---|---|
n (%) | LVF | CIP | MOXI | |
Total | 91 (100) | 40 (44) | 39 (43) | 38 (42) |
Female | 62 (68) | 28 (45) | 28 (45) | 27 (43) |
Male | 27 (30) | 11 (41) | 11 (41) | 11 (41) |
Unknown | 2 (2) | 1 (50) | 0 | 0 |
No. | Strain Name | RFB | FUR | AMX | CLR | MNZ | MINO | LVF | MOXI | CIP |
---|---|---|---|---|---|---|---|---|---|---|
1 | KE-9 | 8 | 0.25 | 0.06 | 0.03 | 32 | 0.06 | 8 | 4≤ | 4 |
2 | UB-217 | 4 | 0.5 | 0.24 | 2 | 32 | 0.25 | 4 | 8≤ | 8 |
No. | Strain Name | MIC (µg/mL) | gyrA Mutation | |||||
---|---|---|---|---|---|---|---|---|
LVF | MOXI | CIP | N87 | A88 | D91 | |||
1 | Uvs | 103 | 32 | 8≤ | 16≤ | I | ||
2 | Uvs | 61 | 16 | 8≤ | 16≤ | I | ||
3 | UB | 97 | 8 | 8≤ | 16≤ | I | ||
4 | UB | 129 | 8 | 8≤ | 16≤ | K | ||
5 | UB | 168 | 8 | 8≤ | 16≤ | K | ||
6 | UB | 189 | 8 | 8≤ | 16≤ | K | ||
7 | Uvs | 131 | 8 | 8≤ | 16≤ | K | ||
8 | Uvs | 136 | 8 | 8≤ | 16≤ | K | ||
9 | Kh | 160 | 8 | 8≤ | 16≤ | K | ||
10 | Go | 150 | 8 | 8≤ | 16≤ | K | ||
11 | Ke | 3 | 8 | 8≤ | 16≤ | K | ||
12 | Ke | 47 | 8 | 8≤ | 16≤ | K | ||
13 | Ke | 59 | 8 | 8≤ | 16≤ | K | ||
14 | Ke | 160 | 4 | 8≤ | 16≤ | K | ||
15 | Ke | 2 | 2 | 4 | 16≤ | K | ||
16 | UB | 221 | 8 | 8≤ | 16≤ | P | ||
17 | UB | 178 | 8 | 8≤ | 16≤ | N | ||
18 | UB | 198 | 8 | 8≤ | 16≤ | N | ||
19 | Go | 129 | 8 | 8≤ | 16≤ | N | ||
20 | Uvs | 97 | 4 | 8≤ | 16≤ | N | ||
21 | UB | 29 | 8 | 8≤ | 16≤ | G | ||
22 | UB | 217 | 4 | 8≤ | 8 | G | ||
23 | Kh | 93 | 2 | 8≤ | 16≤ | G | ||
24 | UB | 219 | 8 | 8≤ | 16≤ | Y | ||
25 | Go | 1 | 4 | 8≤ | 16≤ | Y | ||
26 | Ke | 1 | 4 | 8≤ | 8 | Y | ||
27 | Uvs | 23 | 4 | 4 | 8 | Y | ||
28 | Kh | 111 | 4 | 8≤ | 16≤ | Y | ||
29 | Ke | 87 | 16 | 1 | 16≤ | K | ||
30 | Ke | 119 | 8 | 1 | 16≤ | K | ||
31 | Ke | 4 | 0.5 | 8≤ | 16≤ | G | ||
32 | Ke | 133 | 8 | 8≤ | 4 | |||
33 | Uvs | 113 | 4 | 8≤ | 16≤ | |||
34 | Kh | 95 | 4 | 8≤ | 16≤ | |||
35 | Kh | 173 | 2 | 4 | 8 | |||
36 | UB | 30 | 8 | 0.5 | 0.5 | |||
37 | Ke | 86 | 4 | 8≤ | 0.5 | |||
38 | Go | 168 | 2 | 0.5 | ≤0.25 | |||
39 | UB | 72 | 0.5 | 8≤ | 16≤ | |||
Strains sensitive to quinolones (n = 38) | N | A | D |
No. | Strain Name | MIC µg/uL | rpoB Mutation | |||||
---|---|---|---|---|---|---|---|---|
E470 | D530 | V538 | R701 | L2196 | A2710 | |||
1 | Ke9 | 8 | G | P | V | |||
2 | UB217 | 4 | N | C | ||||
3 | UB75 | 0.12 | I | |||||
4 | Kh67 | 0.06 | I | |||||
Sensitive stains (n = 217) < 0.12 | E | D | V | R | L | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khangai, A.; Saruuljavkhlan, B.; Azzaya, D.; Gantuya, B.; Oyuntsetseg, K.; Akada, J.; Matsumoto, T.; Yamaoka, Y. Exploring Alternative Treatment Choices for Multidrug-Resistant Clinical Strains of Helicobacter pylori in Mongolia. Microorganisms 2023, 11, 2852. https://doi.org/10.3390/microorganisms11122852
Khangai A, Saruuljavkhlan B, Azzaya D, Gantuya B, Oyuntsetseg K, Akada J, Matsumoto T, Yamaoka Y. Exploring Alternative Treatment Choices for Multidrug-Resistant Clinical Strains of Helicobacter pylori in Mongolia. Microorganisms. 2023; 11(12):2852. https://doi.org/10.3390/microorganisms11122852
Chicago/Turabian StyleKhangai, Ayush, Batsaikhan Saruuljavkhlan, Dashdorj Azzaya, Boldbaatar Gantuya, Khasag Oyuntsetseg, Junko Akada, Takashi Matsumoto, and Yoshio Yamaoka. 2023. "Exploring Alternative Treatment Choices for Multidrug-Resistant Clinical Strains of Helicobacter pylori in Mongolia" Microorganisms 11, no. 12: 2852. https://doi.org/10.3390/microorganisms11122852
APA StyleKhangai, A., Saruuljavkhlan, B., Azzaya, D., Gantuya, B., Oyuntsetseg, K., Akada, J., Matsumoto, T., & Yamaoka, Y. (2023). Exploring Alternative Treatment Choices for Multidrug-Resistant Clinical Strains of Helicobacter pylori in Mongolia. Microorganisms, 11(12), 2852. https://doi.org/10.3390/microorganisms11122852