Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Data Management
2.4. Selection Process
2.5. Data Extraction
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Application of GWAS for the Identification of Antimicrobial Resistance Loci
3.4. Bacterial Genome-Wide Association Studies (GWAS) Approaches
3.4.1. Non-Phylogenetic Approach
3.4.2. Alignment-Free k-mer Based Approach
3.4.3. Phylogenetic Approach
3.4.4. Mixed Approach
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 1 August 2023).
- Collins, C.; Didelot, X. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput. Biol. 2018, 14, e1005958. [Google Scholar] [CrossRef]
- Power, R.A.; Parkhill, J.; De Oliveira, T. Microbial genome-wide association studies: Lessons from human GWAS. Nat. Rev. Genet. 2016, 18, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.E.; Shapiro, B.J. The advent of genome-wide association studies for bacteria. Curr. Opin. Microbiol. 2015, 25, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Read, T.D.; Massey, R.C. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: A new direction for bacteriology. Genome Med. 2014, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Jaillard, M.; Lima, L.; Tournoud, M.; Mahé, P.; van Belkum, A.; Lacroix, V.; Jacob, L. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS Genet. 2018, 14, e1007758. [Google Scholar] [CrossRef]
- San, J.E.; Baichoo, S.; Kanzi, A.; Moosa, Y.; Lessells, R.; Fonseca, V.; Mogaka, J.; Power, R.; de Oliveira, T. Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Front. Microbiol. 2020, 10, 3119. [Google Scholar] [CrossRef]
- Hurtado-Páez, U.; Álvarez Zuluaga, N.; Arango Isaza, R.E.; Contreras-Moreira, B.; Rouzaud, F.; Robledo, J. Pan-genome association study of Mycobacterium tuberculosis lineage-4 revealed specific genes related to the high and low prevalence of the disease in patients from the North-Eastern area of Medellín, Colombia. Front. Microbiol. 2023, 13, 1076797. [Google Scholar] [CrossRef]
- Farhat, M.R.; Shapiro, B.J.; Kieser, K.J.; Sultana, R.; Jacobson, K.R.; Victor, T.C.; Warren, R.M.; Streicher, E.M.; Calver, A.; Sloutsky, A.; et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2013, 45, 1183–1189. [Google Scholar] [CrossRef]
- Earle, S.G.; Wu, C.H.; Charlesworth, J.; Stoesser, N.; Gordon, N.C.; Walker, T.M.; Spencer, C.C.A.; Iqbal, Z.; Clifton, D.A.; Hopkins, K.L.; et al. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat. Microbiol. 2016, 1, 16041. [Google Scholar] [CrossRef]
- Lees, J.A.; Galardini, M.; Bentley, S.D.; Weiser, J.N.; Corander, J. pyseer: A comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018, 34, 4310–4312. [Google Scholar] [CrossRef]
- Swick, M.C.; Evangelista, M.A.; Bodine, T.J.; Easton-Marks, J.R.; Barth, P.; Shah, M.J.; Bormann Chung, C.A.; Stanley, S.; McLaughlin, S.F.; Lee, C.C.; et al. Novel Conserved Genotypes Correspond to Antibiotic Resistance Phenotypes of Escherichia coli Clinical Isolates. PLoS ONE 2013, 8, e65961. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.T.; Petit, R.A.; Crispell, E.K.; Thornton, T.A.; Conneely, K.N.; Jiang, Y.; Satola, S.W.; Read, T.D. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol. Evol. 2014, 6, 1174–1185. [Google Scholar] [CrossRef]
- Wozniak, M.; Tiuryn, J.; Wong, L. GWAMAR: Genome-wide assessment of mutations associated with drug resistance in bacteria. BMC Genom. 2014, 15, S10. [Google Scholar] [CrossRef]
- Salipante, S.J.; Roach, D.J.; Kitzman, J.O.; Snyder, M.W.; Stackhouse, B.; Butler-Wu, S.M.; Lee, C.; Cookson, B.T.; Shendure, J. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res. 2015, 25, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Shibayama, K.; Yahara, K. A genome-wide association study identifies a horizontally transferred bacterial surface adhesin gene associated with antimicrobial resistant strains. Sci. Rep. 2016, 6, 37811. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.; Coll, F.; McNerney, R.; Ascher, D.B.; Pires, D.E.V.; Furnham, N.; Coeck, N.; Hill-Cawthorne, G.A.; Nair, M.B.; Mallard, K.; et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med. 2016, 14, 31. [Google Scholar] [CrossRef]
- Cohen, K.A.; El-Hay, T.; Wyres, K.L.; Weissbrod, O.; Munsamy, V.; Yanover, C.; Aharonov, R.; Shaham, O.; Conway, T.C.; Goldschmidt, Y.; et al. Paradoxical Hypersusceptibility of Drug-resistant Mycobacterium tuberculosis to β-lactam Antibiotics. EBioMedicine 2016, 9, 170–179. [Google Scholar] [CrossRef]
- Mobegi, F.M.; Cremers, A.J.H.; De Jonge, M.I.; Bentley, S.D.; Van Hijum, S.A.F.T.; Zomer, A. Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data. Sci. Rep. 2017, 7, 42808. [Google Scholar] [CrossRef]
- Diaz Caballero, J.; Clark, S.T.; Wang, P.W.; Donaldson, S.L.; Coburn, B.; Tullis, D.E.; Yau, Y.C.W.; Waters, V.J.; Hwang, D.M.; Guttman, D.S. A genome-wide association analysis reveals a potential role for recombination in the evolution of antimicrobial resistance in Burkholderia multivorans. PLoS Pathog. 2018, 14, e1007453. [Google Scholar] [CrossRef]
- Hicks, N.D.; Yang, J.; Zhang, X.; Zhao, B.; Grad, Y.H.; Liu, L.; Ou, X.; Chang, Z.; Xia, H.; Zhou, Y.; et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat. Microbiol. 2018, 3, 1032–1042. [Google Scholar] [CrossRef]
- Coll, F.; Phelan, J.; Hill-Cawthorne, G.A.; Nair, M.B.; Mallard, K.; Ali, S.; Abdallah, A.M.; Alghamdi, S.; Alsomali, M.; Ahmed, A.O.; et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat. Genet. 2018, 50, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Card, R.M.; Stubberfield, E.; Rogers, J.; Nunez-Garcia, J.; Ellis, R.J.; AbuOun, M.; Strugnell, B.; Teale, C.; Williamson, S.; Anjum, M.F. Identification of a new antimicrobial resistance gene provides fresh insights into pleuromutilin resistance in Brachyspira hyodysenteriae, aetiological agent of swine dysentery. Front. Microbiol. 2018, 9, 1183. [Google Scholar] [CrossRef]
- Hicks, N.D.; Carey, A.F.; Yang, J.; Zhao, Y.; Fortunea, S.M. Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. MBio 2019, 10, e00616-19. [Google Scholar] [CrossRef]
- Schubert, B.; Maddamsetti, R.; Nyman, J.; Farhat, M.R.; Marks, D.S. Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat. Microbiol. 2019, 4, 328–338. [Google Scholar] [CrossRef]
- Farhat, M.R.; Freschi, L.; Calderon, R.; Ioerger, T.; Snyder, M.; Meehan, C.J.; de Jong, B.; Rigouts, L.; Sloutsky, A.; Kaur, D.; et al. GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nat. Commun. 2019, 10, 2128. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.C.; Mortimer, T.D.; Hicks, A.L.; Wheeler, N.E.; Sánchez-Busó, L.; Golparian, D.; Taiaroa, G.; Rubin, D.H.F.; Wang, Y.; Williamson, D.A.; et al. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat. Commun. 2020, 11, 4126. [Google Scholar] [CrossRef]
- Roe, C.; Williamson, C.H.D.; Vazquez, A.J.; Kyger, K.; Valentine, M.; Bowers, J.R.; Phillips, P.D.; Harrison, V.; Driebe, E.; Engelthaler, D.M.; et al. Bacterial Genome Wide Association Studies (bGWAS) and Transcriptomics Identifies Cryptic Antimicrobial Resistance Mechanisms in Acinetobacter baumannii. Front. Public Health 2020, 8, 451. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.P.; Ioerger, T.R. Exploiting Homoplasy in Genome-Wide Association Studies to Enhance Identification of Antibiotic-Resistance Mutations in Bacterial Genomes. Evol. Bioinform. 2020, 16, 13–15. [Google Scholar] [CrossRef]
- Ma, K.C.; Mortimer, T.D.; Duckett, M.A.; Hicks, A.L.; Wheeler, N.E.; Sánchez-Busó, L.; Grad, Y.H. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat. Commun. 2020, 11, 5374. [Google Scholar] [CrossRef]
- McDougall, S.; Clausen, L.; Ha, H.J.; Gibson, I.; Bryan, M.; Hadjirin, N.; Lay, E.; Raisen, C.; Ba, X.; Restif, O.; et al. Mechanisms of β-lactam resistance of Streptococcus uberis isolated from bovine mastitis cases. Vet. Microbiol. 2020, 242, 108592. [Google Scholar] [CrossRef]
- Hicks, N.D.; Giffen, S.R.; Culviner, P.H.; Chao, M.C.; Dulberger, C.L.; Liu, Q.; Stanley, S.; Brown, J.; Sixsmith, J.; Wolf, I.D.; et al. Mutations in dnaA and a cryptic interaction site increase drug resistance in Mycobacterium tuberculosis. PLoS Pathog. 2020, 16, e1009063. [Google Scholar] [CrossRef]
- Wirth, T.; Bergot, M.; Rasigade, J.P.; Pichon, B.; Barbier, M.; Martins-Simoes, P.; Jacob, L.; Pike, R.; Tissieres, P.; Picaud, J.C.; et al. Niche specialization and spread of Staphylococcus capitis involved in neonatal sepsis. Nat. Microbiol. 2020, 5, 735–745. [Google Scholar] [CrossRef]
- Hennart, M.; Panunzi, L.G.; Rodrigues, C.; Gaday, Q.; Baines, S.L.; Barros-Pinkelnig, M.; Carmi-Leroy, A.; Dazas, M.; Wehenkel, A.M.; Didelot, X.; et al. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med. 2020, 12, 107. [Google Scholar] [CrossRef]
- Libiseller-Egger, J.; Phelan, J.; Campino, S.; Mohareb, F.; Clark, T.G. Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers. PLoS Comput. Biol. 2020, 16, e1008518. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Nielsen, F.C.; Johansen, H.K.; Marvig, R.L. Achromobacter spp. genetic adaptation in cystic fibrosis. Microb. Genom. 2021, 7, 000582. [Google Scholar] [CrossRef]
- Coolen, J.P.M.; den Drijver, E.P.M.; Verweij, J.J.; Schildkraut, J.A.; Neveling, K.; Melchers, W.J.G.; Kolwijck, E.; Wertheim, H.F.L.; Kluytmans, J.A.J.W.; Huynen, M.A. Genome-wide analysis in Escherichia coli unravels a high level of genetic homoplasy associated with cefotaxime resistance. Microb. Genom. 2021, 7, 000556. [Google Scholar] [CrossRef]
- Bokma, J.; Vereecke, N.; Nauwynck, H.; Haesebrouck, F.; Theuns, S.; Pardon, B.; Boyen, F. Genome-Wide Association Study Reveals Genetic Markers for Antimicrobial Resistance in Mycoplasma bovis. Microbiol. Spectr. 2021, 9, e0026221. [Google Scholar] [CrossRef]
- Malekian, N.; Al-Fatlawi, A.; Berendonk, T.U.; Schroeder, M. Mutations in bdca and vals correlate with quinolone resistance in wastewater Escherichia coli. Int. J. Mol. Sci. 2021, 22, 6063. [Google Scholar] [CrossRef]
- Sommer, A.; Fuchs, S.; Layer, F.; Schaudinn, C.; Weber, R.E.; Richard, H.; Erdmann, M.B.; Laue, M.; Schuster, C.F.; Werner, G.; et al. Mutations in the gdpp gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb. Genom. 2021, 7, 000623. [Google Scholar] [CrossRef]
- Sandri, A.; Veschetti, L.; Saitta, G.M.; Passarelli Mantovani, R.; Carelli, M.; Burlacchini, G.; Preato, S.; Sorio, C.; Melotti, P.; Montemari, A.L.; et al. Achromobacter spp. Adaptation in Cystic Fibrosis Infection and Candidate Biomarkers of Antimicrobial Resistance. Int. J. Mol. Sci. 2022, 23, 9265. [Google Scholar] [CrossRef]
- Roux De Bézieux, H.; Lima, L.; Perraudeau, F.; Mary, A.; Dudoit, S.; Jacob, L. CALDERA: Finding all significant de Bruijn subgraphs for bacterial GWAS. Bioinformatics 2022, 38, I36–I44. [Google Scholar] [CrossRef]
- Conkle-Gutierrez, D.; Kim, C.; Ramirez-Busby, S.M.; Modlin, S.J.; Mansjö, M.; Werngren, J.; Rigouts, L.; Hoffner, S.E.; Valafar, F. Distribution of Common and Rare Genetic Markers of Second- Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrob. Agents Chemother. 2022, 66, e0207521. [Google Scholar] [CrossRef]
- The CRyPTIC Consortium. Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biol. 2022, 20, e3001755. [Google Scholar] [CrossRef]
- Mallawaarachchi, S.; Tonkin-Hill, G.; Croucher, N.J.; Turner, P.; Speed, D.; Corander, J.; Balding, D. Genome-wide association, prediction and heritability in bacteria with application to Streptococcus pneumoniae. NAR Genom. Bioinform. 2022, 4, lqac011. [Google Scholar] [CrossRef]
- Mortimer, T.D.; Zhang, J.J.; Ma, K.C.; Grad, Y.H. Loci for prediction of penicillin and tetracycline susceptibility in Neisseria gonorrhoeae: A genome-wide association study. Lancet Microbe 2022, 3, e376–e381. [Google Scholar] [CrossRef]
- Boeck, L.; Burbaud, S.; Skwark, M.; Pearson, W.H.; Sangen, J.; Wuest, A.W.; Marshall, E.K.P.; Weimann, A.; Everall, I.; Bryant, J.M.; et al. Mycobacterium abscessus pathogenesis identified by phenogenomic analyses. Nat. Microbiol. 2022, 7, 1431–1441. [Google Scholar] [CrossRef]
- Naz, S.; Paritosh, K.; Sanyal, P.; Khan, S.; Singh, Y.; Varshney, U.; Nandicoori, V.K. GWAS and functional studies suggest a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. Elife 2023, 12, e75860. [Google Scholar] [CrossRef]
- Saber, M.M.; Jesse Shapiro, B. Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes. Microb. Genom. 2020, 6, e000337. [Google Scholar] [CrossRef]
- Didelot, X.; Wilson, D.J. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes. PLoS Comput. Biol. 2015, 11, e1004041. [Google Scholar] [CrossRef]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Exclusion Criteria | Inclusion Criteria |
---|---|
Humans GWAS studies | Genome-Wide Association Study (GWAS) |
Plants GWAS studies | Bacterial GWAS studies |
Animals GWAS studies | Antibiotic resistance phenotype |
Fungi GWAS studies | |
Protozoon GWAS studies | |
Wrong publication type | |
Studies not related to GWAS | |
GWAS studies with incorrect phenotype | |
Studies without GWAS methodology |
Authors | Year | Organism | Samples | Phenotype Resistance | Traits | Genetic Variants | GWAS Software | GWAS Approach | Population Structure Control |
---|---|---|---|---|---|---|---|---|---|
[14] | 2013 | Escherichia coli | 164 | FQ (CIP, GAT, LEV, NOR) | Binary | Genes | Not reported | Arbitrary set arithmetic between the pools based on their phenotypes to enrich for alleles that are linked to a specific phenotypic trait | Not reported |
[15] | 2014 | Staphylococcus aureus | 75 | VAN | Binary and Continuo | SNP | ROADTRIPS (binary phenotypes), QROADTRIPS (continuous phenotype), R (method similar to PhyC) | Regression Models; Phylogenetic | Covariance matrix; Phylogenetic Inference |
[16] | 2014 | Mycobacterium tuberculosis | 173, 1398 | CIP, OFX, EMB, INH, PZA, RIF, STR | Binary | SNP, Genes | GWAMAR | Tree-generalized hypergeometric score (TGH), which incorporates the phylogenetic tree in the analysis, mutual information, odds ratio, hypergeometric test, weighted support | Phylogenetic Inference |
[17] | 2015 | Escherichia coli | 380 | AMP, ATM, CAZ, CFZ, CTT, CRO, SAM, DOX, GEN, SXT, MXF | Binary | Genes | R | Logistic regression model | Genotype matrix obtained with dimension reduction methods (PCA) |
[18] | 2016 | Acinetobacter baumannii | 120 | Carbapenem | Binary | k-mers | bugwas | Linear Mixed Model that incorporates lineage-specific effects by decomposing the kinship into principal components | Kinship/Relatedness matrix and Genotype matrix obtained with dimension reduction methods (PCA) to test for potential lineage effects |
[12] | 2016 | Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae. | 1735, 992, 241, 176 | MTB (EMB, INH, PZA, RIF); STA (CIP, ERY, FA, GEN, PEN, MET, TET, RIF, TMP); ECO, KLE (AMP, CFZ, CXM, CRO, CIP, GEN, TOB) | Binary | SNP, Genes, k-mers | bugwas | Linear Mixed Model that incorporates lineage-specific effects by decomposing the kinship into principal components | Kinship/Relatedness matrix and Genotype matrix obtained with dimension reduction methods (PCA) to test for potential lineage effects |
[19] | 2016 | Mycobacterium tuberculosis | 127 (40) | RIF, INH, STR, EMB, PAS, ETH, OFX, CAP | Binary and Categorical | SNP | EMMA; PhyC | Linear Mixed Models; Phylogenetic Convergence test | Genotype matrix obtained with dimension reduction methods (PCA); Phylogenetic Inference |
[20] | 2016 | Mycobacterium tuberculosis | 91 | AMC | Continuo | SNP, Genes | EMMA | Phylogenetically controlled Linear mixed model | Kinship matrix and Phylogenetic Inference |
[21] | 2017 | Streptococcus pneumoniae | 1680 | PEN, TMP, CMX, ERY, OFX, CIP | Binary | SNP, Genes | PLINK | Fisher’s exact test | Genetic subpopulations (represented by the sequence clusters; SCs) determined using BAPS |
[8] | 2018 | Mycobacterium tuberculosis, Staphylococcus aureus and Pseudomonas aeruginosa. | 5000, 9000, 2500 | MTB (RIF, STR, OFX, ETH, XDR-TB); STA (MET, CIP, FA, TMP); PSA (AMK, LEV) | Binary | SNP, k-mers | DBGWAS | Compacted De Bruijn graphs (DBG) combined with a Linear Mixed Model | Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects |
[22] | 2018 | Burkholderia multivorans | 111 | ATM, CAZ, AMK, TOB, CIP | Categorical | SNP, Indels | Not report | Fisher’s exact test | Clustering utilizing groups defined by STRUCTURE |
[4] | 2018 | Neisseria meningitidis | 171 | PEN | Binary | SNP, Genes | treeWAS | Phylogenetic | Phylogenetic Inference |
[23] | 2018 | Mycobacterium tuberculosis | 549 | INH | Binary | SNP | phyOverlap | Phylogenetic | Phylogenetic Inference |
[24] | 2018 | Mycobacterium tuberculosis | 6465 | INH, RIF, EMB, ETH, PZA, STR, AMK, KAN, CAP, CIP, MXF, OFX, DCS, PAS, MDR-TB, XDR-TB | Binary | SNP, Genes, small Indels, large deletions | GEMMA; PhyC | Linear Mixed Model; Phylogenetic Convergence test | Kinship matrix; Phylogenetic Inference |
[25] | 2018 | Brachyspira hyodysenteriae | 37 | TIA, VAL | Binary | Genes | Scoary | Pan-GWAS: Fisher’s exact test | Phylogenetic Inference |
[26] | 2019 | Mycobacterium tuberculosis | 145 | ETH | Binary | SNP | phyOverlap | Phylogenetic | Phylogenetic Inference |
[27] | 2019 | Neisseria gonorrhoeae | 1102 | PEN, TET, CFX, CIP, AZM | Continuo | SNP | Python (pylmm) | Linear mixed model; GWAS epistatic: information of evolutionary couplings combined with an adaptation of linear mixed model | Phylogenetic Inference using hierarchically clustering (RhierBAPS) |
[28] | 2019 | Mycobacterium tuberculosis | 1452 | INH, RIF, RFB, EMB, PZA, KAN, AMK, CAP, ETH, STR, MXF | Continuo | SNP, Genes, Indels | GEMMA, treeWAS | Linear Mixed Model; Phylogenetic | Kinship matrix; Phylogenetic Inference |
[29] | 2020 | Neisseria gonorrhoeae | 4505 | AZM, CIP, CRO | Continuo | k-mers | pyseer | Linear Mixed Model | Phylogenetic matrix and covariable matrix based on the isolate’s country of origin |
[30] | 2020 | Acinetobacter baurelqii | 84 | FEP, CXM, GEN, CAZ, TMP, AZM, CRO, ATM, ERY, PIP, LEV, IPM, CIP | Binary | Genes; k-mers; SNP | Python (Scipy); pyseer; treeWAS | Mann–Whitney test; Linear model mixed; Phylogenetic | NA; Kinship matrix; Phylogenetic Inference |
[31] | 2020 | Mycobacterium tuberculosis | 600 | INH, RIF, EMB, STR, PZA, KAN, CIP, ETH, PAS | Binary | SNP | ECAT | Adaptation of the Linear Mixed Model to integrate homoplasy information while accounting for confounding factors | Kinship/Relatedness matrix |
[32] | 2020 | Neisseria gonorrhoeae | 4505 | AZM | Continuo | k-mers | pyseer | Linear Mixed Model | Phylogenetic matrix |
[33] | 2020 | Streptococcus uberis | 265 | OXA | Continuo | k-mers | SEER | Linear regression | Distance matrix applied multidimensional scaling (MDS) |
[34] | 2020 | Mycobacterium tuberculosis | 549 (1635, 1365) | INH | Binary and Continuo | SNP | phyOverlap | Phylogenetic | Phylogenetic Inference |
[35] | 2020 | Staphylococcus capitis | 162 | VAN | Continuo | k-mers | DBGWAS | Compacted De Bruijn graphs (DBG) combined with a Linear Mixed Model | Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects |
[36] | 2020 | Corynebacterium diphtheriae | 247 | PEN, AMX, OXA, CTX, IMP, AZM, CLR, ERY, SPR, CLI, PRT, GEN, KAN, SUL, TMP, STX, RIF, TET, CIP | Binary | SNP, Genes | treeWAS | Phylogenetic | Phylogenetic Inference |
[37] | 2020 | Mycobacterium tuberculosis | 3574 | INH, RIF, EMB, PZA, STR | Categorical | SNP | Hungry SNPos algorithm (HHS) | Simple scoring heuristic combined with iterative ‘cannibalism’ | Iterative ‘cannibalistic’ elimination algorithm |
[38] | 2021 | Achromobacter spp. | 92 | AMC, CAZ, CHL, CST, IPM, MEM, TZP, SMZ, TGC, SXT | Binary | k-mers (unitig) | DBGWAS | Compacted De Bruijn graphs (DBG) combined with a Linear Mixed Model | Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects |
[39] | 2021 | Escherichia coli | 172 | CTX | Binary | SNP | R; pyseer | Fisher’s exact test; Linear Mixed Model | NA; Phylogenetic Inference |
[40] | 2021 | Mycoplasma bovis | 95 | OTC, DOX, TIL, TYL, GAM, FLO, GEN, ENRO, TIA | Categorical | k-mers | DBGWAS | Compacted De Bruijn graphs (DBG) combined with a Linear Mixed Model | Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects |
[41] | 2021 | Escherichia coli | 1178 | NAL, NOR, CIP, LEV | Continuo | SNP, Indels | SEER | Fixed Effects Model | Phylogenetic matrix with multidimensional scaling (MDS) |
[42] | 2021 | Staphylococcus aureus | 283 | MRLM | Binary | Genes, k-mers, SNP | Scoary; DBGWAS; PLINK | Pan-GWAS: Fisher’s exact test, Linear Mixed Model, and Fisher’s exact test | Phylogenetic Inference; Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects; Genetic relatedness into models are delineation of strain clusters |
[43] | 2022 | Achromobacter spp. | 54 | SXT, TGC, SSS, IPM, TZP, MEM. | Categorical | k-mers | DBGWAS | Compacted De Bruijn graphs (DBG) combined with a Linear Mixed Model | Kinship/Relatedness matrix and Genotype matrix using dimension reduction methods (PCA) to assess potential lineage effects |
[44] | 2022 | Pseudomona aeruginosa | 280 | AMK | Binary | k-mers | CALDERA | Cochran–Mantel–Haenszel (CMH) test | Not reported |
[45] | 2022 | Mycobacterium tuberculosis | 1184, 1163, 1159 | AMK, CAP, KAN | Binary | SNP, Genes | Python script (https://gitlab.com/LPCDRP/gwa) | Not reported | Not reported |
[46] | 2022 | Mycobacterium tuberculosis | 10,228 | INH, RIF, EMB, AMK, ETH, KAN, LEV, MXF, RIB, BDQ, CLF, DLM, LNZ | Continuo | k-mers | GEMMA | Linear Mixed Model | Kinship/Relatedness matrix |
[47] | 2022 | Streptococcus pneumoniae | 1612 | PEN, CRO | Continuo | Genes | lme4qtl (R package), pyseer, treeWAS | Linear Mixed Model/Generalized Least Squares regression (frequency-based allele coding); Linear Mixed Model; Phylogenetic | NA; Kinship matrix; Phylogenetic inference |
[48] | 2022 | Neisseria gonorrhoeae | 9673 | PEN, TET | Binary | k-mers | pyseer | Linear Mixed Model | Kinship/relatedness matrix and Covariable matrix based on the isolate dataset’s origin, country of origin, and presence of plasmid-encoded resistance determinants (blaTEM, tetM) |
[49] | 2022 | Mycobacterium abscessus | 331 | AMK, FOX, CLR, LNZ, CFZ | Continuo | SNP, Indels | GEMMA, bugwas | Linear Mixed Model: Linear Mixed Model that incorporates lineage-specific effects by decomposing the kinship into principal components | Kinship/Relatedness matrix; Kinship/Relatedness matrix and Genotype matrix obtained with dimension reduction methods (PCA) to test for potential lineage effects |
[50] | 2023 | Mycobacterium tuberculosis | 2773 | MDR, poly-drug resistant, pre-XDR, XDR. | Binary | SNP | GAPIT | Compressed Mixed Linear Model | Kinship matrix and Genotype matrix were obtained with dimension reduction methods (PCA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosquera-Rendón, J.; Moreno-Herrera, C.X.; Robledo, J.; Hurtado-Páez, U. Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review. Microorganisms 2023, 11, 2866. https://doi.org/10.3390/microorganisms11122866
Mosquera-Rendón J, Moreno-Herrera CX, Robledo J, Hurtado-Páez U. Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review. Microorganisms. 2023; 11(12):2866. https://doi.org/10.3390/microorganisms11122866
Chicago/Turabian StyleMosquera-Rendón, Jeanneth, Claudia Ximena Moreno-Herrera, Jaime Robledo, and Uriel Hurtado-Páez. 2023. "Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review" Microorganisms 11, no. 12: 2866. https://doi.org/10.3390/microorganisms11122866
APA StyleMosquera-Rendón, J., Moreno-Herrera, C. X., Robledo, J., & Hurtado-Páez, U. (2023). Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review. Microorganisms, 11(12), 2866. https://doi.org/10.3390/microorganisms11122866