The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Variables
2.3.1. Outcome Variable: Mortality
2.3.2. Exposure Variable: ALRI
Laboratory Biomarkers
2.3.3. Other Variables
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Subjects
3.2. Use of the Best Cut-Off Values of Hematologic Parameters to Discern COVID-19 Mortality
3.3. Analysis of the Association of Hematologic and Enzymatic Parameters with COVID-19 Mortality
3.4. Demographic, Clinical, and Hematological Characteristics of COVID-19 Patients Stratified According to ALRI Values
3.5. Correlation between Hematological Parameters and ALRI Levels at Admission in COVID-19 Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Wu, W.; Guo, L.; Jin, Q.; Cao, B.; Wang, J.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Jao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 2020, 63, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Rad, S.; Rostami, T.; Rostami, M.; Mousavi, S.A.; Mirhoseini, S.A.; Kiumarsi, A. Hematologic Predictors of Mortality in Hospitalized Patients with COVID-19: A Comparative Study. Hematology. Published online 30 October 2020. Available online: https://www.tandfonline.com/doi/abs/10.1080/16078454.2020.1833435 (accessed on 2 September 2023).
- Zhao, X.; Wang, K.; Zuo, P.; Liu, Y.; Zhang, M.; Xie, S.; Zhang, H.; Chen, X. Early decrease in blood platelet count is associated with poor prognosis in COVID-19 patients—Indications for predictive, preventive, and personalized medical approach. EPMA J. 2020, 11, 139–145. [Google Scholar] [CrossRef]
- Ghobadi, H.; Mohammadshahi, J.; Javaheri, N.; Fouladi, N.; Mirzazadeh, Y.; Aslani, M.R. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Front. Med. 2022, 9, 916453. Available online: https://www.frontiersin.org/articles/10.3389/fmed.2022.916453 (accessed on 2 September 2023). [CrossRef]
- Citu, C.; Gorun, F.; Motoc, A.; Sas, I.; Gorun, O.M.; Burlea, B.; Tuta-Sas, I.; Tomescu, L.; Neamtu, R.; Malita, D.; et al. The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 Mortality. Diagnostics 2022, 12, 122. [Google Scholar] [CrossRef]
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef]
- Serin, I.; Sari, N.D.; Dogu, M.H.; Acikel, S.D.; Babur, G.; Ulusoy, A.; Onar, M.I.; Gokce, E.C.; Altunok, O.; Mert, F.Y.; et al. A new parameter in COVID-19 pandemic: Initial lactate dehydrogenase (LDH)/Lymphocyte ratio for diagnosis and mortality. J. Infect. Public Health 2020, 13, 1664–1670. [Google Scholar] [CrossRef]
- Huang, D.; Yang, H.; Yu, H.; Wang, T.; Chen, Z.; Yao, R.; Liang, Z. Diagnostic Value of Hematological and Biochemical Parameters Combinations for Predicting Coronavirus Disease 2019 (COVID-19) in Suspected Patients. Am. J. Med. Sci. 2021, 362, 387–395. [Google Scholar] [CrossRef]
- Gemcioglu, E.; Davutoglu, M.; Catalbas, R.; Karabuga, B.; Kaptan, E.; Aypak, A.; Kalem, A.K.; Özdemir, M.; Yeşilova, N.Y.; Kalkan, E.A.; et al. Predictive values of biochemical markers as early indicators for severe COVID-19 cases in admission. Future Virol. 2021, 16, 353–367. [Google Scholar] [CrossRef]
- Ding, Z.-Y.; Li, G.-X.; Chen, L.; Shu, C.; Song, J.; Wang, W.; Wang, Y.-W.; Chen, Q.; Jin, G.-N.; Liu, T.-T.; et al. Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J. Hepatol. 2021, 74, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lv, Y.; Niu, Y.; Bu, Y. Prognostic value of γ-glutamyl transpeptidase to albumin ratio combined with aspartate aminotransferase to lymphocyte ratio in patients with hepatocellular carcinoma after hepatectomy. Medicine 2020, 99, e23339. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhu, P.; Liao, Y.; Li, J.; Liao, W.; He, S. Elevated preoperative aspartate aminotransferase to lymphocyte ratio index as an independent prognostic factor for patients with hepatocellular carcinoma after hepatic resection. Oncotarget 2015, 6, 19217–19227. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Kong, J.; Wang, W.; Wu, M.; Yao, L.; Wang, Z.; Jin, J.; Wu, D.; Yu, X. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb. Res. 2020, 192, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.P.; Liu, J.; Tao, W.; Li, H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Ramos-Hernández, W.M.; Soto, L.F.; Del Rosario-Trinidad, M.; Farfan-Morales, C.N.; De Jesús-González, L.A.; Martínez-Mier, G.; Osuna-Ramos, J.F.; Bastida-González, F.; Bernal-Dolores, V.; Del Ángel, R.M.; et al. Leukocyte glucose index as a novel biomarker for COVID-19 severity. Sci. Rep. 2022, 12, 14956. [Google Scholar] [CrossRef]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Peto, R.; Pike, M.C.; Armitage, P.; Breslow, N.E.; Cox, D.R.; Howard, S.V.; Mantel, N.; McPherson, K.; Peto, J.; Smith, P.G. Design analysis of randomized clinical trials requiring prolonged observation of each patient, I.I. Analysis and examples. Br. J. Cancer 1977, 35, 1–39. [Google Scholar] [CrossRef]
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Polidori, M.C.; Sies, H.; Ferrucci, L.; Benzing, T. COVID-19 mortality as a fingerprint of biological age. Ageing Res. Rev. 2021, 67, 101308. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Mahdavi, M.; Choubdar, H.; Zabeh, E.; Rieder, M.; Safavi-Naeini, S.; Jobbagy, Z.; Ghorbani, A.; Abedini, A.; Kiani, A.; Khanlarzadeh, V.; et al. A machine learning based exploration of COVID-19 mortality risk. PLoS ONE 2021, 16, e0252384. [Google Scholar] [CrossRef] [PubMed]
- Hodges, G.; Pallisgaard, J.; Olsen, A.M.S.; McGettigan, P.; Andersen, M.; Krogager, M.; Kragholm, K.; Køber, L.; Gislason, G.H.; Torp-Pedersen, C.; et al. Association between biomarkers and COVID-19 severity and mortality: A nationwide Danish cohort study. BMJ Open 2020, 10, e041295. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J. Diagnostic tests (1)—sensitivity and specificity. Phlebology 2012. Published online. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Le Borgne, P.; Lefevbre, F.; Cipolat, L.; Remillon, A.; Dib, C.; Hoffmann, M.; Gardeur, I.; Sabah, J.; Kepka, S.; et al. Platelet-to-Lymphocyte Ratio (PLR) Is Not a Predicting Marker of Severity but of Mortality in COVID-19 Patients Admitted to the Emergency Department: A Retrospective Multicenter Study. J. Clin. Med. 2022, 11, 4903. [Google Scholar] [CrossRef]
- Regolo, M.; Vaccaro, M.; Sorce, A.; Stancanelli, B.; Colaci, M.; Natoli, G.; Russo, M.; Alessandria, I.; Motta, M.; Santangelo, N.; et al. Neutrophil-to-Lymphocyte Ratio (NLR) Is a Promising Predictor of Mortality and Admission to Intensive Care Unit of COVID-19 Patients. J. Clin. Med. 2022, 11, 2235. [Google Scholar] [CrossRef]
- Eslamijouybari, M.; Heydari, K.; Maleki, I.; Moosazadeh, M.; Hedayatizadeh-Omran, A.; Vahedi, L.; Ghasemian, R.; Sharifpour, A.; Alizadeh-Navaei, R. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19 Patients and Control Group and Relationship with Disease Prognosis. Caspian J. Intern. Med. 2020, 11 (Suppl. 1), 531–535. [Google Scholar] [CrossRef]
- Sarkar, S.; Kannan, S.; Khanna, P.; Singh, A.K. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2022, 94, 211–221. [Google Scholar] [CrossRef]
- Wanner, N.; Andrieux, G.; Badia-i-Mompel, P.; Edler, C.; Pfefferle, S.; Lindenmeyer, M.T.; Schmidt-Lauber, C.; Czogalla, J.; Wong, M.N.; Okabayashi, Y.; et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat. Metab. 2022, 4, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.S.; Rout, A. Use of Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios in COVID-19. J. Clin. Med. Res. 2020, 12, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, D.; Chen, C.; Lu, W.; Liu, H.; Lv, T.; Song, Y.; Zhang, F. PaO2/FiO2 and IL-6 are risk factors of mortality for intensive care COVID-19 patients. Sci. Rep. 2021, 11, 7334. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Y.; Xu, J.; He, J.Q.; Lu, Y.Q. Immune dysfunction following COVID-19, especially in severe patients. Sci. Rep. 2020, 10, 15838. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.B.; Xu, C.; Zhang, R.B.; Wu, M.; Pan, C.K.; Li, X.J.; Wang, Q.; Zeng, F.F.; Zhu, S. Associations of procalcitonin, C-reaction protein and neutrophil-to-lymphocyte ratio with mortality in hospitalized COVID-19 patients in China. Sci. Rep. 2020, 10, 15058. [Google Scholar] [CrossRef]
Variable | Total (n = 225) | Survival Group (n = 144) | Non-Survival Group (n = 81) | p-Value | Adjusted p-Value |
---|---|---|---|---|---|
Sex, female | 99 (44%) | 68 (47.2%) | 31 (38.3%) | 0.194 | 1 |
Age (years old) | 61.97 ± 13.39 | 60.2 ± 13.515 | 65 ± 12.705 | 0.004 | 0.168 |
Obesity | 50 (22.2%) | 30 (20.8%) | 20 (24.7%) | 0.504 | 1 |
Diabetes | 116 (51.6%) | 80 (55.6%) | 36 (44.4%) | 0.109 | 1 |
Hypertension | 143 (63.6%) | 87 (60.4%) | 56 (69.1%) | 0.192 | 1 |
CKD | 45 (25%) | 27 (18.8%) | 18 (22.2%) | 0.532 | 1 |
COPD | 6 (2.7%) | 3 (2.1%) | 3 (3.7%) | 0.670 | 1 |
Cardiovascular disease | 11 (4.9%) | 9 (6.3%) | 2 (2.5%) | 0.335 | 1 |
Days of hospitalization | 4 (4) | 4 (4) | 3 (6) | 0.206 | 1 |
Hemoglobin (g/dL) | 12.8 (2.7) | 12.95 (2.3) | 12.3 (3.5) | 0.865 | 1 |
Hematocrit (%) | 39 (6.2) | 39 (6) | 39 (8.9) | 0.738 | 1 |
Leukocytes (×109/L) | 10.2 (5.31) | 10.29 (5.673) | 10 (4.61) | 0.615 | 1 |
Platelets (×109/L) | 300 (176) | 304.623 ± 126.045 | 298.253 ± 117.407 | 0.601 | 1 |
Neutrophils (×109/L) | 7.23 (4.8) | 7.145 (4.65) | 8 (4.79) | 0.140 | 1 |
Lymphocytes (×109/L) | 1 (0.720) | 1.065 (0.893) | 0.8 (0.5) | <0.0001 | 0.0009 |
PT (s) | 13 (3) | 13 (3.2) | 13 (2.9) | 0.696 | 1 |
PTT (s) | 29 (5) | 30 (6) | 28.3 (4.8) | <0.0005 | 0.014 |
INR | 1.2 (0.2) | 1.2 (0.2) | 1.2 (0.2) | 0.554 | 1 |
Glucose (mg/dL) | 130 (86) | 126 (83) | 130 (82) | 0.248 | 1 |
Urea (mg/dL) | 40 (54) | 40 (36.3) | 50 (94) | 0.014 | 0.588 |
Creatinine (mg/dL) | 0.9 (1.1) | 0.9 (0.8) | 1 (1.7) | 0.576 | 1 |
LDH (U/L) | 360 (213) | 363 (198) | 351 (254) | 0.438 | 1 |
TB (mg/dL) | 0.9 (0.5) | 0.9 (0.4) | 0.8 (0.6) | 0.753 | 1 |
DB (mg/dL) | 0.4 (0.3) | 0.4 (0.3) | 0.4 (0.3) | 0.908 | 1 |
IB (mg/dL) | 0.5 (0.3) | 0.5 (0.3) | 0.5 (0.3) | 0.564 | 1 |
AST (IU/L) | 40 (28) | 34.5 (26) | 43 (30) | <0.0005 | 0.009 |
ALT (IU/L) | 33 (26) | 30.5 (31) | 37 (22) | 0.136 | 1 |
CPK (IU/L) | 157 (240) | 143 (184) | 160 (308) | 0.091 | 1 |
CK-MB (IU/L) | 24 (28) | 23.5 (26.8) | 24 (32.2) | 0.263 | 1 |
BNP (pg/mL) | 56 (138) | 56 (160.8) | 50 (138) | 0.870 | 1 |
MYO (ng/mL) | 200 (176) | 200 (179) | 259 (162) | 0.056 | 1 |
Na (mmol/L) | 137 (5) | 137 (5) | 137 (5) | 0.377 | 1 |
K (mmol/L) | 4.5 (0.7) | 4.5 (0.7) | 4.5 (0.7) | 0.595 | 1 |
Cl (mmol/L) | 99 (3) | 99 (3) | 99 (2) | 0.678 | 1 |
ALRI | 37.31 (25.274) | 31.428 (25.773) | 51.136 (36.6) | <0.0001 | <0.0001 |
APRI | 0.323 (0.29) | 0.284 (0.26) | 0.403 (0.41) | 0.001 | 0.050 |
ANRI | 4.777 (4.06) | 4.6 (3.88) | 4.78 (5.59) | 0.127 | 1 |
NLR | 8.315 (7.669) | 7.481 (6.731) | 10.302 (9.884) | <0.0001 | 0.0007 |
PLR | 302.727 (286.31) | 278.4 (256.31) | 361.428 (281) | 0.003 | 0.126 |
SII | 2133 (2482) | 1838 (2367.131) | 2890 (3568) | 0.001 | 0.042 |
LGI | 73.75 (63.959) | 72.894 (65.619) | 76.9 (57.494) | 0.721 | 1 |
LDH/LR | 0.361 (0.304) | 0.331 (0.271) | 0.5 (0.333) | <0.0001 | <0.0001 |
Variable | AUC | 95% CI | p-Value | Best Cut-Off Point | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
Lymphocytes | 0.67 | 0.6–0.73 | <0.0001 | ≤1.21 | 83.95 | 47.22 |
PTT | 0.64 | 0.57–0.7 | 0.0001 | ≤31.9 | 85.19 | 37.76 |
AST | 0.64 | 0.58–0.71 | 0.0001 | >26 | 82.72 | 38.89 |
ALRI | 0.81 | 0.76–0.86 | <0.0001 | >42.42 | 70.37 | 75 |
NLR | 0.67 | 0.6–0.73 | <0.0001 | >9.25 | 60.49 | 68.75 |
SII | 0.63 | 0.57–0.69 | 0.0004 | >1857 | 70.37 | 52.08 |
LDH/LR | 0.68 | 0.61–0.74 | <0.0001 | >0.369 | 68.75 | 64 |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
Variable | HR | 95% CI | p-Value | Adjusted p-Value | HR | 95% CI | p-Value | Adjusted p-Value |
Lymphocytes | 2.69 | 1.48–4.88 | 0.001 | 0.007 | 1.2 | 0.56–2.54 | 0.627 | 1 |
PTT | 2.68 | 1.45–4.94 | 0.001 | 0.007 | 2.08 | 1.08–4.01 | 0.028 | 0.14 |
AST | 1.86 | 1.04–3.32 | 0.035 | 0.245 | - | - | - | - |
ALRI | 3.2 | 1.98–5.17 | <0.0001 | <0.0001 | 2.32 | 1.35–3.97 | 0.002 | 0.01 |
NLR | 2.01 | 1.28–3.16 | 0.002 | 0.014 | 1.31 | 0.8–2.15 | 0.275 | 1 |
SII | 1.88 | 1.16–3.03 | 0.009 | 0.063 | - | - | - | - |
LDH/LR | 2.3 | 1.43–3.69 | 0.0006 | 0.004 | 1.2 | 0.66–2.2 | 0.538 | 1 |
Variable | ALRI ≤ 42.42 (n = 132) | ALRI > 42.42 (n = 93) | p-Value | Adjusted p-Value |
---|---|---|---|---|
Sex, female | 59 (44.7%) | 40 (43%) | 0.802 | 1 |
Age (years old) | 61.11 ± 13.39 | 63.14 ± 13.38 | 0.096 | 1 |
Obesity | 25 (18.9%) | 25 (26.9%) | 0.158 | 1 |
Diabetes | 77 (58.3%) | 39 (41.9%) | 0.015 | 0.615 |
Hypertension | 88 (66.7%) | 55 (59.1%) | 0.248 | 1 |
CKD | 26 (19.7%) | 19 (20.4) | 0.892 | 1 |
COPD | 3 (2.3%) | 3 (3.2%) | 0.693 | 1 |
Cardiovascular disease | 7 (5.3%) | 4 (4.3%) | 1 | 1 |
Non-survival | 24 (18.2%) | 57 (61.3%) | <0.0001 | <0.0001 |
Hemoglobin (g/dL) | 12.7 (3.1) | 12.85 (2.7) | 0.794 | 1 |
Hematocrit (%) | 39 (6.6) | 39 (5.8) | 0.802 | 1 |
Leukocytes (×109/L) | 10.36 (5.63) | 9.6 (5.18) | 0.797 | 1 |
Platelets (×109/L) | 296 (158.5) | 300 (177.75) | 0.990 | 1 |
Neutrophils (×109/L) | 7.15 (4.82) | 7.58 (4.79) | 0.093 | 1 |
Lymphocytes (×109/L) | 1.21 (1.04) | 0.79 (0.42) | <0.0001 | <0.0001 |
PT (s) | 13 (3) | 13 (3) | 0.960 | 1 |
PTT (s) | 30 (6) | 28.15 (5) | 0.0001 | 0.004 |
INR | 1.2 (0.2) | 1.2 (0.2) | 0.901 | 1 |
Glucose (mg/dL) | 130 (100) | 125.5 (68) | 0.588 | 1 |
Urea (mg/dL) | 40 (44) | 42 (94) | 0.040 | 1 |
Creatinine (mg/dL) | 0.9 (0.6) | 1.05 (1.8) | 0.114 | 1 |
LDH (U/L) | 347 (180) | 400 (292) | 0.003 | 0.123 |
TB (mg/dL) | 0.8 (0.5) | 0.95 (0.6) | 0.154 | 1 |
DB (mg/dL) | 0.4 (0.2) | 0.4 (0.3) | 0.347 | 1 |
IB (mg/dL) | 0.5 (0.3) | 0.5 (0.3) | 0.293 | 1 |
AST (IU/L) | 28 (23) | 45 (25) | <0.0001 | <0.0001 |
ALT (IU/L) | 24 (26) | 40 (21) | <0.0001 | 0.0003 |
CPK (IU/L) | 127 (160) | 178.5 (284) | 0.009 | 0.369 |
CK-MB (IU/L) | 20 (23) | 29 (32.3) | 0.007 | 0.287 |
BNP (pg/mL) | 50 (92.5) | 67 (150) | 0.212 | 1 |
MYO (ng/mL) | 200 (162) | 236 (200) | 0.200 | 1 |
Na (mmol/L) | 138 (6) | 137 (5) | 0.072 | 1 |
K (mmol/L) | 4.5 (0.7) | 4.5 (0.51) | 0.878 | 1 |
Cl (mmol/L) | 99 (2) | 100 (3) | 0.001 | 0.041 |
APRI | 0.25 (0.26) | 0.41 (0.36) | <0.0001 | 0.0001 |
ANRI | 4.09 (4.2) | 5.53 (4.17) | 0.0003 | 0.012 |
NLR | 6 (6.51) | 10.38 (8.7) | <0.0001 | <0.0001 |
PLR | 252.63 (255.02) | 343.57 (270.8) | <0.0001 | 0.0004 |
SII | 1730.11 (2489) | 3030.62 (3333.93) | <0.0001 | <0.0001 |
LGI | 76.05 (84.11) | 72.35 (44.17) | 0.720 | 1 |
LDH/LR | 0.3 (0.297) | 0.517 (0.356) | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Ruiz, J.M.; García-Hernández, O.; Martínez-Mier, G.; Osuna-Ramos, J.F.; De Jesús-González, L.A.; Farfan-Morales, C.N.; Palacios-Rápalo, S.N.; Cordero-Rivera, C.D.; Ordoñez-Rodríguez, T.; Ángel, R.M.d. The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms 2023, 11, 2894. https://doi.org/10.3390/microorganisms11122894
Reyes-Ruiz JM, García-Hernández O, Martínez-Mier G, Osuna-Ramos JF, De Jesús-González LA, Farfan-Morales CN, Palacios-Rápalo SN, Cordero-Rivera CD, Ordoñez-Rodríguez T, Ángel RMd. The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms. 2023; 11(12):2894. https://doi.org/10.3390/microorganisms11122894
Chicago/Turabian StyleReyes-Ruiz, José Manuel, Omar García-Hernández, Gustavo Martínez-Mier, Juan Fidel Osuna-Ramos, Luis Adrián De Jesús-González, Carlos Noe Farfan-Morales, Selvin Noé Palacios-Rápalo, Carlos Daniel Cordero-Rivera, Tatiana Ordoñez-Rodríguez, and Rosa María del Ángel. 2023. "The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection" Microorganisms 11, no. 12: 2894. https://doi.org/10.3390/microorganisms11122894
APA StyleReyes-Ruiz, J. M., García-Hernández, O., Martínez-Mier, G., Osuna-Ramos, J. F., De Jesús-González, L. A., Farfan-Morales, C. N., Palacios-Rápalo, S. N., Cordero-Rivera, C. D., Ordoñez-Rodríguez, T., & Ángel, R. M. d. (2023). The Role of Aspartate Aminotransferase-to-Lymphocyte Ratio Index (ALRI) in Predicting Mortality in SARS-CoV-2 Infection. Microorganisms, 11(12), 2894. https://doi.org/10.3390/microorganisms11122894