Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Soil Sampling and DNA Extraction
2.3. Prokaryotic (16S rRNA) and Fungal (ITS) Amplicon Sequence Processing
2.4. Real-Time PCR
2.5. Statistical Analyses
3. Results
3.1. Bacterial and Fungal Community Structures
3.2. Differences in Microbial Taxa between Residues
3.3. Abundances of Total Bacteria and Total Fungi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lourenço, K.S.; Suleiman, A.K.A.; Pijl, A.; van Veen, J.A.; Cantarella, H.; Kuramae, E.E. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome 2018, 6, 142. [Google Scholar] [CrossRef]
- Mattiazzo, M.E.; da Glória, N.A. Effect of vinasse on soil acidity. Water Sci. Technol. 1987, 19, 1293–1296. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Lu, M.; Qin, C.; Chen, Y.; Yang, L.; Huang, Q.; Wang, J.; Shen, Z.; Shen, Q. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol. Fertil. Soils 2016, 52, 455–467. [Google Scholar] [CrossRef]
- Franco-Andreu, L.; Gómez, I.; Parrado, J.; García, C.; Hernández, T.; Tejada, M. Soil biology changes as a consequence of organic amendments subjected to a severe drought. Land Degrad. Dev. 2017, 28, 897–905. [Google Scholar] [CrossRef]
- Sukitprapanon, T.-S.; Jantamenchai, M.; Tulaphitak, D.; Vityakon, P. Nutrient composition of diverse organic residues and their long-term effects on available nutrients in a tropical sandy soil. Heliyon 2020, 6, e05601. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Qiu, S.; Xu, X.; Ciampitti, I.A.; Zhang, S.; He, P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 2019, 138, 123–133. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Lourenço, K.S.; Clark, C.; Luz, R.L.; da Silva, G.H.R.; Vet, L.E.M.; Cantarella, H.; Fernandes, T.V.; Kuramae, E.E. From toilet to agriculture: Fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resour. Conserv. Recycl. 2020, 161, 104924. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Ackerly, D.D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 2009, 79, 109–126. [Google Scholar] [CrossRef]
- Lourenço, K.S.; Suleiman, A.K.A.; Pijl, A.; Cantarella, H.; Kuramae, E.E. Dynamics and resilience of soil mycobiome under multiple organic and inorganic pulse disturbances. Sci. Total Environ. 2020, 733, 139173. [Google Scholar] [CrossRef]
- Rogeri, D.A.; Ernani, P.R.; Mantovani, A.; Lourenço, K.S. Composition of Poultry Litter in Southern Brazil. Rev. Bras. Ciência Solo 2016, 40, e0140697. [Google Scholar] [CrossRef]
- Fuess, L.T.; Garcia, M.L.; Zaiat, M. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci. Total Environ. 2018, 634, 29–40. [Google Scholar] [CrossRef]
- Hannula, E.S.; Morriën, E. Will fungi solve the carbon dilemma? Geoderma 2022, 413, 115767. [Google Scholar] [CrossRef]
- Boer, W.d.; Folman, L.B.; Summerbell, R.C.; Boddy, L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 2005, 29, 795–811. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Gonzatto, R.; Aita, C.; Lupatini, M.; Jacques, R.J.S.; Kuramae, E.E.; Antoniolli, Z.I.; Roesch, L.F.W. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol. Biochem. 2016, 97, 71–82. [Google Scholar] [CrossRef]
- Mutton, M.A.; Rossetto, R.; Mutton, M.J.R. Agricultural use of stillage. In Sugarcane Bioethanol—R&D for Productivity and Sustainability; Cortez, L.A.B., Ed.; Edgard Blücher: São Paulo, Brazil, 2014; pp. 423–440. [Google Scholar]
- CONAB. Acompanhamento da Safra Brasileira de Cana-de-Açúcar: V. 7—SAFRA 2020/21 N.1—Primeiro levantamento|MAIO 2020; Companhia Nacional de Abastecimento: Brasília, Brazil, 2020; pp. 1–62. [Google Scholar]
- Lourenço, K.S.; Rossetto, R.; Vitti, A.C.; Montezano, Z.F.; Soares, J.R.; de Melo Sousa, R.; do Carmo, J.B.; Kuramae, E.E.; Cantarella, H. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci. Total Environ. 2019, 650, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Critchfield, H.J. General Climatology; Prentice-Hall: Englewood Cliffs, NJ, USA, 1960. [Google Scholar]
- USDA. Keys to Soil Taxonomy. In Soil Survey Staff, 12th ed.; Staff, S.S., Ed.; Natural Resources Conservation Service: Washington, DC, USA, 2014; p. 372. [Google Scholar]
- FAO. World reference base for soil resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations, The State of Food and Agriculture: Rome, Italy, 2015. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M. Methods of soil Chemical, Physical, and Mineralogical Analysis of the Agronomic Institute in Campinas; Instituto Agronômico: Campinas, Brazil, 1986. [Google Scholar]
- Van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Chemical Analysis for Evaluation of Fertility of Tropical Soils; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Lourenço, K.S.; Dimitrov, M.R.; Pijl, A.; Soares, J.R.; do Carmo, J.B.; van Veen, J.A.; Cantarella, H.; Kuramae, E.E. Dominance of bacterial ammonium oxidizers and fungal denitrifiers in the complex nitrogen cycle pathways related to nitrous oxide emission. GCB Bioenergy 2018, 10, 645–660. [Google Scholar] [CrossRef]
- Hollander, M.D. Nioo-Knaw/Hydra: 1.3.3. Zenodo. 2017. Available online: https://zenodo.org/records/884028 or https://github.com/nioo-knaw/hydra/tree/1.3.3 (accessed on 20 June 2020).
- Koster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef]
- Bushnell, B. BBMap. 2015. Available online: http://sourceforge.net/projects/bbmap/ (accessed on 20 June 2020).
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Ryberg, M.; Hartmann, M.; Branco, S.; Wang, Z.; Godhe, A.; De Wit, P.; Sánchez-García, M.; Ebersberger, I.; de Sousa, F.; et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013, 4, 914–919. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Clemente, J.C.; Kuczynski, J.; Rideout, J.R.; Stombaugh, J.; Wendel, D.; Wilke, A.; Huse, S.; Hufnagle, J.; Meyer, F.; et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 2012, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.4-4. 2017. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 8 June 2022).
- Dray, S.; Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Paliy, O.; Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 2016, 25, 1032–1057. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Jackson, D.A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 2001, 129, 169–178. [Google Scholar] [CrossRef]
- Robert, P.; Escoufier, Y. A unifying tool for linear multivariate statistical methods: The RV-coefficient. J. R. Stat. Soc. 1976, 25, 257–265. [Google Scholar] [CrossRef]
- Dray, S.; Chessel, D.; Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 2003, 84, 3078–3089. [Google Scholar] [CrossRef]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, 180–188. [Google Scholar] [CrossRef]
- Carmo, J.B.d.; Filoso, S.; Zotelli, L.C.; de Sousa Neto, E.R.; Pitombo, L.M.; Duarte-Neto, P.J.; Vargas, V.P.; Andrade, C.A.; Gava, G.J.C.; Rossetto, R.; et al. Infield greenhouse gas emissions from sugarcane soils in Brazil: Effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy 2013, 5, 267–280. [Google Scholar] [CrossRef]
- Suleiman, A.K.A.; Lourenço, K.S.; Pitombo, L.M.; Mendes, L.W.; Roesch, L.F.W.; Pijl, A.; Carmo, J.B.; Cantarella, H.; Kuramae, E.E. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. Sci. Total Environ. 2018, 631–632, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Pitombo, L.M.; do Carmo, J.B.; de Hollander, M.; Rossetto, R.; López, M.V.; Cantarella, H.; Kuramae, E.E. Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. GCB Bioenergy 2016, 8, 867–879. [Google Scholar] [CrossRef]
- Güsewell, S.; Gessner, M.O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 2009, 23, 211–219. [Google Scholar] [CrossRef]
- Attermeyer, K.; Hornick, T.; Kayler, Z.E.; Bahr, A.; Zwirnmann, E.; Grossart, H.P.; Premke, K. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 2014, 11, 1479–1489. [Google Scholar] [CrossRef]
- Bardgett, R.D.; McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 1999, 29, 282–290. [Google Scholar] [CrossRef]
- Gessner, M.O.; Gulis, V.; Kuehn, K.A.; Chauvet, E.; Suberkropp, K. Fungal decomposers of plant litter in aquatic ecosystems. In Environmental and Microbial Relationships; Kubicek, C.P., Druzhinina, I.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 301–324. [Google Scholar]
- Taylor, C.R.; Hardiman, E.M.; Ahmad, M.; Sainsbury, P.D.; Norris, P.R.; Bugg, T.D. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J. Appl. Microbiol. 2012, 113, 521–530. [Google Scholar] [CrossRef]
- Kämpfer, P. The Family Streptomycetaceae, Part I: Taxonomy. In The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 538–604. [Google Scholar]
- Cassman, N.A.; Lourenço, K.S.; do Carmo, J.B.; Cantarella, H.; Kuramae, E.E. Genome-resolved metagenomics of sugarcane vinasse bacteria. Biotechnol. Biofuels 2018, 11, 48. [Google Scholar] [CrossRef]
- Cipriano, M.A.P.; Suleiman, A.K.A.; da Silveira, A.P.D.; do Carmo, J.B.; Kuramae, E.E. Bacterial community composition and diversity of two different forms of an organic residue of bioenergy crop. PeerJ 2019, 7, e6768. [Google Scholar] [CrossRef]
- Coenye, T. The Family Burkholderiaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 759–776. [Google Scholar]
- Compant, S.; Nowak, J.; Coenye, T.; Clément, C.; Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 2008, 32, 607–626. [Google Scholar] [CrossRef]
- Muangthong, A.; Youpensuk, S.; Rerkasem, B. Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop. Life Sci. Res. 2015, 26, 41–51. [Google Scholar] [PubMed]
- Leite, M.F.A.; Dimitrov, M.R.; Freitas-Iório, R.P.; de Hollander, M.; Cipriano, M.A.P.; Andrade, S.A.L.; da Silveira, A.P.D.; Kuramae, E.E. Rearranging the sugarcane holobiont via plant growth-promoting bacteria and nitrogen input. Sci. Total Environ. 2021, 800, 149493. [Google Scholar] [CrossRef] [PubMed]
- Middelhoven, W.J. Trichosporon wieringae sp.nov., an anamorphic basidiomycetous yeast from soil, and assimilation of some phenolic compounds, polysaccharides and other non-conventional carbon sources by saprophytic Trichosporon species. Antonie Leeuwenhoek 2005, 86, 329–337. [Google Scholar] [CrossRef]
- Middelhoven, W.J.; Scorzetti, G.; Fell, J.W. Trichosporon porosum comb. nov., an anamorphic basidiomycetous yeast inhabiting soil, related to theloubieri/laibachiigroup of species that assimilate hemicelluloses and phenolic compounds. FEMS Yeast Res. 2001, 1, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.V.; da Silva, D.R.; Beluomini, M.A.; da Silva, J.L.; Stradiotto, N.R. Determination of phenolic acids in sugarcane vinasse by HPLC with pulse amperometry. J. Anal. Methods Chem. 2018, 2018, 4869487. [Google Scholar] [CrossRef] [PubMed]
- Parnaudeau, V.; Condom, N.; Oliver, R.; Cazevieille, P.; Recous, S. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour. Technol. 2008, 99, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, Á.; Boekhout, T.; Fell, J.W. Chapter 138—Cryptococcus Vuillemin (1901). In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: London, UK, 2011; pp. 1661–1737. [Google Scholar]
- Chang, C.-F.; Lee, C.-F.; Liu, S.-M. Cryptococcus keelungensis sp. nov., an anamorphic basidiomycetous yeast isolated from the sea-surface microlayer of the north-east coast of Taiwan. Int. J. Syst. Evol. Microbiol. 2008, 58, 2973–2976. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Wang, Q.M.; Göker, M.; Groenewald, M.; Kachalkin, A.V.; Lumbsch, H.T.; Millanes, A.M.; Wedin, M.; Yurkov, A.M.; Boekhout, T.; et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud. Mycol. 2015, 81, 85–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Sun, L.; Qiu, C.; Ding, Y.; Gu, H.; Wang, L.; Wang, Z.; Ding, Z. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol. 2020, 20, 103. [Google Scholar] [CrossRef]
Rainy Season (RS) | Dry Season (DS) | ||
---|---|---|---|
Soil Layer | cm | 0–20 | 0–20 |
Bulk density | g cm−3 | 1.42 | 1.48 |
pH a | - | 5.3 | 5.0 |
OM b | g dm−3 | 23 | 21 |
P c | mg dm−3 | 10 | 15 |
K | mmolcdm−3 | 0.5 | 0.7 |
Ca | mmolcdm−3 | 45 | 17 |
Mg | mmolcdm−3 | 20 | 12 |
H + Al d | mmolcdm−3 | 31 | 35 |
CEC e | mmolcdm−3 | 98 | 65 |
Soil texture f | |||
Clay | g kg−1 | 619 | 631 |
Silt | g kg−1 | 145 | 151 |
Sand | g kg−1 | 236 | 218 |
Rainy Season—RS a | Dry Season—DS | ||||
---|---|---|---|---|---|
CV b | V | CV | V | ||
pH | 4.0 | 4.1 | 4.2 | 3.9 | |
Density | (g mL−1) | 1.02 | 0.95 | 0.99 | 0.95 |
Total mineral residue | (g L−1) | 43.76 | 5.84 | 44.21 | 12.05 |
C org | (g L−1) | 69.7 | 25.7 | 65.3 | 31.4 |
N tot | (g L−1) | 2.80 | 0.53 | 3.0 | 0.9 |
NH4+-N | (mg L−1) | 119.8 | 63.4 | 100.9 | 41.6 |
NO3−-N | (mg L−1) | 21.2 | 10.8 | 23.7 | 4.1 |
C/N | 25/1 | 49/1 | 22/1 | 35/1 | |
P | (g kg−1) | 1.00 | 0.17 | 0.53 | 0.23 |
K | (g kg−1) | 17.3 | 2.6 | 21.0 | 4.7 |
Ca | (g L−1) | 5.49 | 0.79 | 5.9 | 1.41 |
Mg | (g L−1) | 1.45 | 0.02 | 2.38 | 0.54 |
S | (g L−1) | 2.78 | 0.40 | 4.60 | 0.99 |
Cu | ppm | 3.00 | 1.00 | 5.00 | 2.00 |
Mn | ppm | 48.00 | 7.00 | 26.00 | 6.00 |
Zn | ppm | 7.00 | 1.00 | 5.00 | 3.00 |
Fe | ppm | 249.00 | 39.00 | 8.00 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, K.S.; Cantarella, H.; Kuramae, E.E. Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities. Microorganisms 2023, 11, 2905. https://doi.org/10.3390/microorganisms11122905
Lourenço KS, Cantarella H, Kuramae EE. Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities. Microorganisms. 2023; 11(12):2905. https://doi.org/10.3390/microorganisms11122905
Chicago/Turabian StyleLourenço, Késia Silva, Heitor Cantarella, and Eiko Eurya Kuramae. 2023. "Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities" Microorganisms 11, no. 12: 2905. https://doi.org/10.3390/microorganisms11122905
APA StyleLourenço, K. S., Cantarella, H., & Kuramae, E. E. (2023). Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities. Microorganisms, 11(12), 2905. https://doi.org/10.3390/microorganisms11122905