Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Pathogenic Fungi and Preparation of Culture-Medium
2.2. Water Sample Collection
2.3. Isolation of Culturable Bacteria
2.4. Genomic DNA Extraction and Bacterial 16S rRNA Gene Amplification
2.5. Phylogenetic and Diversity Analysis of Culturable Bacteria
2.6. PSKI Gene and Antimicrobial Gene Screening
Gene | Function | Primer | Primer Sequence | Product Size |
---|---|---|---|---|
16S rRNA | species identification | 27F/ 1492R | 5′-AGAGTTTGATCCTGGCTCAG-3′ 5′-AAG TCGTAACAAGGTARCCGTA-3′ | 1500 bp |
PSKI | polyketide synthase | KSF/ KSR | 5′-GCGATGGATCCNCAGCAGCG-3′ 5′-GTGCCGGTNCCGTGNGYYTC-3′ | 750 bp |
bamC | bacillomycin | bamC1F/ bamC1R | 5′-AGTAAATGAACGCGCCAATC-3′ 5′-CCCTCTCCTGCCACATAGAG-3′ | 975 bp |
fenB | Photigenin synthetase | fenBF/ fenBR | 5′-CTATAGTTTGTTGACGGCTC-3′ 5′-CAGCACTGGTTCTTGTCGCA-3′ | 1400 bp |
ituD | Istilisin synthetase | ituD2F/ ituD2R | 5′-CGCGATCCATGAACAATCTTGCCTTTTTA-3′ 5′-CCGCTCGAGTTATTTTAAAATCCGCAATT-3′ | 1200 bp |
2.7. Determination of the Antifungal Activity against Phytopathogens
2.8. Antifungal Activity Assays of the Strains
2.9. Tolerance Tests of Strains
2.10. Statistical Analysis
3. Results
3.1. Identification and Phylogenetic Analysis of Culturable Bacteria
3.2. Diversity Analysis of Culturable Bacteria in Different Water Depths
3.3. Detection and Analysis of Functional Genes BamC, fenB, ituD and PKSI
3.4. Phylogenetic Analysis of Strains HY-88 and HY-91
3.5. Inhibitory Effect of HY-88 and HY-91 on Phytopathogenic Fungi
3.6. Inhibitory Activity of Colletotrichum viniferum on Detached Fruit of Shine Muscat Grape
3.7. Antagonistic Effect of Supernatant of Fermentation Broth against Magnaporthe grisea
3.8. Tolerance Test of the HY-88 and HY-91
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, J.; Ming, H.; Wang, X.; Li, H.; Shi, F.; Mu, G.; Zhao, S. Analysis on the Bacterial Abundance and Community Structure of Culturable Bacteria in the Surface Microlayer of the Northern Yellow Sea. Haiyang Xuebao 2015, 37, 123–132. [Google Scholar]
- Mardanova, A.; Lutfullin, M.; Hadieva, G.; Akosah, Y.; Pudova, D.; Kabanov, D.; Shagimardanova, E.; Vankov, P.; Vologin, S.; Gogoleva, N.; et al. Structure and variation of root-associated microbiomes of potato grown in alfisol. World J. Microbiol. Biotechnol. 2019, 35, 181. [Google Scholar] [CrossRef]
- Siles, J.A.; Margesin, R. Abundance and Diversity of Bacterial, Archaeal, and Fungal Communities Along an Altitudinal Gradient in Alpine Forest Soils: What Are the Driving Factors? Microb. Ecol. 2016, 72, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mishra, A.; Jha, B. Bacterial Community Structure and Functional Diversity in Subsurface Seawater from the Western Coastal Ecosystem of the Arabian Sea, India. Gene 2019, 701, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yu, Y.; Qiao, Z.; Jin, H.; Li, H. Diversity of Bacterioplankton in Coastal Seawaters of Fildes Peninsula, King George Island, Antarctica. Arch. Microbiol. 2014, 196, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural Products against Cancer: Review on Phytochemicals from Marine Sources in Preventing Cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cernava, T.; Zhou, X.; Baccelli, I.; Wang, J.; Gou, Y.; Sang, W.; Chen, X. First Report of Passion Fruit Leaf Blight Caused by Nigrospora sphaerica in China. Plant Dis. 2021, 106, 1094. [Google Scholar] [CrossRef]
- Ren, X.Y.; Song, D.D.; Liang, Z.; Kong, Q.J. Effect of Mint Oil Against Botrytis cinerea on Table Grapes and Its Possible Mechanism of Action. Eur. J. Plant Pathol. 2019, 3, 153. [Google Scholar]
- Enikova, R.K.; Stoynovska, M.R.; Karcheva, M.D. Mycotoxins in Fruits and Vegetables. J. IMAB-Annu. Proc. 2020, 26, 3139–3143. [Google Scholar] [CrossRef]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Thon, M.; Kulkarni, R.; Xu, J.R.; Pan, H.; et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434, 980–986. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme Events, Trends, and Variability in Northern Hemisphere Lake-Ice Phenology (1855–2005). Clim. Change 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Liang, J.; She, J.; Fu, J.; Wang, J.; Ye, Y.; Yang, B.; Liu, Y.; Zhou, X.; Tao, H. Advances in Natural Products from the Marine-Sponge-Associated Microorganisms with Antimicrobial Activity in the Last Decade. Mar. Drugs 2023, 21, 236. [Google Scholar] [CrossRef]
- Bubici, G.; Kaushal, M.; Prigigallo, M.; Cabanás, C.G.-L.; Mercado-Blanco, J. Biological Control Agents against Fusarium Wilt of Banana. Front. Microbiol. 2019, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Núñez, F. Novel Approaches to Minimizing Mycotoxin Contamination. Toxins 2020, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Gavíra, A.; Huertas, V.; Diánez, F.; Sánchez-Montesinos, B.; Santos, M. Paecilomyces and Its Importance in the Biological Control of Agricultural Pests and Diseases. Plants 2020, 9, 1746. [Google Scholar] [CrossRef]
- Waters, A.L.; Hill, R.T.; Place, A.R.; Hamann, M.T. The Expanding Role of Marine Microbes in Pharmaceutical Development. Curr. Opin. Biotechnol. 2010, 21, 780–786. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Han, J.W.; Kim, H.; Choi, G.J. Phenyl Ethers from the Marine-Derived Fungus Aspergillus tabacinus and Their Antimicrobial Activity Against Plant Pathogenic Fungi and Bacteria. ACS Omega 2022, 7, 33273–33279. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodríguez, A.D.; Berlinck, R.G.S.; Fusetani, N. Marine Pharmacology in 2007–8: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-Inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous System, and Other Miscellaneous Mechanisms of action. Comp. Biochem. Physiol. Part CToxicol. Pharmacol. 2011, 153, 191–222. [Google Scholar]
- El-Sharkawy, H.H.A.; Abbas, M.S.; Soliman, A.S.; Ibrahim, S.A.; El-Nady, I.A.I. Synergistic Effect of Growth-Promoting Microorganisms on Bio-Control of Fusarium oxysporum f. sp. pisi, Growth, Yield, Physiological and Anatomical Characteristics of Pea Plants. Pestic. Biochem. Physiol. 2021, 178, 104939. [Google Scholar] [CrossRef]
- Venkateskumar, K.; Parasuraman, S.; Chuen, L.Y.; Ravichandran, V.; Balamurgan, S. Exploring Antimicrobials from the Flora and Fauna of Marine: Opportunities and Limitations. Curr. Drug Discov. Technol. 2020, 17, 507–514. [Google Scholar] [CrossRef]
- Bamunuarachchi, N.I.; Khan, F.; Kim, Y.M. Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms. Curr. Pharm. Biotechnol. 2021, 22, 920–944. [Google Scholar] [CrossRef] [PubMed]
- Sun, L. The Influence and Prevention of Marine Pollution on Marine Ecosystems in the South China Sea. Environ. Ecol. 2021, 3, 38–42. [Google Scholar]
- Ma, Z.; Zhang, S.; Sun, K.; Hu, J. Identification and Characterization of a Cyclic Lipopeptide Iturin A from a Marine-Derived Bacillus Velezensis 11-5 as a Fungicidal Agent to Magnaporthe Oryzae in Rice. J. Plant Dis. Prot. 2020, 127, 15–24. [Google Scholar] [CrossRef]
- Paul, S.K.; Chakraborty, M.; Rahman, M.; Gupta, D.R.; Mahmud, N.U.; Rahat, A.A.M.; Sarker, A.; Hannan, M.A.; Rahman, M.M.; Akanda, A.M.; et al. Marine Natural Product Antimycin a Suppresses Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. J. Fungi 2022, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- de Raad, M.; Li, Y.V.; Kuehl, J.V.; Andeer, P.F.; Kosina, S.M.; Hendrickson, A.; Saichek, N.R.; Golini, A.N.; Han, Z.; Wang, Y.; et al. A Defined Medium for Cultivation and Exometabolite Profiling of Soil Bacteria. Front. Microbiol. 2022, 25, 855331. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Diversity of Culturable Bacteria in the Deep-Sea of the South Pacific Gyre and Taxonomic Analysis of Two Novel Bacteria. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2013. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Allaire, J.J.; Gandrud, C.; Russell, C.J.Y. NetworkD3: D3 JavaScript Network Graphs from R, R Packag. version 0.4; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Wickham, H.; Bryan, J.; Kalicinski, M.; Valery, K. Package Readxl, Version, 1.3; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Chang, W. Extrafont: Tools for Using Fonts, version 0.17; Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Mailund, T.; Mailund, T. Manipulating Data Frames: Dplyr. In R Data Science Quick Reference: A Pocket Guide to APIs, Libraries, and Packages; Apress: New York, NY, USA, 2019; pp. 109–160. [Google Scholar]
- Deng, Z.; Yuan, H.; Zhou, J.; Huang, C.; Chen, R.; Lu, D. Diversity and Antimicrobial Activities of Cultivable Bacteria Isolated from Donghai Island. Acta Microbiol. Sin. 2020, 60, 1259–1271. [Google Scholar]
- Huang, W.; Song, B.; Zhang, L.; Wang, B.; Wang, W. Identification of Bacterial Wilt Antagonistic Bacteria JK19 and Detection of Its Antibacterial Activity. Xinjiang Agric. Sci. 2021, 58, 1355–1364. [Google Scholar]
- Sanzani, S.; Girolamo, A.D.; Schena, L.; Solfrizzo, M.; Ippolito, A.; Visconti, A. Control of Penicillium expansum and Patulin Accumulation on Apples by Quercetin and Umbelliferone. Eur. Food Res. Technol. 2009, 228, 381–389. [Google Scholar] [CrossRef]
- Nifakos, K.; Tsalgatidou, P.C.; Thomloudi, E.E.; Skagia, A.; Kotopoulis, D.; Baira, E.; Delis, C.; Papadimitriou, K.; Markellou, E.; Venieraki, A.; et al. Genomic Analysis and Secondary Metabolites Production of the Endophytic Bacillus velezensis Bvel1: A Biocontrol Agent against Botrytis cinerea Causing Bunch Rot in Post-Harvest Table Grapes. Plants 2021, 20, 1716. [Google Scholar] [CrossRef]
- Cono, V.; Smedile, F.; Crisafi, F.; Marturano, L.; Toshchakov, S.V.; Spada, G.; Bản, N.K.; Yakimov, M.M. Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities. Microorganisms 2022, 15, 623. [Google Scholar] [CrossRef]
- Manivasagan, P.; Kang, K.H.; Sivakumar, K.; Li-Chan, E.C.; Oh, H.M.; Kim, S.K. Marine actinobacteria: An important source of bioactive natural products. Environ. Toxicol. Pharmacol. 2014, 38, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.; Girão, M.; Alexandrino, D.A.M.; Ribeiro, T.; Santos, C.; Pereira, F.; Mucha, A.P.; Urbatzka, R.; Leão, P.N.; Carvalho, M.F. Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms 2020, 8, 1691. [Google Scholar] [CrossRef]
- Girão, M.; Ribeiro, I.; Ribeiro, T.; Azevedo, I.C.; Pereira, F.; Urbatzka, R.; Leão, P.N.; Carvalho, M.F. Actinobacteria Isolated from Laminaria ochroleuca: A Source of New Bioactive Compounds. Front Microbiol. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Graça, A.P.; Calisto, R.; Olga, M. Lage Planctomycetes as Novel Source of Bioactive Molecules. Front. Microbiol. 2016, 7, 1241. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, R.; Ouyang, Z.; He, T.; Zhang, W.; Chen, X. Identification of a New Antifungal Peptide W1 From a Marine Bacillus amyloliquefaciens Reveals Its Potential in Controlling Fungal Plant Diseases. Front. Microbiol. 2022, 13, 922454. [Google Scholar] [CrossRef] [PubMed]
- Rajer, F.; Samma, M.; Ali, Q.; Rajar, W.; Wu, H.; Raza, W.; Xie, Y.; Tahir, H.; Gao, X. Bacillus spp.-Mediated Growth Promotion of Rice Seedlings and Suppression of Bacterial Blight Disease under Greenhouse Conditions. Pathogens 2022, 11, 1251. [Google Scholar] [CrossRef]
- Wen, X. Identification of Marine HW-14 Antagonist to Magnaporthe grisea and Its Antimicrobial Substances. Master’s Thesis, Liaoning Normal University, Dalian, China, 2013. [Google Scholar]
- Fan, L.; Wei, Y.; Chen, Y.; Jiang, S.; Xu, F.; Zhang, C.; Wang, H.; Shao, X. Epinecidin-1, a Marine Antifungal Peptide, Inhibits Botrytis Cinerea and Delays Gray Mold in Postharvest Peaches. Food Chem. 2023, 403, 134419. [Google Scholar] [CrossRef]
- Bello, F.; Montironi, I.D.; Medina, M.B.; Munitz, M.S.; Ferreira, F.V.; Williman, C.; Vázquez, D.; Cariddi, L.N.; Musumeci, M.A. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol. 2022, 106, 104040. [Google Scholar] [CrossRef]
- Kakar, K.U.; Nawaz, Z.; Cui, Z.; Almoneafy, A.A.; Ullah, R.; Shu, Q.Y. Rhizosphere-Associated Alcaligenes and Bacillus Strains that Induce Resistance against Blast and Sheath Blight Diseases, Enhance Plant Growth and Improve Mineral Content in Rice. J. Appl. Microbiol. 2018, 124, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Sharma, A.; Roohi Srivastava, A.K. Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. J. Basic Microbiol. 2020, 60, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Chowhan, L.B.; Mir, M.I.; Sabra, M.A.; El-Habbab, A.A.; Kiran Kumar, B. Plant growth promoting and antagonistic traits of bacteria isolated from forest soil samples. Iran J. Microbiol. 2023, 15, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Sun, Y.; Tang, Y.; Zhou, W.W. Biocontrol Potential of a Broad-Spectrum Antifungal Strain Bacillus amyloliquefaciens B4 for Postharvest Loquat Fruit Storage. Postharvest Biol. Technol. 2021, 174, 111439. [Google Scholar] [CrossRef]
- Zhou, H.; Ren, Z.; Zu, X.; Yu, X.; Zhu, H.; Li, X.; Zhong, J.; Liu, E. Efficacy of Plant Growth-Promoting Bacteria Bacillus Cereus YN917 for Biocontrol of Rice Blast. Front. Microbiol. 2021, 12, 684888. [Google Scholar] [CrossRef] [PubMed]
- You, J. Identification of Bacillus of WJ-1 and Study on the Control of Rice Sheath Blight and Sclerotina Stem Rot by Bacillus Strain WJ-1. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Manoharan-Basil, S.S.; Balduck, M.; Abdellati, S.; Gestels, Z.; de Block, T.; Kenyon, C. Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone. Antibiotics 2023, 7, 534. [Google Scholar] [CrossRef]
Fungistatic Rate (%) | Botrytis cinerea | Fusarium oxysporum | Colletotrichum viniferum | Magnaporthe grisea |
---|---|---|---|---|
HY-88 | 51.72% | 54.29% | 52.17% | 90.91% |
HY-91 | 34.48% | 48.57% | 47.83% | 86.36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Wang, H.; Chen, J.; Yang, F.; Yang, J.; Li, J.; Jin, L. Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria. Microorganisms 2023, 11, 2933. https://doi.org/10.3390/microorganisms11122933
Guan L, Wang H, Chen J, Yang F, Yang J, Li J, Jin L. Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria. Microorganisms. 2023; 11(12):2933. https://doi.org/10.3390/microorganisms11122933
Chicago/Turabian StyleGuan, Limei, Hongxiu Wang, Junhui Chen, Feiying Yang, Jian Yang, Jianghuai Li, and Liang Jin. 2023. "Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria" Microorganisms 11, no. 12: 2933. https://doi.org/10.3390/microorganisms11122933
APA StyleGuan, L., Wang, H., Chen, J., Yang, F., Yang, J., Li, J., & Jin, L. (2023). Isolation and Identification of Culturable Bacteria from South China Seawater and Preliminary Screening of Marine Biocontrol Bacteria. Microorganisms, 11(12), 2933. https://doi.org/10.3390/microorganisms11122933