Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Geochemical Analysis
2.3. Deoxyribonucleic Acid Extraction, PCR Amplification, and Sequencing
2.4. Data Processing and Bioinformation Analysis
3. Results
3.1. Sampling Locations and Environmental Factors
3.2. Microbial Diversity and Structural Differences
3.3. Co-Occurrence Networks and Stability of Bacterial Communities
3.4. Process Differences in Bacterial Community Construction
4. Discussion
4.1. Effects of Methane Seepage on the Environment and Bacterial Communities
4.2. Effects of Methane Seepage on Bacterial Community Construction
5. Conclusions
- (1)
- Methane seepage contributed to the migration of some elements in the sediment, altering the original elemental distribution patterns;
- (2)
- Methane seepage led to an increase in the similarity of bacterial communities in the bottom water and surface sediments and increased the abundance and diversity of bacteria in the sediment;
- (3)
- The richer and more complex bacterial community in the sediment, with the stochastic processes, played a dominant role in the bacterial community assembly.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, M.; Deng, L.; Su, L.; Ruff, S.E.; Yang, N.; Luo, M.; Qi, Q.; Li, J.; Wang, F. Methane supply drives prokaryotic community assembly and networks at cold seeps of the South China Sea. Mol. Ecol. 2023, 32, 660–679. [Google Scholar] [CrossRef]
- Felden, J.; Ruff, S.E.; Ertefai, T.; Inagaki, F.; Hinrichs, K.-U.; Wenzhöfer, F. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench. Geobiology 2014, 12, 183–199. [Google Scholar] [CrossRef]
- Pop Ristova, P.; Wenzhöfer, F.; Ramette, A.; Zabel, M.; Fischer, D.; Kasten, S.; Boetius, A. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth). Biogeosciences 2012, 9, 5031–5048. [Google Scholar] [CrossRef]
- Yang, S.; Lv, Y.; Liu, X.; Wang, Y.; Fan, Q.; Yang, Z.; Boon, N.; Wang, F.; Xiao, X.; Zhang, Y. Genomic and enzymatic evidence of acetogenesis by anaerobic methanotrophic archaea. Nat. Commun. 2020, 11, 3941. [Google Scholar] [CrossRef]
- Reeburgh, W.S. Oceanic Methane Biogeochemistry. Chem. Rev. 2007, 107, 486–513. [Google Scholar] [CrossRef]
- Grupe, B.M.; Krach, M.L.; Pasulka, A.L.; Maloney, J.M.; Levin, L.A.; Frieder, C.A. Methane seep ecosystem functions and services from a recently discovered southern California seep. Mar. Ecol. 2015, 36, 91–108. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Scarratt, M.; Damm, E.; Bourgault, D.; Galbraith, P.S.; Wallace, D.W.R. Dissolved methane in the water column of the Saguenay Fjord. Mar. Chem. 2021, 230, 103926. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Beck, D.A.C.; Lidstrom, M.E.; Chistoserdova, L.J.P. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 2015, 3, e801. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, X.; Zhang, H.; Xiao, F.; He, Z.; Yan, Q. Keystone taxa of water microbiome respond to environmental quality and predict water contamination. Environ. Res. 2020, 187, 109666. [Google Scholar] [CrossRef]
- Qin, M.; Xu, H.; Zhao, D.; Zeng, J.; Wu, Q.L. Aquaculture drives distinct patterns of planktonic and sedimentary bacterial communities: Insights into co-occurrence pattern and assembly processes. Environ Microbiol. 2022, 24, 4079–4093. [Google Scholar] [CrossRef]
- Zinger, L.; Amaral-Zettler, L.A.; Fuhrman, J.A.; Horner-Devine, M.C.; Huse, S.M.; Welch, D.B.; Martiny, J.B.; Sogin, M.; Boetius, A.; Ramette, A. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 2011, 6, e24570. [Google Scholar] [CrossRef]
- McCalley, C.K.; Woodcroft, B.J.; Hodgkins, S.B.; Wehr, R.A.; Kim, E.H.; Mondav, R.; Crill, P.M.; Chanton, J.P.; Rich, V.I.; Tyson, G.W.; et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 2014, 514, 478–481. [Google Scholar] [CrossRef]
- Hewson, I.; Jacobson Meyers, M.E.; Fuhrman, J.A. Diversity and biogeography of bacterial assemblages in surface sediments across the San Pedro Basin, Southern California Borderlands. Environ Microbiol. 2007, 9, 923–933. [Google Scholar] [CrossRef]
- Fang, Y.; Wei, J.; Lu, H.; Liang, J.; Lu, J.; Fu, J.; Cao, J. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea. J. Asian Earth Sci. 2019, 182, 103924. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Zhou, H. Niche Differentiation of Sulfate- and Iron-Dependent Anaerobic Methane Oxidation and Methylotrophic Methanogenesis in Deep Sea Methane Seeps. Front. Microbiol. 2020, 11, 1409. [Google Scholar] [CrossRef]
- Zhuang, G.C.; Xu, L.; Liang, Q.; Fan, X.; Xia, Z.; Joye, S.B.; Wang, F. Biogeochemistry, microbial activity, and diversity in surface and subsurface deep-sea sediments of South China Sea. Limnol. Oceanogr. 2019, 64, 2252–2270. [Google Scholar] [CrossRef]
- Wu, Y.; Qiu, J.W.; Qian, P.Y.; Wang, Y. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. Extremophiles 2018, 22, 499–510. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, J.C.; Kong, J.; Sun, L.; Zhang, M.; Huang, Y.; Tang, L.; Zhang, S.; Yang, Z. Community assemblages and species coexistence of prokaryotes controlled by local environmental heterogeneity in a cold seep water column. Sci. Total Environ. 2023, 868, 161725. [Google Scholar] [CrossRef]
- Kong, J.; Feng, J.; Sun, L.; Zhang, S. Evaluating the Reproducibility of Amplicon Sequencing Data Derived from Deep-Sea Cold Seep Sediment-Associated Microbiota. Microbiol. Spectr. 2023, 11, e04048-22. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, Z.; Di, P.; Feng, J.; Tao, J.; Chen, D.; Li, N.; Li, Y. Distinct Bottom-Water Bacterial Communities at Methane Seeps With Various Seepage Intensities in Haima, South China Sea. Front. Mar. Sci. 2021, 8, 753952. [Google Scholar] [CrossRef]
- Borges, A.V.; Speeckaert, G.; Champenois, W.; Scranton, M.I.; Gypens, N. Productivity and Temperature as Drivers of Seasonal and Spatial Variations of Dissolved Methane in the Southern Bight of the North Sea. Ecosystems 2017, 21, 583–599. [Google Scholar] [CrossRef]
- Shotbolt, L. Pore water sampling from lake and estuary sediments using Rhizon samplers. J. Paleolimnol. 2010, 44, 695–700. [Google Scholar] [CrossRef]
- Donval, J.P.; Guyader, V. Analysis of hydrogen and methane in seawater by “Headspace” method: Determination at trace level with an automatic headspace sampler. Talanta 2017, 162, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Kunpeng, Z.; Nan, Z.; Xuemei, X.; Lingxi, Z.; Juying, W. Bubble-mediated methane release from polluted Dalian Bay in China in summer, 2016. Cont. Shelf Res. 2019, 185, 51–56. [Google Scholar] [CrossRef]
- Borges, A.V.; Champenois, W.; Gypens, N.; Delille, B.; Harlay, J. Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep. 2016, 6, 27908. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, T.B.; Barbosa, I.S.; Lima, D.D.C.; Pereira, M.D.G.; Teixeira, L.S.G.; Korn, M.G.A. Microwave-Assisted Digestion Using Diluted Nitric Acid for Multi-element Determination in Rice by ICP OES and ICP-MS. Food Anal. Methods 2016, 10, 1007–1015. [Google Scholar] [CrossRef]
- Halewood, E.; Opalk, K.; Custals, L.; Carey, M.; Hansell, D.A.; Carlson, C.A. Determination of dissolved organic carbon and total dissolved nitrogen in seawater using High Temperature Combustion Analysis. Front. Mar. Sci. 2022, 9, 1061646. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Kong, J.; Wang, L.; Lin, C.; Kuang, F.; Zhou, X.; Laws Edward, A.; Sun, P.; Huang, H.; Huang, B. Contrasting Community Assembly Mechanisms Underlie Similar Biogeographic Patterns of Surface Microbiota in the Tropical North Pacific Ocean. Microbiol. Spectr. 2022, 10, e00798-21. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, B.; Liu, Y.; Guo, Y.; Shi, P.; Wei, G. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ. 2018, 644, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Yan, Q.; Deng, Y.; Michaletz, S.T.; Buzzard, V.; Weiser, M.D.; Waide, R.; Ning, D.; Wu, L.; He, Z.; et al. Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biol. Biochem. 2020, 148, 107897. [Google Scholar] [CrossRef]
- Chen, Q.-L.; Hu, H.-W.; Yan, Z.-Z.; Li, C.-Y.; Nguyen, B.-A.T.; Sun, A.-Q.; Zhu, Y.-G.; He, J.-Z. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biol. Biochem. 2021, 152, 108073. [Google Scholar] [CrossRef]
- Chase, J.M.; Kraft, N.J.B.; Smith, K.G.; Vellend, M.; Inouye, B.D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2011, 2, 1–11. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Zhang, P.; Xue, K.; Liang, Y.; Van Nostrand, J.D.; Yang, Y.; He, Z.; Wu, L.; Stahl, D.A.; et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci. USA 2014, 111, E836–E845. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Sloan, W.T.; Lunn, M.; Woodcock, S.; Head, I.M.; Nee, S.; Curtis, T.P. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 2006, 8, 732–740. [Google Scholar] [CrossRef]
- Lemaitre, N.; Bayon, G.; Ondréas, H.; Caprais, J.-C.; Freslon, N.; Bollinger, C.; Rouget, M.-L.; de Prunelé, A.; Ruffine, L.; Olu-Le Roy, K.; et al. Trace element behaviour at cold seeps and the potential export of dissolved iron to the ocean. Earth Planet. Sci. Lett. 2014, 404, 376–388. [Google Scholar] [CrossRef]
- Bayon, G.; Birot, D.; Ruffine, L.; Caprais, J.C.; Ponzevera, E.; Bollinger, C.; Donval, J.P.; Charlou, J.L.; Voisset, M.; Grimaud, S. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin. Earth Planet. Sci. Lett. 2011, 312, 443–452. [Google Scholar] [CrossRef]
- Edmonds, H.N.; German, C.R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2004, 68, 759–772. [Google Scholar] [CrossRef]
- Sauter, E.J.; Muyakshin, S.I.; Charlou, J.-L.; Schlüter, M.; Boetius, A.; Jerosch, K.; Damm, E.; Foucher, J.-P.; Klages, M. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett. 2006, 243, 354–365. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Ondreas, H.; Knoery, J.; Cochonat, P.; Levaché, D.; Poirier, Y.; Jean-Baptiste, P.; Fourré, E.; et al. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo–Angola Basin. Chem. Geol. 2004, 205, 405–425. [Google Scholar] [CrossRef]
- Bayon, G.; Dupré, S.; Ponzevera, E.; Etoubleau, J.; Chéron, S.; Pierre, C.; Mascle, J.; Boetius, A.; de Lange, G.J. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat. Geosci. 2013, 6, 755–760. [Google Scholar] [CrossRef]
- Feng, D.; Lin, Z.; Bian, Y.; Chen, D.; Peckmann, J.; Bohrmann, G.; Roberts, H.H. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. J. Asian Earth Sci. 2013, 65, 27–33. [Google Scholar] [CrossRef]
- Himmler, T.; Bach, W.; Bohrmann, G.; Peckmann, J. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem. Geol. 2010, 277, 126–136. [Google Scholar] [CrossRef]
- Rongemaille, E.; Bayon, G.; Pierre, C.; Bollinger, C.; Chu, N.C.; Fouquet, Y.; Riboulot, V.; Voisset, M. Rare earth elements in cold seep carbonates from the Niger delta. Chem. Geol. 2011, 286, 196–206. [Google Scholar] [CrossRef]
- Himmler, T.; Haley, B.A.; Torres, M.E.; Klinkhammer, G.P.; Bohrmann, G.; Peckmann, J. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean. Geo-Mar. Lett. 2013, 33, 369–379. [Google Scholar] [CrossRef]
- Dubinsky, E.A.; Conrad, M.E.; Chakraborty, R.; Bill, M.; Borglin, S.E.; Hollibaugh, J.T.; Mason, O.U.; Yvette, M.P.; Reid, F.C.; Stringfellow, W.T.; et al. Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico. Environ. Sci. Technol. 2013, 47, 10860–10867. [Google Scholar] [CrossRef] [PubMed]
- Rivers, A.R.; Sharma, S.; Tringe, S.G.; Martin, J.; Joye, S.B.; Moran, M.A. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J. 2013, 7, 2315–2329. [Google Scholar] [CrossRef]
- Redmond, M.C.; Valentine, D.L. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20292–20297. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill. Microbiologyopen 2013, 2, 492–504. [Google Scholar] [CrossRef]
- Sanni, G.O.; Coulon, F.; McGenity, T.J. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. Environ. Sci. Pollut. Res. Int. 2015, 22, 15230–15247. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Roling, W.F. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [CrossRef]
- Lv, Z.; Ding, J.; Wang, H.; Wan, J.; Chen, Y.; Liang, L.; Yu, T.; Wang, Y.; Wang, F. Isolation of a Novel Thermophilic Methanogen and the Evolutionary History of the Class Methanobacteria. Biology 2022, 11, 1514. [Google Scholar] [CrossRef]
- Xin, Y.; Wu, N.; Sun, Z.; Wang, H.; Chen, Y.; Xu, C.; Geng, W.; Cao, H.; Zhang, X.; Zhai, B.; et al. Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough. Sci. Total Environ. 2022, 851, 158213. [Google Scholar] [CrossRef]
- Bang, C.; Dagan, T.; Deines, P.; Dubilier, N.; Duschl, W.J.; Fraune, S.; Hentschel, U.; Hirt, H.; Hulter, N.; Lachnit, T.; et al. Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation? Zoology 2018, 127, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Baldo, L.; Riera, J.L.; Salzburger, W.; Barluenga, M. Phylogeography and Ecological Niche Shape the Cichlid Fish Gut Microbiota in Central American and African Lakes. Front Microbiol. 2019, 10, 2372. [Google Scholar] [CrossRef] [PubMed]
- Sahling, H.; Galkin, S.V.; Salyuk, A.; Greinert, J.; Foerstel, H.; Piepenburg, D.; Suess, E. Depth-related structure and ecological significance of cold-seep communities—A case study from the Sea of Okhotsk. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 1391–1409. [Google Scholar] [CrossRef]
- Cordes, E.E.; Cunha, M.R.; Galéron, J.; Mora, C.; Olu-Le Roy, K.; Sibuet, M.; Van Gaever, S.; Vanreusel, A.; Levin, L.A. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar. Ecol. 2010, 31, 51–65. [Google Scholar] [CrossRef]
- Orphan, V.J.; Ussler, W.; Naehr, T.H.; House, C.H.; Hinrichs, K.U.; Paull, C.K. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 2004, 205, 265–289. [Google Scholar] [CrossRef]
- Levin, L.A.; Mendoza, G.F. Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Mar. Ecol. 2007, 28, 131–151. [Google Scholar] [CrossRef]
- Thurber, A.R.; Levin, L.A.; Orphan, V.J.; Marlow, J.J. Archaea in metazoan diets: Implications for food webs and biogeochemical cycling. ISME J. 2012, 6, 1602–1612. [Google Scholar] [CrossRef]
- Carlier, A.; Ritt, B.; Rodrigues, C.F.; Sarrazin, J.; Olu, K.; Grall, J.; Clavier, J. Heterogeneous energetic pathways and carbon sources on deep eastern Mediterranean cold seep communities. Mar. Biol. 2010, 157, 2545–2565. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
Group | Nodes | Edge | Mean Clustering Coefficient | Mean Degree | Mean Path Length | Modularity |
---|---|---|---|---|---|---|
NS | 198 | 1307 | 0.587 | 13.202 | 3.852 | 0.52 |
IS | 199 | 2374 | 0.496 | 23.859 | 2.886 | 0.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, S.; Feng, J.; Kong, J.; Huang, Y.; Chen, X.; Zhang, S. Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep. Microorganisms 2023, 11, 3001. https://doi.org/10.3390/microorganisms11123001
Zhong S, Feng J, Kong J, Huang Y, Chen X, Zhang S. Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep. Microorganisms. 2023; 11(12):3001. https://doi.org/10.3390/microorganisms11123001
Chicago/Turabian StyleZhong, Song, Jingchun Feng, Jie Kong, Yongji Huang, Xiao Chen, and Si Zhang. 2023. "Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep" Microorganisms 11, no. 12: 3001. https://doi.org/10.3390/microorganisms11123001
APA StyleZhong, S., Feng, J., Kong, J., Huang, Y., Chen, X., & Zhang, S. (2023). Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep. Microorganisms, 11(12), 3001. https://doi.org/10.3390/microorganisms11123001