Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know
Abstract
:1. Introduction
2. The Genus Enterococcus
3. Cost of MDR Enterococcus Infections for the U.S. Healthcare System
4. Identifying Clinically Significant Enterococcus Species
5. The Role of Enterococcus in Polymicrobial Infections
6. Surgical Site Infection by Enterococcus
7. Mechanisms of Enterococci Drug Resistance
8. Vancomycin-Resistant Enterococci (VRE)
9. Treatment for Enterococcal Infections
10. Prevention
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erum, R.; Samad, F.; Khan, A.; Kazmi, S.U. A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC Microbiol. 2020, 20, 368. [Google Scholar] [CrossRef] [PubMed]
- E Reichman, D.; A Greenberg, J. Greenberg, Reducing surgical site infections: A review. Rev. Obstet. Gynecol. 2009, 2, 212–221. [Google Scholar]
- Sitges-Serra, A.; López, M.J.; Girvent, M.; Almirall, S.; Sancho, J.J. Postoperative enterococcal infection after treatment of complicated intra-abdominal sepsis. Br. J. Surg. 2002, 89, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Heitkamp, R.A.; Li, P.; Mende, K.; Demons, S.T.; Tribble, D.R.; Tyner, S.D. Association of Enterococcus spp. with Severe Combat Extremity Injury, Intensive Care, and Polymicrobial Wound Infection. Surg. Infect. 2018, 19, 95–103. [Google Scholar] [CrossRef]
- Yisma, E.; Smithers, L.G.; Lynch, J.W.; Mol, B.W. Cesarean section in Ethiopia: Prevalence and sociodemographic characteristics. J. Matern. Fetal Neonatal Med. 2019, 32, 1130–1135. [Google Scholar] [CrossRef]
- Kirkland, K.B.; Briggs, J.P.; Trivette, S.L.; Wilkinson, W.E.; Sexton, D.J. The impact of surgical-site infections in the 1990s: Attributable mortality, excess length of hospitalization, and extra costs. Infect. Control. Hosp. Epidemiol. 1999, 20, 725–730. [Google Scholar] [CrossRef] [Green Version]
- Amare, A.; Yami, A. Case-fatality of adult tetanus at Jimma University Teaching Hospital, Southwest Ethiopia. Afr. Health Sci. 2011, 11, 36–40. [Google Scholar]
- Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control. 2006, 34, S11–S19. [Google Scholar] [CrossRef]
- Devriese, L.; Vancanneyt, M.; Descheemaeker, P.; Baele, M.; Van Landuyt, H.; Gordts, B.; Butaye, P.; Swings, J.; Haesebrouck, F. Differentiation and identification of Enterococcus durans, E. hirae and E. villorum. J. Appl. Microbiol. 2002, 92, 821–827. [Google Scholar] [CrossRef]
- Barie, P.S.; Christou, N.V.; Dellinger, E.P.; Rout, W.R.; Stone, H.H.; Waymack, J.P. Pathogenicity of the enterococcus in surgical infections. Ann. Surg. 1990, 212, 155–159. [Google Scholar] [CrossRef]
- Leavis, H.L.; Bonten, M.J.; Willems, R.J. Identification of high-risk enterococcal clonal complexes: Global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 2006, 9, 454–460. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net) in Annual Epidemiological Report for 2021; Stockholm ECDC: Solna, Sweden, 2022. [Google Scholar]
- Gu, L.; Cao, B.; Liu, Y.; Guo, P.; Song, S.; Li, R.; Dai, H.; Wang, C. A new Tn1546 type of VanB phenotype-vanA genotype vancomycin-resistant Enterococcus faecium isolates in mainland China. Diagn. Microbiol. Infect. Dis. 2009, 63, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Eliopoulos, G.; Mozaffari, E.; Samore, M. Health and economic outcomes of vancomycin-resistant enterococci. Arch. Intern. Med. 2002, 162, 2223–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, T.S.; Remschmidt, C.; Werner, S.; Behnke, M.; Schwab, F.; Werner, G.; Gastmeier, P.; Leistner, R. The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: A cohort study including over 1000 cases of enterococcal bloodstream infections. Antimicrob. Resist. Infect. Control. 2018, 7, 133. [Google Scholar] [CrossRef] [PubMed]
- Puchter, L.; Chaberny, I.F.; Schwab, F.; Vonberg, R.-P.; Bange, F.-C.; Ebadi, E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob. Resist. Infect. Control. 2018, 7, 1. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Clewell, D.B.; Ike, Y.; Shankar, N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, E00058-18. [Google Scholar] [CrossRef] [Green Version]
- Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Morandi, S.; Alnakip, M.; Caamaño-Antelo, S.; Barros-Velázquez, J.; Calo-Mata, P. Characterization of different food-isolated Enterococcus strains by MALDI-TOF mass fingerprinting. Electrophoresis 2013, 34, 2240–2250. [Google Scholar] [CrossRef]
- Lavigne, J.-P.; Nicolas-Chanoine, M.-H.; Bourg, G.; Moreau, J.; Sotto, A. Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model. PLoS ONE 2008, 3, e3370. [Google Scholar] [CrossRef] [Green Version]
- Hrynyshyn, A.; Simoes, M.; Borges, A. Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics 2022, 11, 69. [Google Scholar] [CrossRef]
- Young, P.Y.; Khadaroo, R.G. Surgical site infections. Surg. Clin. North Am. 2014, 94, 1245–1264. [Google Scholar] [CrossRef]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Linden, P.K. Treatment options for vancomycin-resistant enterococcal infections. Drugs 2002, 62, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Uçkay, I.; Pires, D.; Agostinho, A.; Guanziroli, N.; Öztürk, M.; Bartolone, P.; Tscholl, P.; Betz, M.; Pittet, D. Enterococci in orthopaedic infections: Who is at risk getting infected? J. Infect. 2017, 75, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siesing, P.C.; Alva-Jørgensen, J.P.; Brodersen, J.; Arpi, M.; Jensen, P.E. Rising incidence of Enterococcus species in microbiological specimens from orthopedic patients correlates to increased use of cefuroxime: A study concentrating on tissue samples. Acta. Orthop. 2013, 84, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Said, M.S.; Tirthani, E.; Lesho, E. Enterococcus Infections; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Reyes, K.; Bardossy, A.C.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. North Am. 2016, 30, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Kristich, C.J.; Wells, C.L.; Dunny, G.M. A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc. Natl. Acad. Sci. USA 2007, 104, 3508–3513. [Google Scholar] [CrossRef] [Green Version]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.; Munita, J.M.; A Arias, C. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-infective Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Coculescu, B.I. Antimicrobial resistance induced by genetic changes. J. Med. Life 2009, 2, 114–123. [Google Scholar]
- Sifaoui, F.; Arthur, M.; Rice, L.; Gutmann, L.; Proulx, M.-E.; Désormeaux, A.; Marquis, J.-F.; Olivier, M.; Bergeron, M.G. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 2594–2597. [Google Scholar] [CrossRef] [Green Version]
- E Coudron, P.; Markowitz, S.M.; Wong, E.S. Isolation of a beta-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium. Antimicrob. Agents Chemother. 1992, 36, 1125–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackbarth, C.J.; Chambers, H.F. blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1993, 37, 1144–1149. [Google Scholar] [CrossRef] [Green Version]
- Hancock, L.E.; Perego, M. Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J. Bacteriol. 2004, 186, 7951–7958. [Google Scholar] [CrossRef] [PubMed]
- Mascher, T.; Helmann, J.D.; Unden, G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 2006, 70, 910–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comenge, Y.; Quintiliani, R.; Li, L.; Dubost, L.; Brouard, J.-P.; Hugonnet, J.-E.; Arthur, M. The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J. Bacteriol. 2003, 185, 7184–7192. [Google Scholar] [CrossRef] [Green Version]
- Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256. [Google Scholar] [CrossRef] [Green Version]
- Costa, Y.; Galimand, M.; Leclercq, R.; Duval, J.; Courvalin, P. Characterization of the chromosomal aac(6’)-Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 1993, 37, 1896–1903. [Google Scholar] [CrossRef] [Green Version]
- Levitus, M.; Rewane, A.; Perera, T.B. Vancomycin-Resistant Enterococci; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Mainardi, J.-L.; Villet, R.; Bugg, T.D.; Mayer, C.; Arthur, M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol. Rev. 2008, 32, 386–408. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775–781. [Google Scholar] [CrossRef]
- O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar]
- Werner, G.; Freitas, A.R.; Coque, T.M.; Sollid, J.E.; Lester, C.; Hammerum, A.M.; Garcia-Migura, L.; Jensen, L.B.; Francia, M.V.; Witte, W.; et al. Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J. Antimicrob. Chemother. 2011, 66, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelsberg, J.; Weycker, D.; Barron, R.; Li, X.; Wu, H.; Oster, G.; Badre, S.; Langeberg, W.J.; Weber, D.J. Prevalence of antibiotic resistance in US hospitals. Diagn. Microbiol. Infect. Dis. 2014, 78, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Zirakzadeh, A.; Patel, R. Vancomycin-resistant enterococci: Colonization, infection, detection, and treatment. Mayo Clin. Proc. 2006, 81, 529–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linden, P.K. Optimizing therapy for vancomycin-resistant enterococci (VRE). Semin. Respir. Crit. Care Med. 2007, 28, 632–645. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K.; Steward, C.D.; Edwards, J.R.; Pryor, E.R.; McGowan, J.E.; Archibald, L.K.; Gaynes, R.P.; Tenover, F.C. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: Project ICARE phase 2. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) hospitals. Clin. Infect. Dis. 1999, 29, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Mainous, M.R.; Lipsett, P.A.; O’Brien, M. Enterococcal bacteremia in the surgical intensive care unit. Does vancomycin resistance affect mortality? Arch. Surg. 1997, 132, 76–81. [Google Scholar] [CrossRef]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [Green Version]
- Dumford, D.; Skalweit, M.J. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host: An Update. Infect. Dis. Clin. North Am. 2020, 34, 821–847. [Google Scholar] [CrossRef]
- Hamada, Y.; Magarifuchi, H.; Oho, M.; Kusaba, K.; Nagasawa, Z.; Fukuoka, M.; Yamakuchi, H.; Urakami, T.; Aoki, Y. Clinical features of enterococcal bacteremia due to ampicillin-susceptible and ampicillin-resistant enterococci: An eight-year retrospective comparison study. J. Infect. Chemother. 2015, 21, 527–530. [Google Scholar] [CrossRef]
- Arias, C.A.; Murray, B.E. Emergence and management of drug-resistant enterococcal infections. Expert Rev. Anti-Infect. Ther. 2008, 6, 637–655. [Google Scholar] [CrossRef]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Foo, H.; Chater, M.; Maley, M.; van Hal, S.J. Glycopeptide use is associated with increased mortality in Enterococcus faecalis bacteraemia. J. Antimicrob. Chemother. 2014, 69, 2252–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prematunge, C.; MacDougall, C.; Johnstone, J.; Adomako, K.; Lam, F.; Robertson, J.; Garber, G. VRE and VSE Bacteremia Outcomes in the Era of Effective VRE Therapy: A Systematic Review and Meta-analysis. Infect. Control. Hosp. Epidemiol. 2016, 37, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob. Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, M.H.; Harris, B.D.; Nesbitt, W.J.; Watson, M.L.; Wright, P.W.; Talbot, T.R.; E Nelson, G. Risk Factors and Outcomes Associated With Acquisition of Daptomycin and Linezolid-Nonsusceptible Vancomycin-Resistant Enterococcus. Open Forum Infect. Dis. 2018, 5, ofy185. [Google Scholar] [CrossRef]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am. J. Health Pharm. 2013, 70, 195–283. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, S.; Koff, A.; Malinis, M.; Azar, M.M. Daptomycin perioperative prophylaxis for the prevention of vancomycin-resistant Enterococcus infection in colonized liver transplant recipients. Transpl. Infect. Dis. 2020, 22, e13280. [Google Scholar] [CrossRef]
- Williams-Bouyer, N.; Reisner, B.; Woodmansee, C.; Falk, P.; Mayhall, C. Comparison of the Vitek GPS-TB card with disk diffusion testing for predicting the susceptibility of enterococci to vancomycin. Arch. Pathol. Lab. Med. 1999, 123, 622–625. [Google Scholar] [CrossRef]
- Joshi, S.; Shallal, A.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. North Am. 2021, 35, 953–968. [Google Scholar] [CrossRef]
- Taur, Y.; Jenq, R.; Ubeda, C.; van den Brink, M.; Pamer, E.G. Role of intestinal microbiota in transplantation outcomes. Best. Pract. Res. Clin. Haematol. 2015, 28, 155–161. [Google Scholar] [CrossRef]
- Agudelo Higuita, N.I.; Huycke, M.M. Enterococcal Disease, Epidemiology, and Implications for Treatment. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
Year | Author | Study Type | Primary Outcome/Goal |
---|---|---|---|
1995 | J. E. Patterson | prospective, observational study (n = 110) | Antibiotic resistances among the infections included gentamicin (26%), ampicillin (10%), and vancomycin (8%). Clinical cure was achieved in 64% with overall mortality of 23%. Ampicillin resistance was highly predictive of lack of cure. |
1997 | M. E. Klepser | randomized clinical trial (n = 10) | Use of shorter dosing intervals of piperacillin–tazobactam oricarcillin–clavulanate should be considered in combination with an aminoglycoside to improve the bactericidal profiles of these agents for E. faecalis. |
2002 | A. Sitges-Serra | A prospective longitudinal observational (n = 200) | Subjects with enterococcal SSI infections have a higher incidence of multiple infections, and the majority develop at least one polymicrobial infection at the surgical site, and postoperative enterococcal infections were associated with a high mortality rate (21% vs. 4%; p < 0.0007). |
2003 | S. S. Min | case report (n = 1) | Multidrug-resistant E. faecium strains demonstrate resistance to linezolid, and quinupristin/dalfopristin may emerge during therapy with these agents, further limiting therapeutic options. |
2008 | V. Savini | case report (n = 1) | Daptomycin can be a promising alternative in therapy of severe, difficult-to-treat enterococcal infections. |
2016 | W. Dessie | cross-sectional study (n = 107) | The practice of aseptic technique during and after surgery should be the primary support rather than overreliance on antibiotics to reduce emergence and spread of resistant pathogens. |
2017 | J. Pochhammer | retrospective chart review (n = 2713) | Perioperative antibiotic prophylaxis by the additional administration of ampicillin or vancomycin could be advantageous. |
2017 | M. Tamura | case report (n = 1) | Prophylactic broad-spectrum antibiotics used for c- sections could lead to postpartum nosocomial enterococcal bacteremia. |
2018 | R. A. Heitkamp | prospective, longitudinal, observational (n = 200) | Approximately 60% of case subjects had three or more infections, and 91% had one or more polymicrobial infection. Frequent co-colonizing microbes in polymicrobial wound infections with Enterococcus were other ESKAPE pathogens (64%) and fungi (35%). |
2019 | W. Albishi | cross-sectional study (n = 119) | Level of knowledge about SSIs and risks of wound infections among medical physicians should be improved to ensure better wound care and quality care for the patients. |
Site of Resistance | Strategy | Antibiotic | Genes or Gene Products |
---|---|---|---|
Cell Wall | Decreased affinity for PBPs | β-lactams | pbp5 |
Cell Wall | Drug inactivation | β-lactams | blaZ |
Cell Wall | Cell signaling | Cephalosporins | croRS and ireK |
Cell Wall | Altered target | Glycopeptides | van operons |
Ribosome | Decreased drug uptake | Aminopenicillins | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsi, S.; Salama, I.; Escalante-Alderete, E.; Cervantes, J. Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know. Microorganisms 2023, 11, 238. https://doi.org/10.3390/microorganisms11020238
Farsi S, Salama I, Escalante-Alderete E, Cervantes J. Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know. Microorganisms. 2023; 11(2):238. https://doi.org/10.3390/microorganisms11020238
Chicago/Turabian StyleFarsi, Soroush, Ibrahim Salama, Edgar Escalante-Alderete, and Jorge Cervantes. 2023. "Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know" Microorganisms 11, no. 2: 238. https://doi.org/10.3390/microorganisms11020238
APA StyleFarsi, S., Salama, I., Escalante-Alderete, E., & Cervantes, J. (2023). Multidrug-Resistant Enterococcal Infection in Surgical Patients, What Surgeons Need to Know. Microorganisms, 11(2), 238. https://doi.org/10.3390/microorganisms11020238