Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Sample Preparation
2.2. Stability of B. clausii CSI08 Spores during Pasteurization
2.3. Resistance of B. clausii CSI08 Spores to Simulated Gastric and Intestinal Conditions
2.4. Quantitative Analysis of Amino Acids and Vitamins in B. clausii CSI08 Supernatants
2.5. Semi-Quantitative Assays for Carbohydrate Fermentation and Hydrolytic Activities
2.6. Antimicrobial Activity of B. causii CSI08 in Liquid Media
2.7. Determination of Antioxidant Activity In Vitro
2.8. Maintenance of Cell Lines
2.9. Cell Viability Assays
2.10. Adhesion Assays
2.11. Anti-Inflammatory Activity Assays
2.12. RNA Extraction, Reverse Transcription, and Quantitative Real-Time PCR
2.13. Human Nulcear Factor-κB (NF-κB) p65 Transcription Factor Activity Assay
2.14. Macrophage Differentiation and Challenge Study
2.15. C. elegans Culture Conditions and Experiments
2.16. Statistical Analysis
3. Results
3.1. In Vitro Evaluation of the Probiotic Properties of B. clausii CSI08
3.1.1. Resistance to an In Vitro Simulated Gastric and Intestinal Conditions
3.1.2. Stability of B. clausii CSI08 Spores during Pasteurization
3.1.3. Antimicrobial Activity
3.1.4. Enzymatic Capacity of B. clausii CSI08
3.1.5. Amino Acids and Water-Soluble Vitamins in B. clausii CSI08 Supernatants
3.1.6. Assessment of Safety of B. clausii CSI08 and Adhesion to Mucous-Producing Cell Line HT-29-MTX
3.2. Immunomodulatory Effect of B. clausii CSI08 in Human Cell Lines
3.3. Antioxidant Capacity of B. clausii CSI08 In Vitro and In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. HPLC-FLD Determination of Amino Acids
Appendix B. UHPLC-MS Determination of Water-Soluble Vitamins
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- De Simone, C. The Unregulated Probiotic Market. Clin. Gastroenterol. Hepatol. 2019, 17, 809–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef] [Green Version]
- Todorov, S.D.; Ivanova, I.V.; Popov, I.; Weeks, R.; Chikindas, M.L. Bacillus Spore-Forming Probiotics: Benefits with Concerns? Crit. Rev. Microbiol. 2022, 48, 513–530. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Munakata, N.; Horneck, G.; Melosh, H.J.; Setlow, P. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev. 2000, 64, 548–572. [Google Scholar] [CrossRef] [Green Version]
- Hyronimus, B.; Le Marrec, C.; Hadj Sassi, A.; Deschamps, A. Acid and Bile Tolerance of Spore-Forming Lactic Acid Bacteria. Int. J. Food Microbiol. 2000, 61, 193–197. [Google Scholar] [CrossRef]
- Colom, J.; Freitas, D.; Simon, A.; Brodkorb, A.; Buckley, M.; Deaton, J.; Winger, A.M. Presence and Germination of the Probiotic Bacillus Subtilis DE111® in the Human Small Intestinal Tract: A Randomized, Crossover, Double-Blind, and Placebo-Controlled Study. Front. Microbiol. 2021, 12, 2189. [Google Scholar] [CrossRef]
- Ramlucken, U.; Ramchuran, S.O.; Moonsamy, G.; Jansen van Rensburg, C.; Thantsha, M.S.; Lalloo, R. Production and Stability of a Multi-Strain Bacillus Based Probiotic Product for Commercial Use in Poultry. Biotechnol. Rep. 2020, 29, e00575. [Google Scholar] [CrossRef]
- Fajardo-Cavazos, P.; Nicholson, W.L. Shelf Life and Simulated Gastrointestinal Tract Survival of Selected Commercial Probiotics During a Simulated Round-Trip Journey to Mars. Front. Microbiol. 2021, 12, 2909. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Natarajan, S.; Sivakumar, A.; Ali, F. Evaluation of the Stability of Bacillus Coagulans MTCC 5856 during Processing and Storage of Functional Foods. Int. J. Food Sci. Technol. 2016, 51, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Mortazavian, A.M.; Hosseini, H.; Safaei, F.; Mousavi Khaneghah, A.; Sant’Ana, A.S. Probiotic Bacillus: Fate during Sausage Processing and Storage and Influence of Different Culturing Conditions on Recovery of Their Spores. Food Res. Int. 2017, 95, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Menga, V.; Martina, A.; Pellegrini, N.; Scazzina, F.; Torriani, S. Nutritional Profile and Cooking Quality of a New Functional Pasta Naturally Enriched in Phenolic Acids, Added with β-Glucan and Bacillus Coagulans GBI-30, 6086. J. Cereal Sci. 2015, 65, 260–266. [Google Scholar] [CrossRef]
- Saggese, A.; Baccigalupi, L.; Ricca, E. Spore Formers as Beneficial Microbes for Humans and Animals. Appl. Microbiol. 2021, 1, 498–509. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, D.H. Isolation and Physiological Characterization of Bacillus clausii SKAL-16 Isolated from Wastewater. J. Microbiol. Biotechnol. 2008, 18, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Asha Devi, N.K.; Balakrishnan, K.; Gopal, R.; Padmavathy, S. Bacillus clausii MB9 from the East Coast Regions of India: Isolation, Biochemical Characterization and Antimicrobial Potentials. Curr. Sci. 2008, 95, 627–636. [Google Scholar]
- De Jonghe, V.; Coorevits, A.; De Block, J.; Van Coillie, E.; Grijspeerdt, K.; Herman, L.; De Vos, P.; Heyndrickx, M. Toxinogenic and Spoilage Potential of Aerobic Spore-Formers Isolated from Raw Milk. Int. J. Food Microbiol. 2010, 136, 318–325. [Google Scholar] [CrossRef]
- Hoyles, L.; Honda, H.; Logan, N.A.; Halket, G.; La Ragione, R.M.; McCartney, A.L. Recognition of Greater Diversity of Bacillus Species and Related Bacteria in Human Faeces. Res. Microbiol. 2012, 163, 3–13. [Google Scholar] [CrossRef]
- Lahiri, K.; Jadhav, K.; Gahlowt, P.; Najmuddin, F.; Padmashree, Y. Bacillus clausii As An Adjuvant Therapy In Acute Childhood Diarrhoea. IOSR J. Dent. Med. Sci. Ver. I 2015, 14, 2279–2861. [Google Scholar] [CrossRef]
- Lahiri, K.R. GMA-CO Clinical Study Report: ENTER_L_01486. Sanofi-Aventis. Available online: https://www.sanofi.com/dam/jcr:04929443-77dc-4b35-bcc6-8b5859fc10d4/ENTER_L_01486_summary.pdf (accessed on 9 January 2023).
- Canani, R.B.; Cirillo, P.; Terrin, G.; Cesarano, L.; Spagnuolo, M.I.; De Vincenzo, A.; Albano, F.; Passariello, A.; De Marco, G.; Manguso, F.; et al. Probiotics for Treatment of Acute Diarrhoea in Children: Randomised Clinical Trial of Five Different Preparations. Br. Med. J. 2007, 335, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Maugo, B.M. Effectiveness of Bacillus clausii in Reducing Duration of Illness in Acute Diarrhoea in Children 6–59 Months of Age Admitted with Severe Dehydration. Available online: http://erepository.uonbi.ac.ke/handle/11295/8325 (accessed on 9 January 2023).
- De Castro, J.A.A.; Guno, M.J.V.R.; Perez, M.O. Bacillus clausii as Adjunctive Treatment for Acute Community-Acquired Diarrhea among Filipino Children: A Large-Scale, Multicenter, Open-Label Study (CODDLE). Trop. Dis. Travel Med. Vaccines 2019, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Nista, E.C.; Candelli, M.; Cremonini, F.; Cazzato, I.A.; Zocco, M.A.; Franceschi, F.; Cammarota, G.; Gasbarrini, G.; Gasbarrini, A. Bacillus clausii Therapy to Reduce Side-Effects of Anti-Helicobacter Pylori Treatment: Randomized, Double-Blind, Placebo Controlled Trial. Aliment. Pharmacol. Ther. 2004, 20, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Plomer, M.; III Perez, M.; Greifenberg, D.M. Effect of Bacillus clausii Capsules in Reducing Adverse Effects Associated with Helicobacter Pylori Eradication Therapy: A Randomized, Double-Blind, Controlled Trial. Infect. Dis. 2020, 9, 867–878. [Google Scholar] [CrossRef]
- Maity, C.; Gupta, A.K. Therapeutic Efficacy of Probiotic Alkalihalobacillus clausii 088AE in Antibiotic-Associated Diarrhea: A Randomized Controlled Trial. Heliyon 2021, 7, e07993. [Google Scholar] [CrossRef] [PubMed]
- Ianiro, G.; Rizzatti, G.; Plomer, M.; Lopetuso, L.; Scaldaferri, F.; Franceschi, F.; Cammarota, G.; Gasbarrini, A. Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018, 10, 1074. [Google Scholar] [CrossRef] [Green Version]
- Hamid, F.; Quaium, S.M.M.A.; Rahman, A. Comparative Study of Bacillus clausii and Multistrain Probiotics in the Management of Acute Diarrhoea in Children. Int. J. Res. Med. Sci. 2019, 7, 1156–1160. [Google Scholar] [CrossRef]
- Sudha, M.R.; Jayanthi, N.; Pandey, D.C.; Verma, A.K. Bacillus clausii UBBC-07 Reduces Severity of Diarrhoea in Children under 5 Years of Age: A Double Blind Placebo Controlled Study. Benef. Microbes 2019, 10, 149–154. [Google Scholar] [CrossRef]
- Acosta-Rodríguez-Bueno, C.P.; Abreu y Abreu, A.T.; Guarner, F.; Guno, M.J.V.; Pehlivanoğlu, E.; Perez, M. Bacillus clausii for Gastrointestinal Disorders: A Narrative Literature Review. Adv. Ther. 2022, 39, 4854–4874. [Google Scholar] [CrossRef]
- Tewari, V.V.; Dubey, S.K.; Gupta, G. Bacillus clausii for Prevention of Late-Onset Sepsis in Preterm Infants: A Randomized Controlled Trial. J. Trop. Pediatr. 2015, 61, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Marseglia, G.L.; Tosca, M.; Cirillo, I.; Licari, A.; Leone, M.; Marseglia, A.; Castellazzi, A.M.; Ciprandi, G. Efficacy of Bacillus clausii Spores in the Prevention of Recurrent Respiratory Infections in Children: A Pilot Study. Clin. Risk. Manag. 2007, 3, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, M.; Smitha, S.G.; Kamath, G.J. A Study to Assess The Efficacy of Local Application of Oral Probiotic in Treating Recurrent Aphthous Ulcer and Oral Candidiasis. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Ripert, G.; Racedo, S.M.; Elie, A.-M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium Difficile and Bacillus Cereus Toxins. Antimicrob. Agents Chemother. 2016, 60, 3445–3454. [Google Scholar] [CrossRef] [Green Version]
- Rochín-Medina, J.J.; Ramírez-Medina, H.K.; Rangel-Peraza, J.G.; Pineda-Hidalgo, K.V.; Iribe-Arellano, P. Use of Whey as a Culture Medium for Bacillus clausii for the Production of Protein Hydrolysates with Antimicrobial and Antioxidant Activity. Food Sci. Technol. Int. 2018, 24, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapse, N.G.; Engineer, A.S.; Gowdaman, V.; Wagh, S.; Dhakephalkar, P.K. Genome Profiling for Health Promoting and Disease Preventing Traits Unraveled Probiotic Potential of Bacillus clausii B106. Microbiol. Biotechnol. Lett. 2018, 46, 334–345. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite Genome Sequence of Bacillus clausii, a Probiotic Commercially Available as Enterogermina®, and Insights into Its Probiotic Properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef] [Green Version]
- Ahire, J.J.; Kashikar, M.S.; Madempudi, R.S. Survival and Germination of Bacillus clausii UBBC07 Spores in in Vitro Human Gastrointestinal Tract Simulation Model and Evaluation of Clausin Production. Front. Microbiol. 2020, 11, 1010. [Google Scholar] [CrossRef]
- Park, H.; Jung, A.-Y.; Chang, C.-S.; Kim, Y.H. Bacillus clausii, a Foreshore-Derived Probiotic, Attenuates Allergic Airway Inflammation Through Downregulation of Hypoxia Signaling. J. Rhinol. 2020, 27, 108–116. [Google Scholar] [CrossRef]
- Pradhan, B.; Guha, D.; Ray, P.; Das, D.; Aich, P. Comparative Analysis of the Effects of Two Probiotic Bacterial Strains on Metabolism and Innate Immunity in the RAW 264.7 Murine Macrophage Cell Line. Probiotics Antimicrob. Prot. 2016, 8, 73–84. [Google Scholar] [CrossRef]
- Caro, S.D.; Tao, H.; Grillo, A.; Franceschi, F.; Elia, C.; Zocco, M.A.; Gasbarrini, G.; Sepulveda, A.R.; Gasbarrini, A. Bacillus clausii Effect on Gene Expression Pattern in Small Bowel Mucosa Using DNA Microarray Analysis. Eur. J. Gastroenterol. Hepatol. 2005, 17, 951–960. [Google Scholar] [CrossRef]
- Urdaci, M.C.; Bressollier, P.; Pinchuk, I. Bacillus clausii Probiotic Strains: Antimicrobial and Immunomodulatory Activities. J. Clin. Gastroenterol. 2004, 38, S86–S90. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.B.; Viale, S.; Conti, S.; Fadda, M.E.; Deplano, M.; Melis, M.P.; Deiana, M.; Cosentino, S. Preliminary Evaluation of Probiotic Properties of Lactobacillus Strains Isolated from Sardinian Dairy Products. Biomed. Res. Int. 2014, 2014, 286390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marianelli, C.; Cifani, N.; Pasquali, P. Evaluation of Antimicrobial Activity of Probiotic Bacteria against Salmonella Enterica Subsp. Enterica Serovar Typhimurium 1344 in a Common Medium under Different Environmental Conditions. Res. Microbiol. 2010, 161, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Martorell, P.; Forment, J.V.; de Llanos, R.; Montón, F.; Llopis, S.; González, N.; Genovés, S.; Cienfuegos, E.; Monzó, H.; Ramón, D. Use of Saccharomyces Cerevisiae and Caenorhabditis Elegans as Model Organisms to Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress. J. Agric. Food Chem. 2011, 59, 2077–2085. [Google Scholar] [CrossRef]
- Sako, T.; Matsumoto, K.; Tanaka, R. Recent Progress on Research and Applications of Non-Digestible Galacto-Oligosaccharides. Int. Dairy J. 1999, 9, 69–80. [Google Scholar] [CrossRef]
- Seth, A.; Yan, F.; Polk, D.B.; Rao, R.K. Probiotics Ameliorate the Hydrogen Peroxide-Induced Epithelial Barrier Disruption by a PKC- and MAP Kinase-Dependent Mechanism. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 294, G1060–G1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilova, I.; Sharipova, M. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Front. Microbiol. 2020, 11, 1782. [Google Scholar] [CrossRef]
- Dame, Z.T.; Rahman, M.; Islam, T. Bacilli as Sources of Agrobiotechnology: Recent Advances and Future Directions. Green Chem. Lett. Rev. 2021, 14, 246–271. [Google Scholar] [CrossRef]
- Bahaddad, S.A.; Almalki, M.H.K.; Alghamdi, O.A.; Sohrab, S.S.; Yasir, M.; Azhar, E.I.; Chouayekh, H. Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics Antimicrob. Prot. 2023, 15, 1–16. [Google Scholar] [CrossRef]
- Bader, J.; Albin, A.; Stahl, U. Spore-Forming Bacteria and Their Utilisation as Probiotics. Benef. Microbes 2012, 3, 67–75. [Google Scholar] [CrossRef]
- Abuhena, M.; Al-Rashid, J.; Azim, M.F.; Khan, M.N.M.; Kabir, M.G.; Barman, N.C.; Rasul, N.M.; Akter, S.; Huq, M.A. Optimization of Industrial (3000 L) Production of Bacillus Subtilis CW-S and Its Novel Application for Minituber and Industrial-Grade Potato Cultivation. Sci. Rep. 2022, 12, 11153. [Google Scholar] [CrossRef] [PubMed]
- Wong-Chew, R.M.; de Castro, J.-A.A.; Morelli, L.; Perez, M.; Ozen, M. Gut Immune Homeostasis: The Immunomodulatory Role of Bacillus clausii, from Basic to Clinical Evidence. Expert Rev. Clin. Immunol. 2022, 18, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Dunne, C.; O’Mahony, L.; Murphy, L.; Thornton, G.; Morrissey, D.; O’Halloran, S.; Feeney, M.; Flynn, S.; Fitzgerald, G.; Daly, C.; et al. In Vitro Selection Criteria for Probiotic Bacteria of Human Origin: Correlation with in Vivo Findings. Am. J. Clin. Nutr. 2001, 73, 386s–392s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duc, L.H.; Hong, H.A.; Barbosa, T.M.; Henriques, A.O.; Cutting, S.M. Characterization of Bacillus Probiotics Available for Human Use. Appl. Environ. Microbiol. 2004, 70, 2161–2171. [Google Scholar] [CrossRef] [Green Version]
- Cenci, G.; Trotta, F.; Caldini, G. Tolerance to Challenges Miming Gastrointestinal Transit by Spores and Vegetative Cells of Bacillus clausii. J. Appl. Microbiol. 2006, 101, 1208–1215. [Google Scholar] [CrossRef]
- Ahire, J.J.; Kashikar, M.S.; Madempudi, R.S. Comparative Accounts of Probiotic Properties of Spore and Vegetative Cells of Bacillus clausii UBBC07 and in Silico Analysis of Probiotic Function. 3Biotech 2021, 11, 116. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Puong, K.-Y.; Ouwehand, A.C.; Salminen, S. Displacement of Bacterial Pathogens from Mucus and Caco-2 Cell Surface by Lactobacilli. J. Med. Microbiol. 2003, 52, 925–930. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of Pathogens and Pathobionts by the Gut Microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Comparison of in Vitro Models to Study Bacterial Adhesion to the Intestinal Epithelium. Lett. Appl. Microbiol. 2009, 49, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.; Zihler Berner, A.; Chervet, N.; Chassard, C.; Lacroix, C. Comparison of the Caco-2, HT-29 and the Mucus-Secreting HT29-MTX Intestinal Cell Models to Investigate Salmonella Adhesion and Invasion. J. Microbiol. Methods 2013, 94, 274–279. [Google Scholar] [CrossRef]
- Navarre, W.W.; Schneewind, O. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope. Microbiol. Mol. Biol. Rev. 1999, 63, 174–229. [Google Scholar] [CrossRef] [PubMed]
- Marcos, C.M.; de Fátima da Silva, J.; de Oliveira, H.C.; Moraes da Silva, R.A.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Surface-Expressed Enolase Contributes to the Adhesion of Paracoccidioides Brasiliensis to Host Cells. FEMS Yeast Res. 2012, 12, 557–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haiko, J.; Westerlund-Wikström, B. The Role of the Bacterial Flagellum in Adhesion and Virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RUAS-MADIEDO, P.; GUEIMONDE, M.; MARGOLLES, A.; de los REYES-GAVILÁN, C.G.; SALMINEN, S. Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. J. Food Prot. 2006, 69, 2011–2015. [Google Scholar] [CrossRef] [Green Version]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Gueye, S.A.; Lupetti, A.; Senesi, S. Survival and Persistence of Bacillus clausii in the Human Gastrointestinal Tract Following Oral Administration as Spore-Based Probiotic Formulation. J. Appl. Microbiol. 2015, 119, 552–559. [Google Scholar] [CrossRef]
- Jiang, T.; Mustapha, A.; Savaiano, D.A. Improvement of Lactose Digestion in Humans by Ingestion of Unfermented Milk Containing Bifidobacterium Longum. J. Dairy Sci. 1996, 79, 750–757. [Google Scholar] [CrossRef]
- Parodi, P.W. The Role of Intestinal Bacteria in the Causation and Prevention of Cancer: Modulation by Diet and Probiotics. Aust. J. Dairy Technol. 1999, 54, 103–121. [Google Scholar]
- Cheng, K.-W.; Tseng, C.-H.; Chen, I.-J.; Huang, B.-C.; Liu, H.-J.; Ho, K.-W.; Lin, W.-W.; Chuang, C.-H.; Huang, M.-Y.; Leu, Y.-L.; et al. Inhibition of Gut Microbial β-Glucuronidase Effectively Prevents Carcinogen-Induced Microbial Dysbiosis and Intestinal Tumorigenesis. Pharmacol. Res. 2022, 177, 106115. [Google Scholar] [CrossRef]
- Oakey, H.J.; Harty, D.W.S.; Knox, K.W. Enzyme Production by Lactobacilli and the Potential Link with Infective Endocarditis. J. Appl. Bacteriol. 1995, 78, 142–148. [Google Scholar] [CrossRef]
- Bouhss, A.; Al-Dabbagh, B.; Vincent, M.; Odaert, B.; Aumont-Nicaise, M.; Bressolier, P.; Desmadril, M.; Mengin-Lecreulx, D.; Urdaci, M.C.; Gallay, J. Specific Interactions of Clausin, a New Lantibiotic, with Lipid Precursors of the Bacterial Cell Wall. Biophys. J. 2009, 97, 1390–1397. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, G.T.; Allison, C.; Gibson, S.A.; Cummings, J.H. Contribution of the Microflora to Proteolysis in the Human Large Intestine. J. Appl. Bacteriol. 1988, 64, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Claus, D.; Geypens, B.; Hiele, M.; Geboes, K.; Rutgeerts, P.; Ghoos, Y. Amount and Fate of Egg Protein Escaping Assimilation in the Small Intestine of Humans. Am. J. Physiol.-Gastrointest. Liver Physiol. 1999, 277, G935–G943. [Google Scholar] [CrossRef]
- Davila, A.-M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.-H.; Sanz, Y.; Tomé, D. Intestinal Luminal Nitrogen Metabolism: Role of the Gut Microbiota and Consequences for the Host. Pharmacol. Res. 2013, 68, 95–107. [Google Scholar] [CrossRef]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of Amino Acid-Derived Luminal Metabolites on the Colonic Epithelium and Physiopathological Consequences. Amino Acids 2007, 33, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Bourgin, M.; Kepp, O.; Kroemer, G. Immunostimulatory Effects of Vitamin B5 Improve Anticancer Immunotherapy. OncoImmunology 2022, 11, 2031500. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.S.; Saibil, S.D.; Han, S.; Israni-Winger, K.; Lien, S.C.; Laister, R.C.; Sayad, A.; Penny, S.; Amaria, R.N.; Haydu, L.E.; et al. Coenzyme A Fuels T Cell Anti-Tumor Immunity. Cell Metab. 2021, 33, 2415–2427.e6. [Google Scholar] [CrossRef]
- Tamura, J.; Kubota, K.; Murakami, H.; Sawamura, M.; Matsushima, T.; Tamura, T.; Saitoh, T.; Kurabayshi, H.; Naruse, T. Immunomodulation by Vitamin B12: Augmentation of CD8+ T Lymphocytes and Natural Killer (NK) Cell Activity in Vitamin B12-Deficient Patients by Methyl-B12 Treatment. Clin. Exp. Immunol. 1999, 116, 28–32. [Google Scholar] [CrossRef]
- Poltorak, A.; He, X.; Smirnova, I.; Liu, M.-Y.; Huffel, C.V.; Du, X.; Birdwell, D.; Alejos, E.; Silva, M.; Galanos, C.; et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 1998, 282, 2085–2088. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of Double-Stranded RNA and Activation of NF-ΚB by Toll-like Receptor 3. Nature 2001, 413, 732–738. [Google Scholar] [CrossRef]
- Gilmore, T.D. Introduction to NF-ΚB: Players, Pathways, Perspectives. Oncogene 2006, 25, 6680–6684. [Google Scholar] [CrossRef] [Green Version]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective Action of Bacillus clausii Probiotic Strains in an in Vitro Model of Rotavirus Infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferri, F.; Graziani, C.; Mora, V.; Petito, V.; Lopetuso, L.R.; Puca, P.; Ianiro, G.; Napolitano, D.; Quaranta, G.; Masucci, L.; et al. Bacillus clausii (O/C, SIN, N/R, T) Improves Acute Mild Colitis in Mice While In-Vivo Modulating Gut Microbiota. Ann. Gastroenterol. Dig. Syst. 2021, 4, 1035. [Google Scholar]
- Pradhan, B.; Guha, D.; Naik, A.K.; Banerjee, A.; Tambat, S.; Chawla, S.; Senapati, S.; Aich, P. Probiotics L. acidophilus and B. clausii Modulate Gut Microbiota in Th1- and Th2-Biased Mice to Ameliorate Salmonella Typhimurium-Induced Diarrhea. Probiotics Antimicrob. Prot. 2019, 11, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Shida, K.; Nanno, M.; Nagata, S. Flexible Cytokine Production by Macrophages and T Cells in Response to Probiotic Bacteria: A Possible Mechanism by Which Probiotics Exert Multifunctional Immune Regulatory Activities. Gut Microbes 2011, 2, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha-Ramírez, L.M.; Pérez-Solano, R.A.; Castañón-Alonso, S.L.; Moreno Guerrero, S.S.; Ramírez Pacheco, A.; García Garibay, M.; Eslava, C. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages. J. Immunol. Res. 2017, 2017, 4607491. [Google Scholar] [CrossRef] [Green Version]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Villéger, R.; Saad, N.; Grenier, K.; Falourd, X.; Foucat, L.; Urdaci, M.C.; Bressollier, P.; Ouk, T.-S. Characterization of Lipoteichoic Acid Structures from Three Probiotic Bacillus Strains: Involvement of d-Alanine in Their Biological Activity. Antonie Leeuwenhoek 2014, 106, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; Lucas, A.S.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806.e12. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.; Patel, P.; Acharya, S. Therapeutic Prospective of a Spore-Forming Probiotic—Bacillus clausii UBBC07 Against Acetaminophen-Induced Uremia in Rats. Probiotics Antimicrob. Prot. 2020, 12, 253–258. [Google Scholar] [CrossRef]
- Özkoç, M.; Can, B.; Şentürk, H.; Burukoğlu Dönmez, D.; Kanbak, G. Possible Curative Effects of Boric Acid and Bacillus clausii Treatments on TNBS-Induced Ulcerative Colitis in Rats. Biol. Trace Elem. Res. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Guba, A.; Bába, O.; Tőzsér, J.; Csősz, É.; Kalló, G. Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, M.; Stańczyk, M.; Wilk, M.; Kłaczkow, G.; Anuszewska, E.; Barzał, J.; Rzepecki, P. New Approach for Amino Acid Profiling in Human Plasma by Selective Fluorescence Derivatization. Amino Acids 2012, 43, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, M.E. Selective Quantitative Determination of Water Soluble Vitamins in Various Food Matrices Using the ACQUITY UPLC H-Class System and ACQUITY QDa Mass Detector; Waters Corporation: Milford, MA, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khokhlova, E.; Colom, J.; Simon, A.; Mazhar, S.; García-Lainez, G.; Llopis, S.; Gonzalez, N.; Enrique-López, M.; Álvarez, B.; Martorell, P.; et al. Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08. Microorganisms 2023, 11, 240. https://doi.org/10.3390/microorganisms11020240
Khokhlova E, Colom J, Simon A, Mazhar S, García-Lainez G, Llopis S, Gonzalez N, Enrique-López M, Álvarez B, Martorell P, et al. Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08. Microorganisms. 2023; 11(2):240. https://doi.org/10.3390/microorganisms11020240
Chicago/Turabian StyleKhokhlova, Ekaterina, Joan Colom, Annie Simon, Shahneela Mazhar, Guillermo García-Lainez, Silvia Llopis, Nuria Gonzalez, María Enrique-López, Beatriz Álvarez, Patricia Martorell, and et al. 2023. "Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08" Microorganisms 11, no. 2: 240. https://doi.org/10.3390/microorganisms11020240
APA StyleKhokhlova, E., Colom, J., Simon, A., Mazhar, S., García-Lainez, G., Llopis, S., Gonzalez, N., Enrique-López, M., Álvarez, B., Martorell, P., Tortajada, M., Deaton, J., & Rea, K. (2023). Immunomodulatory and Antioxidant Properties of a Novel Potential Probiotic Bacillus clausii CSI08. Microorganisms, 11(2), 240. https://doi.org/10.3390/microorganisms11020240