Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conservation Analysis
2.2. Phylogenetic Analysis
2.3. Prediction of Putative Type III Secretion Effectors (T3SEs)
2.4. Genomic Island Prediction and Gene Order Analysis
3. Results
3.1. Identification of T3SS3 Clusters from Protein Similarity
3.2. Genomic Location and Gene Order of T3SS3 Gene Clusters
3.3. Prediction of Putative T3SS3 Effectors, Translocons, and Chaperones
4. Discussion
4.1. Evolutionary Distance of T3SS3 from T3SS1 and T3SS2
4.2. Effect of Mobile Elements and Horizontal Gene Transfer
4.3. Repertoire of Effectors, Translocons, and Chaperones in T3SS3
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker-Austin, C.; Trinanes, J.; Gonzalez-Escalona, N.; Martinez-Urtaza, J. Non-cholera vibrios: The microbial barometer of climate change. Trends Microbiol. 2017, 25, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán, J.E.; Lara-Tejero, M.; Marlovits, T.C.; Wagner, S. Bacterial type III secretion systems: Specialized nanomachines for protein delivery into target cells. Ann. Rev. Microbiol. 2014, 68, 415–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, E.; Thurston TL, M.; Holden, D.W. Salmonella SPI-2 type III secretion system effectors: Molecular mechanisms and physiological consequences. Cell Host Microbe 2017, 22, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Marshall, N.C.; Rowland, J.L.; McCoy, J.M.; Worrall, L.J.; Santos, A.S.; Strynadka, N.C.; Finlay, B.B. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 2017, 15, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Grin, I.; Malmsheimer, S.; Singh, N.; Torres-Vargas, C.E.; Westerhausen, S. Bacterial type III secretion systems: A complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol. Lett. 2018, 365, fny201. [Google Scholar] [CrossRef] [Green Version]
- Abby, S.S.; Rocha EP, C. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 2012, 8, e1002983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, S.; Hiyoshi, H.; Tandhavanant, S.; Kodama, T. Advances on Vibrio parahaemolyticus research in the postgenomic era. Microbiol. Immunol. 2020, 64, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Troisfontaines, P.; Cornelis, G.R. Type III secretion: More systems than you think. Physiology 2005, 20, 326–339. [Google Scholar] [CrossRef]
- Pinaud, L.; Sansonetti, P.J.; Phalipon, A. Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol. 2018, 26, 266–283. [Google Scholar] [CrossRef]
- Makino, K.; Oshima, K.; Kurokawa, K.; Yokoyama, K.; Uda, T.; Tagomori, K.; Iijima, Y.; Najima, M.; Nakano, M.; Yamashita, A.; et al. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet 2003, 361, 743–749. [Google Scholar] [CrossRef]
- Miller, K.A.; Tomberlin, K.F.; Dziejman, M. Vibrio variations on a type three theme. Curr. Opin. Microbiol. 2019, 47, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hurley, C.C.; Quirke, A.; Reen, F.J.; Boyd, E.F. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genom. 2006, 7, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ham, H.; Orth, K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogenicity. J. Microbiol. 2012, 50, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; de Santos, M.S.; Lee, J.; Law, H.T.; Chimalapati, S.; Verdu, E.F.; Orth, K.; Vallance, B.A. A novel mouse model of enteric Vibrio parahaemolyticus infection reveals that the type III secretion system 2 effector VopC plays a key role in tissue invasion and gastroenteritis. mBio 2019, 10, e02608-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, R.; Holden, D.W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 2012, 158, 1147–1161. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Huang, H.; Cheng, X.; Shu, X.; White, A.P.; Stavrinides, J.; Köster, W.; Zhu, G.; Zhao, Z.; Wang, Y. A global survey of bacterial type III secretion systems and their effectors. Environ. Microbiol. 2017, 19, 3879–3895. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. Trimal: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Collet, G. Gcollet/Mstatx: A multiple alignment analyser. GitHub. 3 December 2017. Available online: https://github.com/gcollet/MstatX (accessed on 16 November 2021).
- Nylander, J.A.A. Nylander/Catfasta2phyml: Concatenates FASTA formatted files to “Phyml” (PHYLIP) format. GitHub. 28 September 2018. Available online: https://github.com/nylander/catfasta2phyml (accessed on 16 November 2021).
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive tree of life (iTol) V4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosentino, S.; Iwasaki, W. SonicParanoid: Fast, accurate and easy orthology inference. Bioinformatics 2019, 35, 149–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Rangel, L.T.; Marden, J.; Colston, S.; Setubal, J.C.; Graf, J.; Gogarten, J.P. Identification and characterization of putative Aeromonas spp. T3SS effectors. PLoS ONE 2019, 14, e0214035. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, C.L.; Chooi, Y.-H. Clinker Clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Boddy, K.C.; Zhu, H.; D’Costa, V.M.; Xu, C.; Beyrakhova, K.; Cygler, M.; Grinstein, S.; Coyaud, E.; Laurent, E.M.; St-Germain, J.; et al. Salmonella effector SopD promotes plasma membrane scission by inhibiting Rab10. Nat. Commun. 2021, 12, 4047. [Google Scholar] [CrossRef]
- Thomas, N.A.; Deng, W.; Puente, J.L.; Frey, E.A.; Yip, C.K.; Strynadka, N.C.; Finlay, B.B. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both Lee- and non-Lee-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 2005, 57, 1762–1779. [Google Scholar] [CrossRef]
- MacDonald, J.; Miletic, S.; Gaildry, T.; Chin-Fatt, A.; Menassa, R. Co-expression with the type 3 secretion chaperone CesT from enterohemorrhagic E. coli increases accumulation of recombinant Tir in plant chloroplasts. Front. Plant Sci. 2017, 8, 283. [Google Scholar] [CrossRef]
- Hölzer, S.U.; Hensel, M. Functional dissection of translocon proteins of the Salmonella pathogenicity island 2-encoded type III secretion system. BMC Microbiol. 2010, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayath, C.A.; Hussey, S.; El Hajjami, N.; Nagra, K.; Philpott, D.; Allaoui, A. Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microb. Infect. 2010, 12, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Kuwae, A.; Matsuzawa, T.; Ishikawa, N.; Abe, H.; Nonaka, T.; Fukuda, H.; Imajoh-Ohmi, S.; Abe, A. BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J. Biol. Chem. 2006, 281, 6589–6600. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.; Kim, Y.-J.; Shin, H.; Ha, U.-H. T3SS effector ExoY reduces inflammasome-related responses by suppressing bacterial motility and delaying activation of NF-ΚB and caspase-1. FEBS J. 2017, 284, 3392–3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fields, K.A.; Fischer, E.R.; Mead, D.J.; Hackstadt, T. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates. J. Bacteriol. 2005, 187, 6466–6478. [Google Scholar] [CrossRef] [Green Version]
- Ooka, T.; Ogura, Y.; Katsura, K.; Seto, K.; Kobayashi, H.; Kawano, K.; Tokuoka, E.; Furukawa, M.; Harada, S.; Yoshino, S.; et al. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol. Evol. 2015, 7, 3170–3179. [Google Scholar]
- Martinez-Urtaza, J.; Saco, M.; Hernandez-Cordova, G.; Lozano, A.; Garcia-Martin, O.; Espinosa, J. Identification of Salmonella serovars isolated from live molluscan shellfish and their significance in the marine environment. J. Food Protect 2003, 66, 226–232. [Google Scholar] [CrossRef]
- Alex, A.; Antunes, A. Whole-genome comparisons among the genus Shewanella reveal the enrichment of genes encoding ankyrin-repeats containing proteins in sponge-associated bacteria. Front. Microbiol. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.M.; Rui, H.; Zhou, X.; Iida, T.; Kodoma, T.; Ito, S.; Davis, B.M.; Bronson, R.T.; Waldor, M.K. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog. 2012, 8, e1002593. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.A.; Plaza, N.; Bravo, V.; Urrutia, I.M.; Blondel, C.J. The Vibrio Type III secretion system 2 is not restricted to the Vibrionaceae and encodes differently distributed repertoires of effector proteins. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hubbard, T.P.; Chao, M.C.; Abel, S.; Blondel, C.J.; Wiesch PA, Z.; Zhou, X.; Davis, B.M.; Waldor, M.K. Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc. Natl. Acad. Sci. USA 2016, 113, 6283–6288. [Google Scholar] [CrossRef] [PubMed]
T3SS Family | Known Members | Known Relevant Hosts |
---|---|---|
Ysc | Yersinia enterocolitica Yersinia pestis Yersinia pseudotuberculosis | Humans, rodents, insects |
Pseudomonas aeruginosa Pseudomonas mosselii Pseudomonas otitidis | Humans, plants, insects | |
Aeromonas spp. | Humans, fish | |
Vibrio alginolyticus Vibrio harveyi Vibrio parahaemolyticus | Humans, fish, mollusks | |
Inv/Mxi-Spa | Yersinia ruckeri | Salmonid fish |
Salmonella enterica Salmonella bongori | Humans | |
Shigella boydii | Humans | |
Burkholderia spp. | Mammals | |
Ssa-Esc | Salmonella enterica | Humans |
Yersinia pseudotuberculosis Yersinia enterocolitica Yersinia kristensenii | Humans, rodents | |
Edwardsiella ictaluri | Humans, fish | |
Vibrio aquimaris Vibrio coralliilyticus Vibrio pectenicida | Fish, mollusks | |
Hrp/Hrc1 | Erwinia amylovora | Plants |
Pantoea agglomerans | Plants | |
Pseudomonas syringae | Plants | |
Vibrio cholerae Vibrio parahaemolyticus Vibrio pectenicida | Humans, fish, mollusks | |
Hrp/Hrc2 | Ralstonia solanacearum | Plants |
Xanthomonas spp. | Plants | |
Burkholderia spp. | Plants | |
Chlamydiales | Chlamydia muridarum Chlamydophila pneumoniae | Mammals, birds, protists |
Rhizobiales | Rhizobium spp. | Leguminous plants |
Myxococcales | Myxococcus spp. | |
Desulfovibrionales | Desulfovibrio vulgaris | Humans |
Protein Names | T3SS Family | Average Identity % | Strains | Biochemical and Cellular Functions |
---|---|---|---|---|
SseF | Ssa-Esc | 29.5 | A, C, P | Core effector in all pathogenic Salmonella serovars, tethering Salmonella-containing vacuoles (SCVs) to the Golgi network. SseF functions with another core effector, SseG protein [3]. |
SspH2 | Ssa-Esc | 32.5 | T | Effector (E3 ubiquitin ligase) in pathogenic Salmonella, interfering with host immune signaling. SspH2 is associated with SspH1 and SlrP, which also show E3 ligase activity [3]. |
SseJ | Ssa-Esc | 33.4 | A, P | Effector (acytransferase) in pathogenic Salmonella, preventing collapse of microtubules to provide a solid network around SCVs [3,30]. |
PipB | Ssa-Esc | 32.4 | A, C, P, T | Core effector of unknown function in all pathogenic Salmonella serovars, localizing to SCVs and SIFs. Its associated protein PipB2 controls the kinesin-1 motor protein of host cells [3]. |
SopD2 | Ssa-Esc | 33.3 | A, C | Effector that prevents from directing SCVs into late endosomes and lysosomes [3,30] |
SopD | Ssa-Esc Inv/Mxi-Spa | 18.9 | A | Effector that promotes plasma membrane scission and the generation of SCVs [30] |
CesD | Ssa-Esc | 39.5 25.4 | A, C, P, T | T3SS chaperone in enteropathogenic E. coli strains for more efficient secretion [31,32] |
CesT | C, T | |||
SseB | Ssa-Esc | 37.7 30.3 28.4 | A, C, P, T | Translocon proteins in Salmonella strains to transfer T3SS effectors [33] |
SseC | ||||
SseD | ||||
BopA/IcsB | Inv/Mxi-Spa | 23.4 | C, T | Effector in Shigella or Burkholderia strains helping to evade the host autophagy defense system [34] |
BopC | Inv/Mxi-Spa | 44.5 | A, P | Effector in Bordetella strains contributing to the necrotic cell death of mammalian host cells [35] |
ExoY | Ysc | 31.2 | A, P | Common effector (adenylate cyclase) in clinically isolated Pseudomonas aeruginosa, delaying the inflammatory pathways in mammalian host cells [36] |
Scc2 | Chlamydiales | 27.5 | C | T3SS chaperone specific to Chlamydia species and is similar to SycD of Yersinia, SicA of Salmonella, and IpgC of Shigella [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, D.; Matsuda, S.; Iida, T.; Hayashi, T.; Arita, M. Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species. Microorganisms 2023, 11, 290. https://doi.org/10.3390/microorganisms11020290
Zakaria D, Matsuda S, Iida T, Hayashi T, Arita M. Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species. Microorganisms. 2023; 11(2):290. https://doi.org/10.3390/microorganisms11020290
Chicago/Turabian StyleZakaria, Douaa, Shigeaki Matsuda, Tetsuya Iida, Tetsuya Hayashi, and Masanori Arita. 2023. "Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species" Microorganisms 11, no. 2: 290. https://doi.org/10.3390/microorganisms11020290
APA StyleZakaria, D., Matsuda, S., Iida, T., Hayashi, T., & Arita, M. (2023). Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species. Microorganisms, 11(2), 290. https://doi.org/10.3390/microorganisms11020290