H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Media
2.2. DNA Manipulation
2.3. Construction of the Plasmid pAH162-TcR-2Ter-hppaRru
2.4. Construction of Strains
2.5. Isolation of E. coli Inverted Membrane Vesicles (IMV)
2.6. PPi Hydrolysis Measurement of R. rubrum H+-PPaseRru
2.7. PPi Hydrolysis Measurement of E. coli PPase
2.8. Southern Blotting Analysis
2.9. 13C-MFA
2.9.1. Carbon Labeling Experiment
2.9.2. Analysis of Substrate and Products
2.9.3. Metabolic Map
2.9.4. Requirements for Biomass Synthesis
2.9.5. Determination of Protein and RNA Content
2.9.6. GC-MS Analysis
2.9.7. Flux Calculation and Statistics Analysis
3. Results
3.1. Heterologous Expression of H+-PPaseRru in E. coli with Replacement of the Native S-PPase
3.2. Analysis of the Growth of Strains Containing H+-PPaseRru and the Effects of Increasing hppaRru Gene Copy Number
3.3. Analysis of PPase Activity of E. coli Strains Containing S- and M-PPases
3.4. Carbon Flux Distribution in E. coli MG1655, MG1655 IS5.8::PL-hppaRru and MG1655 IS5.8::PL-hppaRru ∆ppa::cat Strains
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Sequence of codon-harmonized hppaRru(from 5’ to 3’)
Appendix B
- Construction of E. coli MG1655 IS5.8::PL-hppaRru
Appendix C
- Construction of E. coli MG1655 IS5.8::PL-hppaRru ∆ppa
Appendix D
- Construction of E. coli strains containing two and three copies of hppaRru gene
Appendix D.1. Construction of E. coli MG1655 adrA::PL-hppaRru and MG1655 adhE::PL-hppaRru
Appendix D.2. Construction of E. coli MG1655 adrA::PL-hppaRru ∆ppa and MG1655 adhE::PL-hppaRru ∆ppa
References
- Lahti, R. Microbial inorganic pyrophosphatases. Microbiol. Rev. 1983, 47, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Baykov, A.A.; Anashkin, V.A.; Salminen, A.; Lahti, R. Inorganic pyrophosphatases of Family II—Two decades after their discovery. FEBS Lett. 2017, 591, 3225–3234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Baltscheffsky, M. Inorganic pyrophosphate and ATP as energy donors in chromatophores from Rhodospirillum rubrum. Nature 1967, 216, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Baltscheffsky, H. Inorganic pyrophosphate and the evolution of biological energy transformation. Acta Chem. Scand. 1967, 21, 1973–1974. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.W.; Kornberg, A. Inorganic polyphosphate in the origin and survival of species. Proc. Natl. Acad. Sci. USA 2004, 101, 16085–16087. [Google Scholar] [CrossRef] [Green Version]
- Baltscheffsky, M.; Nadanaciva, S.; Schultz, A. A pyrophosphate synthase gene: Molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim. Biophys. Acta (BBA)-Bioenerg. 1998, 1364, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Docampo, R.; Moreno, S.N. Acidocalcisomes. Cell Calcium 2011, 50, 113–119. [Google Scholar] [CrossRef]
- Baykov, A.A.; Anashkin, V.A.; Malinen, A.M.; Bogachev, A.V. The Mechanism of Energy Coupling in H+/Na+-Pumping Membrane Pyrophosphatase-Possibilities and Probabilities. Int. J. Mol. Sci. 2022, 16, 9504. [Google Scholar] [CrossRef]
- Belogurov, G.A.; Turkina, M.V.; Penttinen, A.; Huopalahti, S.; Baykov, A.A.; Lahti, R. H+ pyrophosphatase of Rhodospirillum rubrum High yield expression in Escherichia coli and identification of the Cys residues responsible for inactivation my mersalyl. J. Biol. Chem. 2002, 277, 22209–22214. [Google Scholar] [CrossRef] [Green Version]
- Schultz, A.; Baltscheffsky, M. Properties of mutated Rhodospirillum rubrum H+-pyrophosphatase expressed in Escherichia coli. Biochim. Biophys. Acta (BBA)-Bioenerg. 2003, 1607, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Kellosalo, J.; Kajander, T.; Palmgren, M.G.; Lopéz-Marqués, R.L.; Goldman, A. Heterologous expression and purification of membrane-bound pyrophosphatases. Protein Expr. Purif. 2011, 79, 25–34. [Google Scholar] [CrossRef]
- Gouiaa, S.; Khoudi, H.; Leidi, E.O.; Pardo, J.M.; Masmoudi, K. Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol. Biol. 2012, 79, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.; Jiang, P.; Tai, F.; Wang, D.; Feng, J.; Fan, P.; Bao, H.; Li, Y. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea. Planta 2017, 246, 1177–1187. [Google Scholar] [CrossRef]
- Dyakova, E.V. Influence of Rhodospirillum rubrum Membrane H+-Pyrophosphatase Gene Expression in on the Level of Salt Tolerance in Tobacco Plants. Ph.D. Thesis, Russian State Agrarian University (Moscow Timiryazev Agricultural Academy), Moscow, Russia, 2012. (In Russian). [Google Scholar]
- Kellosalo, J.; Kajander, T.; Kogan, K.; Pokharel, K.; Goldman, A. The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 2012, 337, 473–476. [Google Scholar] [CrossRef]
- Lin, S.M.; Tsai, J.Y.; Hsiao, C.D.; Huang, Y.T.; Chiu, C.L.; Liu, M.H.; Tung, J.Y.; Liu, T.H.; Pan, R.L.; Sun, Y.J. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 2012, 484, 399–403. [Google Scholar] [CrossRef]
- Baykov, A.A.; Malinen, A.M.; Luoto, H.H.; Lahti, R. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol. Mol. Biol. Rev. 2013, 77, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Malinen, A.M.; Anashkin, V.A.; Orlov, V.N.; Bogachev, A.V.; Lahti, R.; Baykov, A.A. Pre-steady-state kinetics and solvent isotope effects support the “billiard-type” transport mechanism in Na+-translocating pyrophosphatase. Protein Sci. 2022, 31, e4394. [Google Scholar] [CrossRef]
- Bailey, J.E. Toward a science of metabolic engineering. Science 1991, 252, 1668–1675. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Shi, Z.; Du, G.; Chen, J. ATP in current biotechnology: Regulation, applications and perspectives. Biotechnol. Adv. 2009, 27, 94–101. [Google Scholar] [CrossRef]
- Aoki, R.; Wada, M.; Takesue, N.; Tanaka, K.; Yokota, A. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 2005, 69, 1466–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.M.; Li, Y.; Du, G.C.; Chen, J. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 2006, 100, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Yokota, A.; Henmi, M.; Takaoka, N.; Hayashi, C.; Takezawa, Y.; Fukumori, Y.; Tomita, F. Enhancement of glucose metabolism in a pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity. J. Ferment. Bioeng. 1997, 83, 132–138. [Google Scholar] [CrossRef]
- Sánchez, A.M.; Bennett, G.N.; San, K.Y. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J. Biotechnol. 2005, 117, 395–405. [Google Scholar] [CrossRef]
- Lin, H.; Castro, N.M.; Bennett, G.N.; San, K.Y. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 2006, 71, 870–874. [Google Scholar] [CrossRef]
- Chen, J.; Brevet, A.; Fromant, M.; Leveque, F.; Schmitter, J.M.; Blanquet, S.; Plateau, P. Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol. 1990, 172, 5686–5689. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning: Ch. 15. Expression of Cloned Genes in Escherichia coli; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 3. [Google Scholar]
- Studier, F.W.; Mofatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986, 189, 113–130. [Google Scholar] [CrossRef]
- Herrero, M.; de Lorenzo, V.; Timmis, K.N. Transposon vectors containing nonantibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 1990, 172, 6557–6567. [Google Scholar] [CrossRef] [Green Version]
- Minaeva, N.I.; Gak, E.R.; Zimenkov, D.V.; Skorokhodova, A.Y.; Biryukova, I.V.; Mashko, S.V. Dual-In/Out strategy for genes integration into bacterial chromosome: A novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure. BMC 2008, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Haldimann, A.; Wanner, B.L. Conditional-replication integration excision and retrieval plasmid-host systems for gene structure–function studies of bacteria. J. Bacteriol. 2001, 183, 6384–6393. [Google Scholar] [CrossRef] [Green Version]
- Angov, E.; Hillier, C.J.; Kincaid, R.L.; Lyon, J.A.; Angov, E. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 2008, 3, e2189. [Google Scholar] [CrossRef] [Green Version]
- Ublinskaya, A.A.; Samsonov, V.V.; Mashko, S.V.; Stoynova, N.V. A PCR-free cloning method for the targeted phi80 Int-mediated integration of any long DNA fragment bracketed with meganuclease recognition sites into the Escherichia coli chromosome. J. Microbiol. Methods 2012, 89, 167–173. [Google Scholar] [CrossRef]
- Moore, S.D. Assembling new Escherichia coli strains by transduction using phage P1. In Strain Engineering; Humana Press: Totowa, NJ, USA, 2011; pp. 155–169. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M.F.; Fritz, L.C.; Burrows, F.J. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003, 425, 407–410. [Google Scholar] [CrossRef]
- Sugiura, T.; Nagano, Y.; Noguchi, Y. DDX39, upregulated in lung squamous cell cancer, displays RNA helicase activities and promotes cancer cell growth. Cancer Biol. Ther. 2007, 6, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Heinonen, J.K.; Lahti, R.J. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 1981, 113, 313–317. [Google Scholar] [CrossRef]
- Long, C.P.; Gonzalez, J.E.; Feist, A.M.; Palsson, B.O.; Antoniewicz, M.R. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 2017, 44, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, R.J.; Van Winden, W.A.; Van Gulik, W.M.; Heijnen, J.J. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J. 2005, 272, 4970–4982. [Google Scholar] [CrossRef]
- Sedivy, J.M.; Babul, J.; Fraenkel, D.G. AMP-insensitive fructose bisphosphatase in Escherichia coli and its consequences. Proc. Natl. Acad. Sci. USA 1986, 83, 1656–1659. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.K.; Rohlin, L.; Kao, K.C.; Liao, J.C. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 2002, 277, 13175–13183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trauchessec, M.; Jaquinod, M.; Bonvalot, A.; Brun, V.; Bruley, C.; Ropers, D.; de Jong, H.; Jérôme Garin, J.; Bestel-Corre, G.; Ferro, M. Mass spectrometry-based workflow for accurate quantification of Escherichia coli enzymes: How proteomics can play a key role in metabolic engineering. Mol. Cell Proteom. 2014, 13, 954–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patnaik, R.; Roof, W.D.; Young, R.F.; Liao, J. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. J. Bacteriol. 1992, 174, 7527–7532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambost, J.P.; Fraenkel, D.G. The use of 6-labeled glucose to assess futile cycling in Escherichia coli. J. Biol. Chem. 1980, 255, 2867–2869. [Google Scholar] [CrossRef] [PubMed]
- Daldal, F.; Fraenkel, D.G. Assessment of a futile cycle involving reconversion of fructose 6-phosphate to fructose 1,6-during gluconeogenic growth of Escherichia coli. J. Bacteriol. 1983, 153, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.C.; Baul, J. An in vitro model showing different rates of substrate cycle for phosphofructokinases of Escherichia coli with different kinetic properties. Eur. J. Biochem. 1991, 200, 471–476. [Google Scholar] [CrossRef]
- Hädicke, O.; Bettenbrock, K.; Klamt, S. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Biotechnol. Bioeng. 2015, 112, 2195–2199. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.M.; Attwood, M.M.; Guest, J.R. Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 2001, 174, 1483–1498. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, C.R.; Bennett, G.N.; San, K.Y. Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol. Prog. 2005, 21, 1062–1067. [Google Scholar] [CrossRef]
- De Mey, M.; Lequeux, G.J.; Beauprez, J.J.; Maertens, J.; Van Horen, E.; Soetaert, W.K.; Vanrolleghem, P.A.; Vandamme, E.J. Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol. Prog. 2007, 23, 1053–1063. [Google Scholar]
- Leighty, R.W.; Antoniewicz, M.R. Parallel labeling experiments with [U-13C] glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab. Eng. 2012, 14, 533–541. [Google Scholar] [CrossRef]
- Marcus, J.P.; Dekker, E.E. Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase. J. Bacteriol. 1993, 175, 6505–6511. [Google Scholar] [CrossRef] [Green Version]
- Szyperski, T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids an efficient analytical tool to investigate intermediary metabolism. FEBS 1995, 232, 433–448. [Google Scholar] [CrossRef]
- Quek, L.E.; Wittmann, C.; Nielsen, L.K.; Krömer, J.O. OpenFLUX: Efficient modelling software for 13C-based metabolic flux analysis. Microb. Cell Fact. 2009, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Quek, L.E.; Nielsen, L.K. Steady-state ¹³C fluxomics using OpenFLUX. Methods Mol. Biol. 2014, 1191, 209–224. [Google Scholar]
- Pramanik, J.; Keasling, J.D. Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 1997, 56, 398–421. [Google Scholar] [CrossRef]
- Pramanik, J.; Keasling, J.D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol. Bioeng. 1998, 60, 230–238. [Google Scholar] [CrossRef]
- Dauner, M.; Sauer, U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol. Bioeng. 2001, 76, 132–143. [Google Scholar] [CrossRef]
- Zamboni, N.; Fendt, S.M.; Rühl, M.; Sauer, U. 13C-based metabolic flux analysis. Nat. Protoc. 2009, 4, 878–892. [Google Scholar] [CrossRef]
- Neidhardt, F.C.; Umbarger, H.E. Chemical composition of Escherichia coli. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Neidhardt, F.C., Ed.; ASM Press: Washington DC, USA, 1996. [Google Scholar]
- Marx, A.; de Graaf, A.A.; Wiechert, W.; Eggeling, L.; Sahm, H. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 1996, 49, 111–129. [Google Scholar] [CrossRef]
- Fischer, E.; Zamboni, N.; Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 2004, 325, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chemical analysis of microbial cells. In Methods in Microbiology; Norris, J.R., Ribbons, D.W., Eds.; Academic Press: London, UK; New York, NY, USA, 1971; Volume 5B, pp. 209–344. [Google Scholar]
- Spirin, A.S. Spectrometric determination of a total quantity of nucleic acids. Biohimiya 1958, 23, 656–662. (In Russian) [Google Scholar]
- Karklinya, V.A.; Birska, I.A.; Limarenko, Y.A. Quantitative determination of nucleic acids in salmonidae milt by various methods. Chem. Nat. Compd. 1989, 25, 109–112. [Google Scholar] [CrossRef]
- Antoniewicz, M.R.; Kelleher, J.K.; Stephanopoulos, G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal. Chem. 2007, 79, 7554–7559. [Google Scholar]
- Long, C.P.; Au, J.; Gonzalez, J.E.; Antoniewicz, M.R. 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling. Metab. Eng. 2016, 38, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, C.A.; Des Rosiers, C.; Previs, S.F.; David, F.; Brunengraber, H. Correction of 13C Mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 1996, 31, 255–262. [Google Scholar] [CrossRef]
- Shupletsov, M.S.; Golubeva, L.I.; Rubina, S.S.; Podvyaznikov, D.A.; Iwatani, S.; Mashko, S.V. OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microb. Cell Fact. 2014, 13, 152. [Google Scholar] [CrossRef] [Green Version]
- Theorell, A.; Leweke, S.; Wiechert, W.; Nöh, K. To be certain about the uncertainty: Bayesian statistics for 13C metabolic flux analysis. Biotechnol. Bioeng. 2017, 114, 2668–2684. [Google Scholar] [CrossRef]
- Diciccio, T.J.; Romano, J.P. A review of bootstrap confidence intervals. J. Royal Stat. Soc. B (Methodological) 1988, 50, 338–354. [Google Scholar] [CrossRef]
- Joshi, M.; Seidel-Morgenstern, A.; Kremling, A. Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metab. Eng. 2006, 8, 447–455. [Google Scholar] [CrossRef]
- Kajander, T.; Kellosalo, J.; Goldman, A. Inorganic pyrophosphatases: One substrate, three mechanisms. FEBS Lett. 2013, 587, 1863–1869. [Google Scholar] [CrossRef] [Green Version]
- Belogurov, G.A.; Malinen, A.M.; Turkina, M.V.; Jalonen, U.; Rytkönen, K.; Baykov, A.A.; Lahti, R. Membrane-bound pyrophosphatase of Thermotoga maritima requires sodium for activity. Biochemistry 2005, 44, 2088–2096. [Google Scholar] [CrossRef]
- Norland, S.; Heldal, M.; Tumyr, O. On the relation between dry matter and volume of bacteria. Microb. Ecol. 1987, 13, 95–101. [Google Scholar] [CrossRef]
- Volkmer, B.; Heinemann, M. Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling. PLoS ONE 2011, 6, e23126. [Google Scholar] [CrossRef] [Green Version]
- Crown, S.B.; Long, C.P.; Antoniewicz, M.R. Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: A new precision and synergy scoring system. Metab. Eng. 2016, 38, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Leighty, R.W.; Antoniewicz, M.R. COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis. Metab. Eng. 2013, 20, 49–55. [Google Scholar] [CrossRef]
- Long, C.P.; Antoniewicz, M.R. Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism. Metab. Eng. 2019, 55, 247–249. [Google Scholar] [CrossRef]
- Cronan, J.E.; Laporter, D. Tricarboxylic acid cycle and glyoxylate bypass. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed.; Neidhardt, F.C., Ed.; ASM Press: Washington, DC, USA, 1996. [Google Scholar]
- Sauer, U.; Canonaco, F.; Heri, S.; Perrenoud, A.; Fischer, E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 2004, 279, 6613–6619. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Castiñeira, J.R.; López-Marqués, R.L.; Villalba, J.M.; Losada, M.; Serrano, A. Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Proc. Natl. Acad. Sci. USA 2002, 99, 15914–15919. [Google Scholar] [CrossRef] [Green Version]
- Nyre´n, P.; Strid, A. Hypothesis: The physiological role of the membrane-bound proton-translocating pyrophosphatase in some phototrophic bacteria. FEMS Microbiol. Lett. 1991, 77, 265–270. [Google Scholar] [CrossRef]
- García-Contreras, R.; Celis, H.; Romero, I. Importance of Rhodospirillum rubrum H(+)-pyrophosphatase under low-energy conditions. J Bacteriol. 2004, 186, 6651–6655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajinomoto Genetika Research Institute, Method for preparing L-amino acids, strain Escherichia coli as producer of L-amino acid (variants). Russian Patent No. RU2222596 C1, 14 August 2002. (In Russian).
Strain or Plasmid | Description | Reference or Source |
---|---|---|
MG1655 | Escherichia coli K12 wild-type | VKPM a B6195 |
BL21 (DE3) | E. coli B F− ompT gal dcm lon hsdSB (rB−mB−) λ(DE3 [lacI PlacUV5-T7gene1 ind1 sam7 nin5]) [malB+]K-12 (λS) | [29] |
CC118 λpir+ | Host strain for maintenance of pir-dependent recombinant plasmids | [30] |
MG1655 Δ(ϕ80-attB) | MG1655 with deleted native (ϕ80-attB) site | [31] |
DH5α | F-ϕ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk−, mk+) phoA supE44 λ-thi-1 gyrA96 relA1 | Laboratory collection |
MG1655 Δ(ϕ80-attB) IS5.8::ϕ80-attB | MG1655 with deleted native ϕ80-attB site and reconstruction of attB site in IS5.8 locus | [31] |
MG1655 IS5.8::PL-hppaRru | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru | This work |
MG1655 IS5.8::Ptac-hppaRru | MG1655 with deleted native ϕ80-attB site and IS5.8::Ptac-hppaRru | This work |
MG1655 IS5.8::Ptac21-hppaRru | MG1655 with deleted native ϕ80-attB site and IS5.8::Ptac21-hppaRru | This work |
MG1655 ∆(ϕ80-attB) adrA::ϕ80-attB | MG1655 with deleted native ϕ80-attB site and artificial ϕ80-attB site in adrA locus | Laboratory collection |
MG1655 ∆(ϕ80-attB) adhE::ϕ80-attB | MG1655 with deleted native ϕ80-attB site and artificial ϕ80-attB site in adhE locus | Laboratory collection |
MG1655 adrA::PL-hppaRru | MG1655 with deleted native ϕ80-attB site and adrA::PL-hppaRru | This work |
MG1655 adrA::PL-hppaRru ∆ppa::cat | MG1655 with deleted native ϕ80-attB site and adrA::PL-hppaRru and ∆ppa::λattR-cat-λattL | This work |
MG1655 adhE::PL-hppaRru | MG1655 with deleted native ϕ80-attB site and adhE::PL-hppaRru | This work |
MG1655 adhE::PL-hppaRru ∆ppa::cat | MG1655 with deleted native ϕ80-attB site, adhE::PL-hppaRru and ∆ppa::λattR-cat-λattL | This work |
MG1655 IS5.8::PL-hppa ∆ppa::cat | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru and ∆ppa::λattR-cat-λattL | This work |
MG1655 IS5.8::PL-hppa ∆ppa | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru and ∆ppa::λattB | This work |
MG1655 IS5.8::PL-hppaRru adrA::PL-hppaRru | MG1655 with deleted native (ϕ80-attB) site, IS5.8::PL-hppaRru and adrA::PL-hppaRru | This work |
MG1655 IS5.8::PL-hppaRru adrA::PL-hppaRru ∆ppa | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru, adrA::PL-hppaRru and ∆ppa::λattB | This work |
MG1655 IS5.8::PL-hppaRru adrA::PL-hppaRru adhE::PL-hppaRru | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru, adrA::PL-hppaRru and adhE::PL-hppaRru | This work |
MG1655 IS5.8::PL-hppaRru adrA::PL-hppaRru adhE::PL-hppaRru ∆ppa | MG1655 with deleted native ϕ80-attB site and IS5.8::PL-hppaRru, adrA::PL-hppaRru, adhE::PL-hppaRru and ∆ppa::λattB | This work |
pKD46 | oriR101, repA101ts, araC, ParaB-[γ, β, exo of phage λ], ApR; used as a donor of λRed-genes to provide λRed-dependent recombination | [32] |
pMWts-λInt/Xis | oriR101, repA101ts, λcIts857, λPR→λxis-int, ApR; used as a helper plasmid for thermoinducible expression of the λ xis-int genes | [31] |
pAH123 | oriR101, repA101ts, λcIts857, λPR→ϕ80-int, ApR; used as a helper plasmid for thermoinducible expression of the ϕ80-int gene | [33]; GenBank accession number AY048726 |
pAH162-TcR-2Ter | ϕ80-attP, pAH162, λattL-tetA-tetR-λattR | [31]; Gene Bank accession number AY048738 |
pAH162-TcR-2Ter-hppaRru | ϕ80-attP, pAH162, λattL-tetA-tetR-λattR, codon-harmonized [34] hppaRru from R. rubrum | This work |
pUC57-hppaRru | pUC57 low-copy plasmid, codon-harmonized hppaRru from R. rubrum | This work |
pMW118-CmR | oriR101, repA, MCS, ApR, λattR-cat-λattL—donor of λXis/Int-excisable CmR marker | [35] |
pMW118-KmR | oriR101, repA, MCS, ApR, λattR-kan-λattL—donor of λXis/Int-excisable KmR marker | [35] |
Primer | Sequence 5′→3′ | Description |
---|---|---|
P1 | TGTAAAACGACGGCCAGT | Verification of the presence of chemically synthesized hppaRru gene by sequence analysis |
P2 | AGGAAACAGCTATGACCAT | Verification of the presence of chemically synthesized hppaRru gene by sequence analysis |
P3 | TCGAAGGAGGCAACGATTTCAGCTT | Amplification of the ppa gene for Southern hybridization |
P4 | TATTGAGATCCCGGCTAACGCAGAT | Amplification of the ppa gene for Southern hybridization |
P5 | CCTCCCTTTTCGATAGCGACAA | Verification of the presence of hppaRru gene in artificial ϕ80-attB site |
P6 | ACCGTTGGCGATCCGTACAA | Verification of the presence of hppaRru gene in artificial ϕ80-attB site |
P7 | TGGCCAGTGCCAAGCTTGCATGCCTGCAGCGCTCAAGTTAGTATAAAAAAGCTGAACGAGAAAC | Integration of phage lambda PL promoter upstream hppaRru gene |
P8 | AGCGGCGGCTACGACGAAAAGATAGATGCCAGCCATAGTTAGTTCTCCTTCCGGCCAATGCTTCGTTTCG | Integration of phage lambda PL promoter upstream hppaRru gene |
P9 | AACCGAAGCCCGGCGTTCAGGGTTATTACGCCAGAAGAACCGCTCAAGTTAGTATAAAAAAGCTGAAC | Amplification of the fragment for the ppa gene deletion |
P10 | CTCGGCACTTGTTTGCCACATATTTTTAAAGGAAACAGACTGAAGCCTGCTTTTTTATACTAAGTTGG | Amplification of the fragment for the ppa gene deletion |
P11 | TTACTAACCGAAGCCCGGC | Verification of the ppa gene deletion |
P12 | CGAAAACAAGCGAAGACATT | Verification of the ppa gene deletion |
Strain | PPase Activity, µmol min−1 mg−1 |
---|---|
MG1655 | 5.6 ± 0.3 |
MG1655 IS5.8::PL-hppaRru | 5.5 ± 0.5 |
MG1655 IS5.8::PL-hppaRru ∆ppa | <0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malykh, E.A.; Golubeva, L.I.; Kovaleva, E.S.; Shupletsov, M.S.; Rodina, E.V.; Mashko, S.V.; Stoynova, N.V. H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms 2023, 11, 294. https://doi.org/10.3390/microorganisms11020294
Malykh EA, Golubeva LI, Kovaleva ES, Shupletsov MS, Rodina EV, Mashko SV, Stoynova NV. H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms. 2023; 11(2):294. https://doi.org/10.3390/microorganisms11020294
Chicago/Turabian StyleMalykh, Evgeniya A., Liubov I. Golubeva, Ekaterina S. Kovaleva, Mikhail S. Shupletsov, Elena V. Rodina, Sergey V. Mashko, and Nataliya V. Stoynova. 2023. "H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation" Microorganisms 11, no. 2: 294. https://doi.org/10.3390/microorganisms11020294
APA StyleMalykh, E. A., Golubeva, L. I., Kovaleva, E. S., Shupletsov, M. S., Rodina, E. V., Mashko, S. V., & Stoynova, N. V. (2023). H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms, 11(2), 294. https://doi.org/10.3390/microorganisms11020294