Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA Extraction
2.2. Quantitative Real Time PCR (qRTPCR)
2.3. Stability Evaluation of the Candidate Reference Genes
3. Results
3.1. Stability Evaluation of Candidate Reference Genes for Savirin Treatment Experiment
3.2. Stability Evaluation of Candidate Reference Genes for Ticagrelor Treatment Experiment
3.3. Optimal Number of Reference Genes Required
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higuchi, R.; Dollinger, G.; Walsh, P.S.; Griffith, R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 1992, 10, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallona, I.; Lischewski, S.; Weiss, J.; Hause, B.; Egea-Cortines, M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 2010, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gachon, C.; Mingam, A.; Charrier, B. Real-time PCR: What relevance to plant studies? J. Exp. Bot. 2004, 55, 1445–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karge, W.H.; Schaefer, E.J.; Ordovas, J.M. Quantification of mRNA by polymerase chain reaction (PCR) using an internal standard and a nonradioactive detection method. Methods Mol. Biol. 1998, 110, 43–61. [Google Scholar]
- Thellin, O.; Zorzi, W.; Lakaye, B.; De Borman, B.; Coumans, B.; Hennen, G.; Grisar, T.; Igout, A.; Heinen, E. Housekeeping genes as internal standards: Use and limits. J. Biotechnol. 1999, 75, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Chervoneva, I.; Li, Y.; Schulz, S.; Croker, S.; Wilson, C.; Waldman, S.A.; Hyslop, T. Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinform. 2010, 11, 253. [Google Scholar] [CrossRef] [Green Version]
- Dheda, K.; Huggett, J.F.; Bustin, S.A.; Johnson, M.A.; Rook, G.; Zumla, A. Validation of housekeeping genes for normalizing RNA expression in real time PCR. Biotechniques 2004, 37, 112–114, 116, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Dheda, K.; Huggett, J.F.; Chang, J.S.; Kim, L.U.; Bustin, S.A.; Johnson, M.A.; Rook, G.A.W.; Zumla, A. The implications of using an inappropriate reference gene for real time reverse transcription PCR data normalization. Anal. Biochem. 2005, 344, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.N.; Cheng, A.C.; Buising, K.L.; Choong, P.F. Microbiological aetiology, epidemiology, and clinical profile of prosthetic joint infections: Are current antibiotic prophylaxis guidelines effective? Antimicrob Agents Chemother. 2012, 56, 2386–2391. [Google Scholar] [CrossRef] [Green Version]
- Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.R.; Otto, M.; Cheung, A.L.; Edwards, B.S.; et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014, 10, e1004174. [Google Scholar] [CrossRef]
- Lancellotti, P.; Musumeci, L.; Jacques, N.; Servais, L.; Goffin, E.; Pirotte, B.; Oury, C. Antibacterial activity of ticagrelor in conventional antiplatelet dosages against antibiotic resistant Gram positive bacteria. JAMA Cardiol. 2019, 4, 596–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springthorpe, B.; Bailey, A.; Barton, P.; Birkinshaw, T.N.; Bonnert, R.V.; Brown, R.C.; Chapman, D.; Dixon, J.; Guile, S.D.; Humphries, R.G.; et al. From ATP to AZD6140: The discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. Bioorg. Med. Chem. Lett. 2007, 17, 6013–6018. [Google Scholar] [CrossRef] [PubMed]
- Sihto, H.-M.; Tasara, T.; Stephan, R.; Johler, S. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol. Lett. 2014, 356, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Theis, T.; Skurray, R.A.; Brown, M.H. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real time PCR. J. Microbiol. Methods 2007, 70, 355–362. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.P.; Barbagelata, M.S.; Gordiola, M.; Cheung, A.L.; Sordelli, D.O.; Buzzola, F.R. Salicylic acid diminishes Staphylococcus aureus capsular polysaccharide type 5 expression. Infect. Immun. 2010, 78, 1339–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veh, K.A.; Klein, R.C.; Ster, C.; Keefe, G.; Lacasse, P.; Scholl, D.; Roy, J.-P.; Haine, D.; Dufour, S.; Talbot, B.G.; et al. Genotypic and phenotypic characterization of Staphylococcus aureus causing persistent and nonpersistent subclinical bovine intramammary infections during lactation or the dry period. J. Dairy Sci. 2015, 98, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; Zemanick, E.T.; Accurso, F.J.; Wagner, B.D.; Robertson, C.E.; Harris, J.K. Molecular identification of Staphylococcus aureus in airway samples from children with cystic fibrosis. PLoS ONE 2016, 11, e0147643. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.F.; Henriques, A.O.; Pinho, M.G.; de Lencastre, H.; Tomasz, A. Role of PBP1 in cell division of Staphylococcus aureus. J. Bacteriol. 2007, 189, 3525–3531. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Gao, L.; Xu, T.; Chen, Y.; Yang, X.; Han, M.; He, X.; Li, C.; Zhou, R.; Yang, Y. Amoxicillin administration regimen and resistance mechanisms of Staphylococcus aureus established in tissue cage infection model. Front Microbiol. 2019, 10, 1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kot, B.; Sytykiewicz, H.; Sprawka, I. Expression of the biofilm-associated genes in methicillin resistant Staphylococcus aureus in biofilm and planktonic conditions. Int. J. Mol. Sci. 2018, 19, 3487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.A.; Souza, R.R.; de Sousa Moraes, B.; de Amorim Ferreira, A.M.; Américo, M.A.; Fracalanzza, S.E.; Couceiro, J.N.D.S.S.; Figueiredo, A.M.S. Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol. 2013, 13, 93. [Google Scholar] [CrossRef] [Green Version]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper excel based tool using pair wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real time quantitative RTPCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, Research0034. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, R.; Zhou, Z. Identification and Validation of Reference Genes for Gene Expression Analysis in Schima superba. Genes 2021, 12, 732. [Google Scholar] [CrossRef]
- McCulloch, R.S.; Ashwell, M.S.; O’Nan, A.T.; Mente, P.L. Identification of stable normalization genes for quantitative real time PCR in porcine articular cartilage. J. Anim. Sci. Biotechnol. 2012, 3, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real time PCR data: Comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int. J. Legal Med. 2012, 126, 943–952. [Google Scholar] [CrossRef]
- Mehdi Khanlou, K.; Van Bockstaele, E. A critique of widely used normalization software tools and an alternative method to identify reliable reference genes in red clover (Trifolium pratense L.). Planta 2012, 236, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Mahdally, N.H.; George, R.F.; Kashef, M.T.; Al-Ghobashy, M.; Murad, F.E.; Attia, A.S. Staquorsin: A novel Staphylococcus aureus agr-mediated quorum sensing inhibitor impairing virulence in vivo without notable resistance development. Front Microbiol. 2021, 12, 700494. [Google Scholar] [CrossRef] [PubMed]
- Vuong, C.; Saenz, H.L.; Gotz, F.; Otto, M. Impact of the agr quorum sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 2000, 182, 1688–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Votintseva, A.A.; Fung, R.; Miller, R.R.; Knox, K.; Godwin, H.; Wyllie, D.H.; Bowden, R.; Crook, D.W.; Walker, A.S. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol. 2014, 14, 63. [Google Scholar] [CrossRef] [Green Version]
- Asadpour, L. Biofilm Forming Ability and Spa Gene Polymorphism in Methicillin Resistant Staphylococcus aureus Clinical Isolates in North of Iran. Mol. Gen. Microbiol. Virol. 2018, 33, 55–59. [Google Scholar] [CrossRef]
- Kot, B.; Sytykiewicz, H.; Sprawka, I.; Witeska, M. Effect of manuka honey on biofilm-associated genes expression during methicillin resistant Staphylococcus aureus biofilm formation. Sci. Rep. 2020, 10, 13552. [Google Scholar] [CrossRef] [PubMed]
- Jukes, L.; Mikhail, J.; Bome-Mannathoko, N.; Hadfield, S.J.; Harris, L.G.; El-Bouri, K.; Davies, A.P.; Mack, D. Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase negative staphylococci and meticillin susceptibility testing directly from growth positive blood cultures by multiplex real time PCR. J. Med. Microbiol. 2010, 59, 1456–1461. [Google Scholar] [CrossRef]
- Hemmadi, V.; Biswas, M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch. Microbiol. 2021, 203, 481–498. [Google Scholar] [CrossRef]
- Ogonowska, P.; Nakonieczna, J. Validation of stable reference genes in Staphylococcus aureus to study gene expression under photodynamic treatment: A case study of SEB virulence factor analysis. Sci. Rep. 2020, 10, 16354. [Google Scholar] [CrossRef]
Genes | Forward Primer | Reverse Primer | References |
---|---|---|---|
glyA | CTACAAACTCACAGCCAC | GTATCGGAAGCGGTTATG | [15] |
gmk | CCATCTGGAGTAGGTAAAGG | CTACGCCATCAACTTCAC | |
gyrA | GTGTTATCGTTGCTCGTG | CGGTGTCATACCTTGTTC | |
proC | GGCAGGTATTCCGATTGA | CCAGTAACAGAGTGTCCAAC | |
pyk | GCATCTGTACTCTTACGTCC | GGTGACTCCAAGTGAAGA | |
fabD | CCTTTAGCAGTATCTGGACC | GAAACTTAGCATCACGCC | |
recF | AGTTATAGACACGGCACG | GCGTCGTCTTATTTGAGG | |
rho | GGAAGATACGACGTTCAGAC | GAAGCGGGTGGAAGTTTA | |
rpoD | CACGAGTGATTGCTTGTC | GATACGTAGGTCGTGGTATG | |
gyrB | GGTGCTGGGCAAATACAAGT | TGGGATACCACGTCCGTTAT | [18] |
spa | AGCACCAAAAGAGGAAGACAA | GTTTAACGACATGTACTCCGT | [19] |
fema | TGCCTTTACAGATAGCATGCCA | AGTAAGTAAGCAAGCTGCAATGACC | [20] |
pta | AGAAGCAATCATTGATGGCGA | ACCTGGCGCTTTTTTCTCAG | [21] |
gapdH | TGACACTATGCAAGGTCGTTTCAC | TCAGAACCGTCTAACTCTTGGTGG | [22] |
rpoB | CAGCTGACGAAGAAGATAGCTATGT | ACTTCATCATCCATGAAACGACCAT | [23] |
16s | AGAGATAGAGCCTTCCCCTT | TTAACCCAACATCTCACGACA | [24] |
Delta Ct | Genorm | Bestkeeper | Normfinder | Comprehensive | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Genes | Stability Value | Genes | Stability Value | Genes | Mean Ct Value | SD | Genes | Stability Value | Genes | Geometric Mean |
1 | rpoD | 1.62 | fabD | 0.028 | fema | 26.56 | 0.09 | spa | 0.060 | spa | 3.35 |
2 | spa | 1.62 | proC | 0.028 | gapdH | 20.08 | 0.1 | pyk | 0.067 | rpoD | 3.72 |
3 | gyrB | 1.63 | rho | 0.085 | 16s | 18.06 | 0.75 | rpoD | 0.067 | pyk | 4.74 |
4 | pyk | 1.63 | gyrA | 0.130 | glyA | 31.20 | 1.17 | gyrB | 0.199 | gyrB | 5.18 |
5 | rpoB | 1.73 | rpoB | 0.441 | gmk | 25.74 | 1.44 | rpoB | 0.803 | rpoB | 6.09 |
6 | recF | 1.81 | gyrB | 0.664 | recF | 26.81 | 1.56 | recF | 0.847 | proC | 6.42 |
7 | gmk | 1.88 | spa | 0.772 | pyk | 27.01 | 2.03 | gmk | 1.052 | recF | 6.82 |
8 | gyrA | 2.05 | rpoD | 0.927 | rpoD | 28.93 | 2.13 | glyA | 1.491 | fabD | 6.82 |
9 | glyA | 2.09 | pyk | 1.021 | spa | 25.75 | 2.48 | gyrA | 1.705 | gmk | 7.21 |
10 | rho | 2.10 | recF | 1.191 | gyrB | 30.26 | 2.56 | rho | 1.815 | gyrA | 7.67 |
11 | proC | 2.16 | gmk | 1.312 | rpoB | 22.11 | 2.83 | proC | 1.925 | glyA | 7.67 |
12 | fabD | 2.19 | glyA | 1.438 | gyrA | 29.02 | 3.38 | fabD | 1.956 | rho | 7.90 |
13 | 16s | 2.48 | 16s | 1.600 | rho | 32.20 | 3.45 | 16s | 2.150 | fema | 8.00 |
14 | gapdH | 3.21 | pta | 1.793 | proC | 30.87 | 3.52 | gapdH | 3.143 | gapdH | 8.76 |
15 | pta | 3.40 | gapdH | 2.010 | fabD | 31.20 | 3.54 | pta | 3.373 | 16s | 9.01 |
16 | fema | 3.46 | fema | 2.192 | pta | 29.10 | 4.46 | fema | 3.434 | pta | 14.98 |
Delta Ct | Genorm | Bestkeeper | Normfinder | Comprehensive | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rank | Genes | Stability Value | Genes | Stability Value | Genes | Mean Ct Value | SD | Genes | Stability Value | Genes | Geometric Mean |
1 | gapdH | 1.09 | gapdH | 0.035 | gmk | 22.89 | 0.05 | fema | 0.120 | gapdH | 2.34 |
2 | 16s | 1.09 | gyrA | 0.035 | rpoB | 13.23 | 0.08 | proC | 0.141 | gyrA | 3.08 |
3 | gyrA | 1.09 | spa | 0.052 | rpoD | 26.66 | 0.08 | gyrB | 0.270 | gmk | 4.21 |
4 | spa | 1.10 | rpoB | 0.088 | spa | 26.88 | 0.14 | 16s | 0.404 | spa | 4.28 |
5 | proC | 1.12 | gmk | 0.105 | gyrA | 27.11 | 0.16 | gapdH | 0.522 | 16s | 4.43 |
6 | rpoB | 1.14 | 16s | 0.130 | gapdH | 21.08 | 0.19 | gyrA | 0.568 | rpoB | 4.43 |
7 | gmk | 1.16 | rpoD | 0.181 | recF | 24.25 | 0.21 | spa | 0.622 | fema | 5.32 |
8 | fema | 1.24 | recF | 0.248 | 16s | 18.42 | 0.25 | rpoB | 0.726 | proC | 5.33 |
9 | rpoD | 1.27 | proC | 0.312 | proC | 29.98 | 0.45 | gmk | 0.768 | rpoD | 6.59 |
10 | gyrB | 1.34 | fema | 0.430 | fema | 27.04 | 0.75 | rpoD | 0.975 | gyrB | 7.76 |
11 | recF | 1.42 | gyrB | 0.544 | gyrB | 29.07 | 0.92 | recF | 1.183 | recF | 9.07 |
12 | rho | 1.74 | rho | 0.738 | pyk | 25.91 | 1.17 | rho | 1.209 | rho | 12.24 |
13 | fabD | 2.22 | pyk | 0.954 | rho | 27.67 | 1.46 | fabD | 2.003 | fabD | 13.49 |
14 | glyA | 2.58 | fabD | 1.168 | fabD | 24.58 | 1.97 | glyA | 2.493 | pyk | 13.69 |
15 | pyk | 2.69 | glyA | 1.376 | glyA | 24.01 | 2.29 | pyk | 2.667 | glyA | 14.49 |
16 | pta | 3.01 | pta | 1.581 | pta | 24.05 | 2.62 | pta | 2.997 | pta | 16.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pant, N.; Rush, C.; Warner, J.; Eisen, D.P. Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus. Microorganisms 2023, 11, 336. https://doi.org/10.3390/microorganisms11020336
Pant N, Rush C, Warner J, Eisen DP. Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus. Microorganisms. 2023; 11(2):336. https://doi.org/10.3390/microorganisms11020336
Chicago/Turabian StylePant, Narayan, Catherine Rush, Jeffrey Warner, and Damon P. Eisen. 2023. "Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus" Microorganisms 11, no. 2: 336. https://doi.org/10.3390/microorganisms11020336
APA StylePant, N., Rush, C., Warner, J., & Eisen, D. P. (2023). Effect of Savirin or Ticagrelor Treatment on the Expression of Commonly Used Reference Genes in Staphylococcus aureus. Microorganisms, 11(2), 336. https://doi.org/10.3390/microorganisms11020336