Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi
Abstract
:1. Introduction
2. Material and Methods
2.1. PWN Strain, Bacterial Strain, and Treatment
2.2. Transcriptome Sequencing
2.3. Transcriptome Data Filtering and Differential Gene Screening
2.4. Gene Ontology and KEGG Pathway Enrichment Analysis
2.5. qPCR Study of Transcriptome
2.6. Daf-11 cDNA Fragment Cloning
2.7. dsRNA Synthesis of Daf-11
2.8. Detection of Daf-11 Interference Efficiency
2.9. Effects of Daf-11 RNAi on the Low-Temperature Survival Rate and Fecundity of AH23
2.10. Data Statistics
3. Result
3.1. Transcriptome Data Filtering
3.2. Differentially Expressed Gene (DEG) Analysis
3.3. Transcriptome Data Verification by qRT-PCR
3.4. Gene Ontology (GO) and KEGG Pathway Enrichment Analysis
3.5. Fragment Clone of Daf-11
3.6. RNAi of Daf-11
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mota, M.M.; Braasch, H.; Bravo, M.A.; Penas, A.C.; Burgermeister, W.; Metge, K.; Sousa, E. First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Q. Distribution of the pinewood nematode in China and susceptibility of some Chinese and exotic pines to the nematode. Can. J. For. Res. 1989, 19, 1527–1530. [Google Scholar]
- Wu, H.Y.; Tan, Q.Q.; Jiang, S.X. First Report of Pine Wilt Disease Caused by Bursaphelenchus xylophilus on Pinus thunbergii in the Inland City of Zibo, Shandong, China. Plant Dis. 2013, 97, 1126. [Google Scholar] [CrossRef] [PubMed]
- Gruffudd, H.R.; Jenkins, T.; Evans, H.F. Using an evapo-transpiration model (ETpN) to predict the risk and expression of symptoms of pine wilt disease (PWD) across Europe. Biol. Invasions 2016, 18, 2823–2840. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, W.D.; Liang, J.; Yan, D.H.; Zhang, X.Y. Potential suitability assessment of Bursaphelenchus xylophilus in China. For. Res. 2005, 18, 460–464. [Google Scholar]
- Lee, R.E., Jr. Insect Cold-hardiness: To Freeze or Not to Freeze: How insects survive low temperatures. BioScience 1989, 39, 308–313. [Google Scholar] [CrossRef]
- Duan, Y.X.; Zheng, Y.N.; Chen, L.J.; Zhou, X.M.; Wang, Y.Y.; Sun, J.S. Effects of Abiotic Environmental Factors on Soybean Cyst Nematode. Agric. Sci. China 2009, 8, 317–325. [Google Scholar] [CrossRef]
- Futai, K. Pine Wood Nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, W.; Kulhavy, D.; Zhang, X.; Sun, J. Low temperature induces two growth-arrested stages and change of secondary metabolites in Bursaphelenchus xylophilus. Nematology 2007, 9, 663–670. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Pan, L.; Meng, F.; Zhang, X. Cold adaptive potential of pine wood nematodes overwintering in plant hosts. Biol. Open 2019, 8, bio041616. [Google Scholar] [CrossRef]
- Farman, A.; Wharton, D.A.; Boris, R. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation. PLoS ONE 2015, 10, e0141810. [Google Scholar]
- Lucas, G.B.; Sasser, J.N.; Kelman, A. The relationship of root-knot nematodes to Grainville wilt resistance in tobacco. Phytopathology 1955, 45, 537–540. [Google Scholar]
- Johnson, H.A.; Powell, N.T. Influence of root-knot nematodes on bacterial wilt development in flue-cured tobacco. Phytopathology 1969, 59, 486–491. [Google Scholar]
- Sergio, E.; Jucimar, Z.; Beltrão, R. Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 2010, 100, 199. [Google Scholar]
- Cao, Y.; Tian, B.Y.; Ji, X.L.; Shang, S.H.; Lu, C.J.; Zhang, K.Q. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing-based analysis. J. Basic Microb. 2015, 55, 950–960. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Jiang, Q.; Bai, Y.; Wei, D. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 2016, 6, 36773. [Google Scholar] [CrossRef] [Green Version]
- Oku, H.; Shiraishi, T.; Ouchi, S.; Kurozumi, S.; Ohta, H. Pine wilt toxin, the metabolite of a bacterium associated with a nematode. Naturwissenschaften 1980, 67, 198–199. [Google Scholar] [CrossRef]
- Tada, M.; Omizu, A.; Shiroishi, M. Effect of phosphate on the growth and toxin-producing ability of a bacterium isolated from pine wood nematode Bursaphelenchus lignicolus. Sci. Rep. Fac. Agric.-Okayama Univ. (Jpn.) 1981, 57, 35–40. [Google Scholar]
- Kawazu, K.; Yamashita, H.; Kobayashi, A.; Kanzaki, H. Isolation of pine-wilting bacteria accompanying pine (Pinus) wood nematode, Bursaphelenchus xylophilus, and their toxic metabolites. Sci. Rep. Fac. Agric.-Okayama Univ. (Jpn.) 1998, 87, 1–7. [Google Scholar]
- Oku, H. Role of Phytotoxins in Pine Wilt Diseases. J. Nematol. 1988, 20, 245–251. [Google Scholar]
- Zhang, H.; Kanzaki, H.; Kawazu, K. Benzoic acid accumulation in the Pinus thunbergii callus inoculated with the pine wood nematode, Bursaphelenchus xylophilus. Z. Naturforsch. 1997, 52, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Identification and Pathogenicity of Bursaphelenchus Species (Nematoda: Parasitaphelenchidae). Ph.D. Thesis, Ghent University, Ghent, Belgium, 2008. [Google Scholar]
- Vicente, C.S.; Nascimento, F.; Espada, M.; Barbosa, P.; Mota, M.; Glick, B.R.; Oliveira, S. Characterization of Bacteria Associated with Pinewood Nematode Bursaphelenchus xylophilus. PLoS ONE 2012, 7, e46661. [Google Scholar] [CrossRef] [PubMed]
- Bolla, R.I.; Jordan, W. Cultivation of the Pine Wilt Nematode, Bursaphelenchus xylophilus, in Axenic Culture Media. J. Nematol. 1982, 14, 377–381. [Google Scholar] [PubMed]
- Tamura, H. Pathogenicity of aseptic Bursaphelenchus xylophilus and associated bacteria to pine seedlings. Nematol. Res. 2011, 13, 1–5. [Google Scholar]
- Vicente, C.S.L.; Ikuyo, Y.; Mota, M.; Hasegawa, K. Pinewood nematode-associated bacteria contribute to oxidative stress resistance of Bursaphelenchus xylophilus. BMC Microbiol. 2013, 13, 299. [Google Scholar] [CrossRef]
- Nascimento, F.; Vicente, C.; Cock, P.; Tavares, M.; Mota, M. From plants to nematodes, Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb. Genom. 2018, 4, e000178. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, T.; Pan, Z.; Lin, L.; Dong, G. The alcohol dehydrogenase with a broad range of substrate specificity regulates vitality and reproduction of the plant-parasitic nematode Bursaphelenchus xylophilus. Parasitology 2019, 146, 497–505. [Google Scholar] [CrossRef]
- Kikuchi, T.; Cotton, J.A.; Dalzell, J.J.; Hasegawa, K.; Kanzaki, N.; McVeigh, P.; Takanashi, T.; Tsai, I.J.; Assefa, S.A.; Cock, P.J.A.; et al. Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus. PLoS Pathog. 2011, 7, e1002219. [Google Scholar] [CrossRef]
- Espada, M.; Silva, A.C.; Akker, S.E.V.D.; Cock, P.J.A.; Mota, M.; Jones, J.T. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy. Mol. Plant Pathol. 2016, 17, 286–295. [Google Scholar] [CrossRef]
- Ding, X.; Ye, J.; Lin, S.; Wu, X.; Bo, N. Deciphering the Molecular Variations of Pine Wood Nematode Bursaphelenchus xylophilus with Different Virulence. PLoS ONE 2016, 11, e0156040. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Meng, F.; Deng, X.; Wang, X.; Feng, Y.; Zhang, W.; Pan, L.; Zhang, X. Comparative Transcriptome Analysis of the Pinewood Nematode Bursaphelenchus xylophilus Reveals the Molecular Mechanism Underlying Its Defense Response to Host-Derived α-pinene. Int. J. Mol. Sci. 2019, 20, 911. [Google Scholar] [CrossRef]
- Lu, F.; Guo, K.; Chen, A.; Chen, S.; Zhou, X. Transcriptomic profiling of effects of emamectin benzoate on the pine wood nematode Bursaphelenchus xylophilus. Pest Manag. Sci. 2020, 76, 747–757. [Google Scholar] [CrossRef]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Xue, Q.; Wu, X.Q.; Zhang, W.J.; Deng, L.N.; Wu, M.M. Cathepsin L-like Cysteine Proteinase Genes Are Associated with the Development and Pathogenicity of Pine Wood Nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci. 2019, 20, 215. [Google Scholar] [CrossRef]
- Gao, M.; Li, Y.; Zhang, W.; Wei, P.; Wang, X.; Feng, Y.; Zhang, X. Bx-daf-22 Contributes to Mate Attraction in the Gonochoristic Nematode Bursaphelenchus xylophilus. Int. J. Mol. Sci. 2019, 20, 4316. [Google Scholar] [CrossRef]
- Wang, B.; Wen, R.; Ma, L.; Ma, Y.; Zhou, T.H. Molecular characterization and functional analysis of daf gene in the pine wood nematode, Bursaphelenchus xylophilus. For. Pathol. 2019, 49, e12467. [Google Scholar] [CrossRef]
- Meléndez, A.; Tallóczy, Z.; Seaman, M.; Eskelinen, E.-L.; Hall, D.H.; Levine, B. Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans. Science 2003, 301, 1387–1391. [Google Scholar] [CrossRef]
- Ohta, A.; Ujisawa, T.; Sonoda, S.; Kuhara, A. Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nat. Commun. 2013, 5, 4412. [Google Scholar] [CrossRef]
- Wang, B.; Hao, X.; Xu, J.; Ma, Y.; Ma, L. Transcriptome-Based Analysis Reveals a Crucial Role of BxGPCR17454 in Low Temperature Response of Pine Wood Nematode (Bursaphelenchus xylophilus). Int. J. Mol. Sci. 2019, 20, 2898. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Feng, Y.; Rui, L. Autophagy contributes to the feeding, reproduction, and mobility of Bursaphelenchus xylophilus at low temperatures. Acta Biochim. Et Biophys. Sin. 2019, 51, 864–872. [Google Scholar] [CrossRef]
- Tan, J.; Xiang, H.; Feng, Z. A Preliminary Study on Isolation, Identification and Pathogenicity of the Bacterium Accompanying Bursaphelenchus xylophilus. J. For. Eng. 2008, 22, 23–26. [Google Scholar]
- Yuan, Y.; Zhao, X.; Sun, Y.; Tan, J. Effect of Associated Bacteria GD1 on Bursaphelenchus xylophilus at Low Temperature. J. Northeast. For. Univ. 2022, 50, 81–85. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Zhao, L.; Mota, M.; Vieira, P.; Butcher, R.A.; Sun, J. Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends Parasitol. 2014, 30, 299–308. [Google Scholar] [CrossRef]
- Huang, D.; Tian, W.; Feng, J.; Zhu, S. Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. Plant Physiol. Biochem. 2020, 151, 60–68. [Google Scholar] [CrossRef]
- Chen, Y.L.; Tao, J.; Zhao, P.J.; Tang, W.; Zou, C.G. Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy. Nat. Commun. 2019, 10, 2602. [Google Scholar] [CrossRef]
- Lee, M.C.; Yoon, D.S.; Lee, Y.; Choi, H.; Shin, K.H.; Park, H.G.; Lee, J.S. Effects of low temperature on longevity and lipid metabolism in the marine rotifer Brachionus koreanus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 250, 110803. [Google Scholar] [CrossRef]
- Basak, P.; Majumder, A.L. Regulation of stress-induced inositol metabolism in plants: A phylogenetic search for conserved cis elements. J. Plant Biochem. Biotechnol. 2021, 30, 23. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, F.; Pan, H.; Ye, J.; Dong, X.; Li, C.; Lin, F. Identifying Virulence-Associated Genes Using Transcriptomic and Proteomic Association Analyses of the Plant Parasitic Nematode Bursaphelenchus mucronatus. Int. J. Mol. Sci. 2016, 17, 1492. [Google Scholar] [CrossRef]
- Hedgecock, E.M.; Russell, R.L. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1975, 72, 4061–4065. [Google Scholar] [CrossRef]
- Mori, I.; Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 1995, 376, 344–348. [Google Scholar] [CrossRef]
- Sieńko, M.; Natorff, R.; Skoneczny, M.; Kruszewska, J.; Paszewski, A.; Brzywczy, J. Regulatory mutations affecting sulfur metabolism induce environmental stress response in Aspergillus nidulans. Fungal Genet. Biol. 2014, 65, 37–47. [Google Scholar] [CrossRef]
- Krug, R.G.; Han, B.L.; Khoury, L.; Sigafoos, A.N.; Clark, K.J. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS ONE 2018, 13, e0190897. [Google Scholar] [CrossRef]
- Kang, J.A.; Kang, H.S.; Bae, K.-H.; Lee, S.C.; Kim, W.K.; Oh, K.-J. Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation. J. Microbiol. Biotechnol. 2020, 30, 306–312. [Google Scholar] [CrossRef]
Transcriptome Date | |
---|---|
Raw reads (pair) | 542,039,484 |
Clean reads (pair) | 540,810,946 |
Raw nucleotide length (bp) | 81,305,922,600 |
Mapped reads (%) | 0.05–0.1% |
Unique mapped (%) | 90.68–91.30% |
Sample | Refer Genes (%) | Novel Genes (%) | Total Genes (%) |
---|---|---|---|
All | 16,082 (90.84%) | 316 (100.00%) | 16,398 (91.00%) |
CK1 | 14,972 (84.57%) | 289 (91.46%) | 15,261 (84.69%) |
CK2 | 14,996 (84.70%) | 289 (91.46%) | 15,285 (84.82%) |
CK3 | 15,013 (84.80%) | 290 (91.77%) | 15,303 (84.92%) |
CK4 | 14,969 (84.55%) | 289 (91.46%) | 15,258 (84.67%) |
CK5 | 15,272 (86.26%) | 294 (93.04%) | 15,566 (86.38%) |
T1 | 15,045 (84.98%) | 292 (92.41%) | 15,337 (85.11%) |
T2 | 15,088 (85.22%) | 294 (93.04%) | 15,382 (85.36%) |
T3 | 14,972 (84.57%) | 291 (92.09%) | 15,263 (84.70%) |
T4 | 15,228 (86.01%) | 300 (94.94%) | 15,528 (86.17%) |
T5 | 15,009 (84.78%) | 284 (89.87%) | 15,293 (84.87%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Pan, M.; Shen, L.; Liu, Y.; Zhu, Q.; Hong, J.; Ye, J.; Tan, J. Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi. Microorganisms 2023, 11, 430. https://doi.org/10.3390/microorganisms11020430
Yuan Y, Pan M, Shen L, Liu Y, Zhu Q, Hong J, Ye J, Tan J. Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi. Microorganisms. 2023; 11(2):430. https://doi.org/10.3390/microorganisms11020430
Chicago/Turabian StyleYuan, Yuchao, Min Pan, Luyang Shen, Yuqian Liu, Qinping Zhu, Jingxin Hong, Jianren Ye, and Jiajin Tan. 2023. "Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi" Microorganisms 11, no. 2: 430. https://doi.org/10.3390/microorganisms11020430
APA StyleYuan, Y., Pan, M., Shen, L., Liu, Y., Zhu, Q., Hong, J., Ye, J., & Tan, J. (2023). Effect of Associated Bacteria GD1 on the Low-Temperature Adaptability of Bursaphelenchus xylophilus Based on RNA-Seq and RNAi. Microorganisms, 11(2), 430. https://doi.org/10.3390/microorganisms11020430