Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation
Abstract
:1. Introduction
2. Materials and Methods of Research
2.1. Experimental Work Plan
- (a)
- Create of several consortia from the most effective strains of oil destructors from our collection since no active oil-oxidizing strains failed to be isolated from soil samples from the K-Kurylys oil deposit. Study of strains for the presence of degradative plasmids.
- (b)
- Compare the degradative properties of the developed consortia: evaluate the degree of degradation of oil and individual fractions of oil hydrocarbons.
- (c)
- Produce the biopreparation.
- (d)
- Field tests of the new biopreparation. Assessment of the degree of oil degradation under field conditions.
2.2. Bacterial Strains
2.3. Cultivation Conditions
2.4. Visualisation of Plasmids Using Pulse Electrophoresis (PFGE)
2.5. Determination of the Degree of Oil Degradation by Gravimetric Method
2.6. Determination of n-Alkanes in Residual Oil by Capillary Gas–Liquid Chromatography
2.7. Determination of PAH Content by Capillary Gas–Liquid Chromatography
2.8. Preparation of a Test Biopreparation Sample
2.9. The Field Trial
2.10. Statistical Processing of the Results
3. Results and Discussion
3.1. Making Microbial Consortia
3.2. Study of Degradative Activity by Composed Microbial Consortia
3.3. Field Trials of Biopreparation Based on Consortium No. 3 (R. qingshengii F2-1, R. qingshengii F2-2, P. alloputida BS3701)
Title | Microorganisms | Reference |
---|---|---|
Consortium | Acinetobacter calcoaceticum 2A Microbacterium lacticum 41-3 | [40] [41] |
‘Kazbiorem’ | Rhodococcus erythreus AT7 Dietzia maris 22K | [42] |
’Bakoil-KZ’ | Rhodococcus erythropolis 7A Micrococcus roseus 40 M. roseus 34 | [43] [44] |
‘Peroil’ | Rhodococcus erythropolis DP 304 Micrococcus luteus B1Ag8G | [45] [46] |
algae-bacterial consortium | Phormidium sp. K11 Pseudomonas sp. N2 P. stutzeri A1 P. alcaligenes A5 | [47] |
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kvenvolden, K.A.; Cooper, C.K. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 2003, 23, 140–146. [Google Scholar] [CrossRef]
- Atlas, R.M.; Hazen, T.C. Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environ. Sci. Technol. 2011, 45, 6709–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.-L.; Chen, J.-N.; Wang, S.-D.; Liu, Y. Oil spill forecast model based on uncertainty analysis: A case study of Dalian Oil Spill. Ocean Eng. 2012, 54, 206–212. [Google Scholar] [CrossRef]
- Glazovskaya, M.A. Rehabilitation of Oil-Contaminated Soil Ecosystems; Nauka: Moscow, Russia, 1988; p. 254. [Google Scholar]
- Kaiser, M.J.; Pulsipher, A.G. A review of the oil and gas sector in Kazakhstan. Energy Policy 2007, 35, 1300–1314. [Google Scholar] [CrossRef]
- Puntus, I.F.; Borzova, O.V.; Funtikova, T.V.; Suzina, N.E.; Egozarian, N.S.; Polyvtseva, V.N.; Shumkova, E.S.; Akhmetov, L.I.; Golovleva, L.A.; Solyanikova, I.P. Contribution of soil bacteria isolated from different regions into crude oil and oil product degradation. J. Soils Sediments 2019, 19, 3166–3177. [Google Scholar] [CrossRef]
- Filonov, A.; Akhmetov, L.; Puntus, I.; Solyanikova, I. Removal of oil spills in temperate and cold climates of Russia: Experience in the creation and use of biopreparations based on effective microbial consortia. In Biodegradation, Pollutants and Bioremediation Principles; Bidoia, E.D., Motagnolli, R.N., Eds.; Taylor’s & Francis CRC Press: Boca Raton, FL, USA, 2021; pp. 137–159. [Google Scholar]
- Vetrova, A.A.; Ivanova, A.A.; Filonov, A.E.; Zabelin, V.A.; Gafarov, A.B.; Sokolov, S.L.; Nechaeva, I.A.; Puntus, I.F.; Boronin, A.M. Oil biodegradation by individual strains and principles of microbial consortia composition for environmental treatment of oil hydrocarbons. Bull. Tula State Univ. Nat. Sci. 2013, 2–1, 241–257. [Google Scholar]
- Filonov, A.; Delegan, Y.; Puntus, I.; Funtikova, T.; Zakharova, M.; Akhmetov, L.; Vetrova, A.; Valentovich, L.; Akhremchuk, A.; Evdokimova, O.; et al. Complete genome sequence of Pseudomonas putida BS3701, a promising polycyclic aromatic hydrocarbon-degrading strain for bioremediation technologies Microbiol. Resour. Announ. 2020, 9, e00892-20. [Google Scholar] [CrossRef]
- Rhodococcus qingshengii Strain F2-2 Chromosome, Complete Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP092101.1 (accessed on 31 January 2023).
- Rhodococcus qingshengii Strain F2-2 Plasmid pCP209, Complete Sequence. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP092100.1 (accessed on 31 January 2023).
- Rhodococcus qingshengii Strain F2-2 Plasmid pLP337. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP092103.1 (accessed on 31 January 2023).
- Rhodococcus qingshengii Strain F2-2 Plasmid pLP156. Available online: https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP092102.1 (accessed on 31 January 2023).
- Evans, C.G.T.; Herbert, D.; Tempest, D.B. The continuous cultivation of microorganisms: 2. Construction of a chemostat. Methods Microbiol. 1970, 2, 277–327. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Lab. Press: New York, NY, USA, 1989; p. 480. [Google Scholar]
- Filonov, A.; Ovchinnikova, A.; Vetrova, A.; Nechaeva, I.; Petrikov, K.; Vlasova, E.; Akhmetov, L.; Puntus, I.; Shestopalov, A.; Zabelin, V.; et al. Oil-spill bioremediation, using a commercial biopreparation “MicroBak” and a consortium of plasmid-bearing strains “V&O” with associated plants. In Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites; Romero-Zerón, L., Ed.; InTech: Rijeka, Croatia, 2012; pp. 291–318. [Google Scholar]
- Kvasnikov, E.I.; Klushnikova, T.M. Oil-Degrading Microorganisms in Water Basins; Naukova Dumka: Kiev, Russia, 1981; p. 131. [Google Scholar]
- Koronelli, T.V.; Dermicheva, S.G.; Ilyinsky, V.V.; Komarova, T.I.; Porshneva, O.V. Species structure of hydrocarbon-oxidizing bacteriocenoses of aquatic ecosystems of different climatic zones. Microbiology 1994, 63, 917–923. [Google Scholar]
- Kafilzadeh, F.; Rezaei, A.; Nejad, M.J.N. Evaluation of phenanthrene biodegradation by indigenous bacteria isolated from mangrove sediments in the Persian Gulf. Adv. Environ. Biol. 2013, 7, 2218–2224. [Google Scholar]
- Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781–4794. [Google Scholar] [CrossRef]
- Sharma, S.; Pathak, H. Pseudomonas in biodegradation. Int. J. Pure Appl. Biosci. 2014, 2, 213–222. [Google Scholar]
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshlaf, E.; Ball, A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Larkin, M.J.; Kulakov, L.A.; Allen, C.C. Biodegradation and Rhodococcus—Masters of catabolic versatility. Curr. Opin. Biotechnol. 2005, 16, 282–290. [Google Scholar] [CrossRef]
- Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; Křen, V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009, 35, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Plotnikova, E.G. Bacteria Destructors of Aromatic Hydrocarbons and Their Chlorine Derivatives: Diversity, Features of Metabolism, Functional Genomics. Ph.D. Thesis, Institute of Ecology and Genetics of Microorganisms of the Russian Academy of Sciences Ural Branch, Perm, Russia, 2010; p. 330. [Google Scholar]
- Kuyukina, M.S.; Ivshina, I.B.; Ritchkova, M.I.; Philp, J.C.; Cunningham, C.J.; Christofi, N. Bioremediation of Crude Oil-Contaminated Soil Using Slurry-Phase Biological Treatment and Land Farming Techniques. Soil Sediment Contam. Int. J. 2003, 12, 85–99. [Google Scholar] [CrossRef]
- Delegan, Y.; Petrikov, K.; Frantsuzova, E.; Bogun, A.; Travkin, V.; Solyanikova, I. Complete Genome Sequence of Rhodococcus qingshengii VT6, a Promising Degrader of Persistent Pollutants and Putative Biosurfactant-Producing Strain. Genome Announc. 2022, 11, e0117921. [Google Scholar] [CrossRef] [PubMed]
- Ivshina, I.B.; Vikhareva, E.V.; Richkova, M.I.; Mukhutdinova, A.N.; Karpenko, J.N. Biodegradation of drotaverine hydrochloride by free and immobilized cells of Rhodococcus rhodochrous IEGM 608. World J. Microbiol. Biotechnol. 2012, 28, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Moutinho, L.F.; Moura, F.R.; Silvestre, R.C.; Romão-Dumaresq, A.S. Microbial biosurfactants: A broad analysis of properties, applications, biosynthesis, and techno-economical assessment of rhamnolipid production. Biotechnol. Prog. 2020, 37, e3093. [Google Scholar] [CrossRef] [PubMed]
- Kuyukina, M.S. Biosurfactants of Rhodococcus actinobacteria: Induced Biosynthesis, Properties, Application. Ph.D. Thesis, Institute of Ecology and Genetics of Microorganisms of the Russian Academy of Sciences Ural Branch, Perm, Russia, 2006; p. 295. [Google Scholar]
- Jimoh, A.A.; Lin, J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Fetzner, S.; Kolkenbrock, S.; Parschat, K. Catabolic linear plasmids. In Microbial Linear Plasmids; Meinhardt, F., Klassen, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 63–98. [Google Scholar]
- Larkin, M.J.; Kulakov, L.A.; Allen, C.C. Genomes and plasmids in Rhodococcus. In Biology of Rhodococcus; Alvarez, H.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–90. [Google Scholar]
- Kulakov, L.A.; Chen, S.; Allen, C.C.R.; Larkin, M.J. Web-Type Evolution of Rhodococcus Gene Clusters Associated with Utilization of Naphthalene. Appl. Environ. Microbiol. 2005, 71, 1754–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astanin, A.I.; Zagrebelny, S.N.; Alekseev, A.Y.; Zabelin, V.A. Pseudomonas Denitrificans Bacterial Strain with Phenanthrene Utilization. Property. Patent of the Republic of Kazakhstan for the Invention No. 2575064 Bull. No. 4, 10 February 2016. [Google Scholar]
- Pizarro-Tobías, P.; Fernández, M.; Niqui, J.L.; Solano, J.; Duque, E.; Ramos, J.; Roca, A. Restoration of a M editerranean forest after a fire: Bioremediation and rhizoremediation field-scale trial. Microb. Biotechnol. 2015, 8, 77–92. [Google Scholar] [CrossRef]
- Salam, L.B. Metabolism of waste engine oil by Pseudomonas species. 3 Biotech 2016, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Oil and Gas Sector. Available online: http://www.kmgep.kz/eng/about_kazakhstan/oil_and_gas_sector (accessed on 31 January 2023).
- Idrisova, U.R.; Musaldinov, T.B.; Auezova, O.N.; Myrzadauleutova, I.T.; Kurmanbaev, A.A.; Aitkeldieva, S.A.; Idrisova, D.Z.h.; Sadanov, A.K. Determination of the optimal dose and fraction of zeolite to increase the activity of the microflora of oil-contaminated soil. Microbiol. Zhane Virol. 2013, 1–2, 21–25. [Google Scholar]
- Kurmanbaev, A.A.; Baigonusova, Z.h.A.; Aitkeldieva, S.A. Biological activity of soils with different degrees of oil pollution. In Proceedings of the International Scientific-Practical Conference “The Current Ecological State of the Aral Sea Region, the Prospects for Solving Problems”, Kyzylorda, Kazakhstan, 7 October 2011; Korkyt Ata Kyzylorda University Publishing: Kyzylorda, Kazakstan, 2011; pp. 46–51. [Google Scholar]
- Idrisova, D.T.; Mukhamedova, N.S.; Zhumadilova, Z.h.S.h.; Shorabaev, E.Z.h.; Sadanov, A.K. Influence of organo-mineral fertilizers on bioremediation of oil-contaminated soils. Fund. Stud. Fundam. Issled. 2014, 9, 2246–2249. [Google Scholar]
- Sadanov, A.K.; Aitkeldieva, S.A.; Gavrilova, N.N.; Ratnikova, I.A. A Preparation “Bakoil-KZ” to Clean up Soils from Crude Oil and Petroleum. Products. Patent of the Republic of Kazakhstan for the Invention No. 24879 Bul. No. 11, 15 November 2011. [Google Scholar]
- Idrisova, U.R.; Sadanov, A.K.; Musaldinov, T.B.; Idrisova, D.Z.h.; Aytkeldieva, S.A.; Auezova, O.N. The Method of Biological Recultivation for the Soil Spilled with Crude Oil and Petroleum. Products. Patent of the Republic of Kazakhstan for the Invention No. 30176 Bull. No. 7, 15 July 2015. [Google Scholar]
- Bishimbaev, V.K.; Issaeva, A.U.; Uspabayeva, A.A.; Rysbaeva, G.A. Distribution of oil-degrading microorganisms in the soils of Southern Kazakhstan. In Proceedings of the International Scientific and Practical Conference “Valikhanov Readings-9”, Kokchetau, Kazakhstan, 22–24 April 2004; Sh. Valikhanov Kokchetau State University Publishing: Kokchetau, Kazakhstan, 2004; pp. 54–55. [Google Scholar]
- Myrhalykov, Z.h.U.; Issaeva, A.U.; Uspabaeva, A.A. Method for Cleaning Soil from Oil and Oil. Products. Patent of the Republic of Kazakhstan for the invention No. 18192 Bul. No. 11, 17 November 2014. [Google Scholar]
- Zhubanova, A.A.; Ernazarova, A.K.; Kayyrmanova, G.K.; Zayadan, B.K.; Savitskaya, I.S.; Abdieva, G.Z.h.; Kistaubaeva, A.S.; Akimbekov, N.S.h. Construction of a cyano-bacterial consortium based on axenic cultures of cyanobacteria and heterotrophic bacteria for bioremediation of oil-contaminated soils and water bodies. Plant Physiol. Physiol. Rastenii 2013, 60, 588–595. [Google Scholar]
- Sadanov, A.K.; Aitkeldieva, S.A.; Auezova, O.N.; Faizulina, E.R.; Kurmanbaev, A.A. Consortium of Strains Acinetobacter calcoaceticus 2a and Microbacterium lacticum 41-3, Used to Clean the Soil from Oil and Oil Products. Patent of the Republic of Kazakhstan for the invention No. 22177 Bull. No. 1 15 January 2010. [Google Scholar]
Strain | Phenotype | Source |
---|---|---|
Rhodococcus qingshengii F2-1 | Npht+ Dsf+ Hde+ Phe+ Bnz+ | [6] |
R. qingshengii F2-2 | Npht+ Dsf+ Hde+ Phe+ | [6] |
Rhodococcus sp. T3 | Npht+ Dsf+ Hde+ Phe+ Bnz+ Ebnz+ | [6] |
Rhodococcus sp. B-1 | Npht+ Dsf+ Hde+ Phe+ Ebnz+ | [6] |
Rhodococcus sp. T3-4 | Npht+ Dsf+ Hde+ Phe+ Bnz+ Ebnz+ | [6] |
Rhodococcus sp. K2 | Npht+ Dsf+ Hde+ Phe+ | [6] |
Rhodococcus sp. K1 | Npht+ Dsf+ Hde+ Phe+ Bnz+ Ebnz+ | [6] |
P. alloputida BS3701 | Npht+ Dsf+ Nah+ Phn+ Sal+ Gnt+ | [7] |
A. baumannii 7 | Npht+Dsf+Hde+ Oct+ Dec+ Non+ | [8] |
Consortium | Strains |
---|---|
No. 1 | R. qingshengii F2-1 R. qingshengii F2-2 |
No. 2 | R. qingshengii F2-1 R.qingshengii F2-2 Rhodococcus sp. T3-4 |
No. 3 | R. qingshengii F2-1 R. qingshengii F2-2 P. alloputida BS3701 |
No. 4 | R. qingshengii F2-1 R. qingshengii F2-2 A. baumannii 7 |
Fraction | Weight, mg, and Percentage | ||||
---|---|---|---|---|---|
Control | Consortium No. 1 | Consortium No. 2 | Consortium No. 3 | Consortium No. 4 | |
Hexane | 24 ± 1 48% | 19 ± 2 38% | 16 ± 1 32% | 15 ± 1 30% | 16 ± 1 32% |
Benzene | 9 ± 2 18% | 7 ± 1 14% | 7 ± 1 14% | 4 ± 1 8% | 7 ± 1 14% |
Alcohol–benzene | 5 ± 1 10% | 8 ± 1 16% | 7 ± 1 14% | 15 ± 2 30% | 13 ± 1 26% |
Fraction | Removal of Oil Fractions, % | |||
---|---|---|---|---|
Consortium No. 1 | Consortium No. 2 | Consortium No. 3 | Consortium No. 4 | |
Hexane | 21 | 32 | 37 | 32 |
Benzene | 22 | 22 | 56 | 22 |
Date | Control | Biopreparation | ||
---|---|---|---|---|
Total Microbial Number, CFU/g Soil | Degrader Number, CFU/g Soil | Total Microbial Number, CFU/g Soil | Degrader Number, CFU/g Soil | |
30.05 | 7.2 × 106 | 1.0 × 105 | 1.2 × 108 | 9.6 × 107 |
14.06 | 4.0 × 106 | 1.0 × 105 | 4.7 × 107 | 8.5 × 106 |
29.06 | 3.2 × 106 | 4.5 × 105 | 1.4 × 108 | 5.0 × 107 |
17.07 | 3.6 × 106 | 4.0 × 105 | 2.0 × 107 | 1.4 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Funtikova, T.V.; Akhmetov, L.I.; Puntus, I.F.; Mikhailov, P.A.; Appazov, N.O.; Narmanova, R.A.; Filonov, A.E.; Solyanikova, I.P. Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation. Microorganisms 2023, 11, 522. https://doi.org/10.3390/microorganisms11020522
Funtikova TV, Akhmetov LI, Puntus IF, Mikhailov PA, Appazov NO, Narmanova RA, Filonov AE, Solyanikova IP. Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation. Microorganisms. 2023; 11(2):522. https://doi.org/10.3390/microorganisms11020522
Chicago/Turabian StyleFuntikova, Tatiana Vyacheslavovna, Lenar Imametdinovich Akhmetov, Irina Filippovna Puntus, Pavel Alexeevich Mikhailov, Nurbol Orynbasaruly Appazov, Roza Abdibekovna Narmanova, Andrey Evgenievich Filonov, and Inna Petrovna Solyanikova. 2023. "Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation" Microorganisms 11, no. 2: 522. https://doi.org/10.3390/microorganisms11020522
APA StyleFuntikova, T. V., Akhmetov, L. I., Puntus, I. F., Mikhailov, P. A., Appazov, N. O., Narmanova, R. A., Filonov, A. E., & Solyanikova, I. P. (2023). Bioremediation of Oil-Contaminated Soil of the Republic of Kazakhstan Using a New Biopreparation. Microorganisms, 11(2), 522. https://doi.org/10.3390/microorganisms11020522