The Role of Temperate Phages in Bacterial Pathogenicity
Abstract
:1. Bacteriophages Influence Host Behavior
2. Profile and Genetic Characteristics of Prophages within Foodborne Pathogens
2.1. Gram-Negative Bacterial Pathogens
2.2. Gram-Positive Bacterial Pathogens
3. Virulence Factors
3.1. Prophages Carry Toxin Genes
Bacterial Host | Temperate Phages | VGs/ARGs | Toxin/Antibiotic Resistance | Transduction Efficiency | Recipient | References |
---|---|---|---|---|---|---|
Escherichia coli | Stx1- and Stx2- converting phages | stx | Shiga toxin | 10−3 to 10−5 tru a/cell | Non-pathogenic Enterobacter and E. coli | [20,44,45] |
E. coli prophage | blaTEM, blaCTX-M | β-lactams | NA b | E. coli | [50] | |
Stx phages 933W, 557, 312, and Cdt phage | armA | Aminoglycosides | NA | E. coli | [51] | |
SUSP1, SUSP2 | kan, amp | Kanamycin, ampicillin | NA | E. coli, Bacillus sp., soil bacteria | [52] | |
Stx-converting prophage 933w | tet | Tetracycline | E. coli | [50,53] | ||
Salmonella | Fels-2, Enterobacteriaceae | oqxB_1, blaCTX-M | Quinolones, β-lactams | NA | NA | [54] |
ES18 | amp, tet, cam | Ampicillin, tetracycline, chloramphenicol | 10−8, 10−9, 10−7 tru/pfu c | S. Typhimurium | [55] | |
Vibrio cholerae | CTX𝜑 | ctxAB, zot | Cholera toxin, Zonula occludens toxin | NA | V. cholerae | [23,56] |
Campylobacter concisus | CON_phi2 | zot | Zonula occludens toxin | NA | C. concisus | [25,26] |
Clostridium perfringens | Clostridium phage phiMMP01, vbCpeS-CP51, PhiS63, Staphylococcus phage SP beta-like | cloSI, cpe, nanH, plc | α-toxins, Clostridium perfringens enterotoxin, sialidase, α-clostripain | NA | C. perfringens | [35] |
Staphylococcus aureus | 80α | TSST-1 | Shock toxin TSST-1 | 10−1 tru/pfu 10−1 to 10−6 tru/pfu | S. aureus L. monocytogenes | [47] |
Staphylococcal phages | cat, aadDE, msrA | Chloramphenicol, aminoglycosides, macrolides | NA | S. aureus | [56] | |
80α | bla, tet | Penicillin, tetracycline | 10−5, 10−6 tru/pfu | S. aureus | [56,57] | |
PDT17 | amp, cam | Ampicillin, chloramphenicol | 10−8 tru/pfu | S. Typhimurium | [55] | |
Staphylococcal phages | bla, fusB | Penicillin, fusidic acid | NA | S. aureus | [56] | |
80α | str | Streptomycin | 10−1 tru/pfu | L. monocytogenes | [47] |
3.2. Prophages Increase Bacterial Adherence
3.3. Release of Virulence Molecules Coordinated by Prophages
4. Antibiotic Resistance Genes
4.1. ARGs within the Prophage Genome
4.2. ARGs within Plasmids
4.3. ARGs within Bacterial Chromosomes
5. Biofilm-Related Genes
5.1. Prophage Enhances Biofilm Formation
5.2. Prophage Excision Leads to Greater Biofilm Formation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARGs | antibiotic resistance genes |
LPS | lipopolysaccharides |
PG | peptidoglycan |
STEC | Shiga toxin-producing Escherichia coli |
HUS | hemolytic-uremic syndrome |
IBD | inflammatory bowel disease |
Zot | Zonula occludens toxins |
BSIs | bloodstream infections |
CRISPR-Cas | clustered regularly interspersed short palindromic repeats-CRISPR-associated proteins |
SaPI1 | Staphylococcus aureus pathogenicity island-1 |
VG | virulent gene |
APEC | avian pathogenic E. coli |
OMV | outer membrane vesicles |
ESKAPE pathogens | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. |
eDNA | extracellular DNA |
References
- Nair, A.; Khairnar, K. Genetically Engineered Phages for Therapeutics: Proceed with Caution. Nat. Med. 2019, 25, 1028. [Google Scholar] [CrossRef] [PubMed]
- Chevallereau, A.; Pons, B.J.; van Houte, S.; Westra, E.R. Interactions between Bacterial and Phage Communities in Natural Environments. Nat. Rev. Microbiol. 2022, 20, 49–62. [Google Scholar] [CrossRef]
- Rehman, S.; Ali, Z.; Khan, M.; Bostan, N.; Naseem, S. The Dawn of Phage Therapy. Rev. Med. Virol. 2019, 29, e2041. [Google Scholar] [CrossRef]
- Wahl, A.; Battesti, A.; Ansaldi, M. Prophages in Salmonella enterica: A Driving Force in Reshaping the Genome and Physiology of Their Bacterial Host? Mol. Microbiol. 2019, 111, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Harrison, E.; Brockhurst, M.A. Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn’t Kill You Makes You Stronger. Bioessays 2017, 39, 1700112. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, R.W.; Smith, M.C.M.; Burns, R.N.; Ford, M.E.; Hatfull, G.F. Evolutionary Relationships among Diverse Bacteriophages and Prophages: All the World’s a Phage. Proc. Natl. Acad. Sci. USA 1999, 96, 2192–2197. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Muñoz, S.L.; Koskella, B. Bacteria-Phage Interactions in Natural Environments. Adv. Appl. Microbiol. 2014, 89, 135–183. [Google Scholar] [CrossRef]
- Spriewald, S.; Stadler, E.; Hense, B.A.; Münch, P.C.; McHardy, A.C.; Weiss, A.S.; Obeng, N.; Müller, J.; Stecher, B. Evolutionary Stabilization of Cooperative Toxin Production through a Bacterium-Plasmid-Phage Interplay. mBio 2020, 11, e00912-20. [Google Scholar] [CrossRef]
- Pelzek, A.J.; Schuch, R.; Schmitz, J.E.; Fischetti, V.A. Isolation, Culture, and Characterization of Bacteriophages. Curr. Protoc. Essent. Lab. Tech. 2013, 7, 4.4.1–4.4.33. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. MMBR 2004, 68, 560–602. [Google Scholar] [CrossRef] [Green Version]
- Casjens, S.R. Comparative Genomics and Evolution of the Tailed-Bacteriophages. Curr. Opin. Microbiol. 2005, 8, 451–458. [Google Scholar] [CrossRef]
- Klumpp, J.; Fouts, D.E.; Sozhamannan, S. Bacteriophage Functional Genomics and Its Role in Bacterial Pathogen Detection. Brief. Funct. Genom. 2013, 12, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Dowah, A.S.A.; Clokie, M.R.J. Review of the Nature, Diversity and Structure of Bacteriophage Receptor Binding Proteins That Target Gram-Positive Bacteria. Biophys. Rev. 2018, 10, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Fischetti, V.A. Exploiting What Phage Have Evolved to Control Gram-Positive Pathogens. Bacteriophage 2011, 1, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rubio, L.; Haarmann, N.; Schwidder, M.; Muniesa, M.; Schmidt, H. Bacteriophages of Shiga Toxin-Producing Escherichia Coli and Their Contribution to Pathogenicity. Pathogens 2021, 10, 404. [Google Scholar] [CrossRef]
- Besser, R.E.; Griffin, P.M.; Slutsker, L. Escherichia coli O157:H7 Gastroenteritis and the Hemolytic Uremic Syndrome: An Emerging Infectious Disease1. Annu. Rev. Med. 2003, 50, 355–367. [Google Scholar] [CrossRef]
- Chalker, R.B.; Blaser, M.J. A Review of Human Salmonellosis: III. Magnitude of Salmonella Infection in the United States. Rev. Infect. Dis. 1988, 10, 111–124. [Google Scholar] [CrossRef]
- Faruque, S.M.; Albert, M.J.; Mekalanos, J.J. Epidemiology, Genetics, and Ecology of Toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 1998, 62, 1301–1314. [Google Scholar] [CrossRef] [Green Version]
- Kalischuk, L.D.; Buret, A.G. A Role for Campylobacter jejuni-Induced Enteritis in Inflammatory Bowel Disease? Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liao, Y.-T.; Salvador, A.; Sun, X.; Wu, V.C.H. Prediction, Diversity, and Genomic Analysis of Temperate Phages Induced from Shiga Toxin-Producing Escherichia coli Strains. Front. Microbiol. 2020, 10, 3093. [Google Scholar] [CrossRef] [Green Version]
- Mottawea, W.; Duceppe, M.O.; Dupras, A.A.; Usongo, V.; Jeukens, J.; Freschi, L.; Emond-Rheault, J.G.; Hamel, J.; Kukavica-Ibrulj, I.; Boyle, B.; et al. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Front. Microbiol. 2018, 9, 836. [Google Scholar] [CrossRef] [Green Version]
- Owen, S.V.; Canals, R.; Wenner, N.; Hammarlöf, D.L.; Kröger, C.; Hinton, J.C.D. A Window into Lysogeny: Revealing Temperate Phage Biology with Transcriptomics. Microb. Genom. 2020, 6, e000330. [Google Scholar] [CrossRef]
- Castillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread Distribution of Prophage-Encoded Virulence Factors in Marine Vibrio Communities. Sci. Rep. 2018, 8, 9973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, A.; Das, B.; Bhadra, R.K. CTX Phage of Vibrio cholerae: Genomics and Applications. Vaccine 2020, 38, A7–A12. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, H.; Lan, R.; Zhang, L. Zonula Occludens Toxins and Their Prophages in Campylobacter Species. Gut Pathog. 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lee, H.; Grimm, M.C.; Riordan, S.M.; Day, A.S.; Lemberg, D.A. Campylobacter concisus and Inflammatory Bowel Disease. World J. Gastroenterol. 2014, 20, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, J.; Loessner, M.J. Listeria Phages. Bacteriophage 2013, 3, e26861. [Google Scholar] [CrossRef] [Green Version]
- Todd, E.C.D.; Notermans, S. Surveillance of Listeriosis and Its Causative Pathogen, Listeria monocytogenes. Food Control 2011, 22, 1484–1490. [Google Scholar] [CrossRef]
- Flores-Díaz, M.; Alape-Girón, A. Role of Clostridium perfringens Phospholipase C in the Pathogenesis of Gas Gangrene. Toxicon 2003, 42, 979–986. [Google Scholar] [CrossRef]
- FitzGerald, S.F.; O’Gorman, J.; Morris-Downes, M.M.; Crowley, R.K.; Donlon, S.; Bajwa, R.; Smyth, E.G.; Fitzpatrick, F.; Conlon, P.J.; Humphreys, H. A 12-Year Review of Staphylococcus aureus Bloodstream Infections in Haemodialysis Patients: More Work to Be Done. J. Hosp. Infect. 2011, 79, 218–221. [Google Scholar] [CrossRef]
- Vu, H.T.K.; Benjakul, S.; Vongkamjan, K. Characterization of Listeria Prophages in Lysogenic Isolates from Foods and Food Processing Environments. PLoS ONE 2019, 14, e0214641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasechnek, A.; Rabinovich, L.; Stadnyuk, O.; Azulay, G.; Mioduser, J.; Argov, T.; Borovok, I.; Sigal, N.; Herskovits, A.A. Active Lysogeny in Listeria monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment. Cell Rep. 2020, 32, 107956. [Google Scholar] [CrossRef] [PubMed]
- Argov, T.; Azulay, G.; Pasechnek, A.; Stadnyuk, O.; Ran-Sapir, S.; Borovok, I.; Sigal, N.; Herskovits, A.A. Temperate Bacteriophages as Regulators of Host Behavior. Curr. Opin. Microbiol. 2017, 38, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Feiner, R.; Argov, T.; Rabinovich, L.; Sigal, N.; Borovok, I.; Herskovits, A.A. A New Perspective on Lysogeny: Prophages as Active Regulatory Switches of Bacteria. Nat. Rev. Microbiol. 2015, 13, 641–650. [Google Scholar] [CrossRef]
- Feng, Y.; Fan, X.; Zhu, L.; Yang, X.; Liu, Y.; Gao, S.; Jin, X.; Liu, D.; Ding, J.; Guo, Y.; et al. Phylogenetic and Genomic Analysis Reveals High Genomic Openness and Genetic Diversity of Clostridium perfringens. Microb. Genom. 2020, 6, e000441. [Google Scholar] [CrossRef]
- Naser, I.B.; Hoque, M.M.; Nahid, M.A.; Tareq, T.M.; Rocky, M.K.; Faruque, S.M. Analysis of the CRISPR-Cas System in Bacteriophages Active on Epidemic Strains of Vibrio cholerae in Bangladesh. Sci. Rep. 2017, 7, 14880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goerke, C.; Pantucek, R.; Holtfreter, S.; Schulte, B.; Zink, M.; Grumann, D.; Bröker, B.M.; Doskar, J.; Wolz, C. Diversity of Prophages in Dominant Staphylococcus aureus Clonal Lineages. J. Bacteriol. 2009, 191, 3462–3468. [Google Scholar] [CrossRef] [Green Version]
- Diene, S.M.; Corvaglia, A.R.; François, P.; van der Mee-Marquet, N.; Amirault, P.; Lehiani, O.; Archambault, M.; Prevost-Oussar, M.; Bachelier, M.N.; Guinard, F.; et al. Prophages and Adaptation of Staphylococcus aureus ST398 to the Human Clinic. BMC Genom. 2017, 18, 133. [Google Scholar] [CrossRef] [Green Version]
- Kashif, A.; McClure, J.A.; Lakhundi, S.; Pham, M.; Chen, S.; Conly, J.M.; Zhang, K. Staphylococcus aureus ST398 Virulence Is Associated with Factors Carried on Prophage ΦSa3. Front. Microbiol. 2019, 10, 2219. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.L. Bacteriophage-Mediated Horizontal Gene Transfer: Transduction. In Bacteriophages; Springer: Berlin/Heidelberg, Germany, 2021; pp. 151–192. [Google Scholar] [CrossRef]
- Kelly, B.G.; Vespermann, A.; Bolton, D.J. Horizontal Gene Transfer of Virulence Determinants in Selected Bacterial Foodborne Pathogens. Food Chem. Toxicol. 2009, 47, 969–977. [Google Scholar] [CrossRef]
- Chan, Y.S.; Ng, T.B. Shiga Toxins: From Structure and Mechanism to Applications. Appl. Microbiol. Biotechnol. 2016, 100, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Schüller, S. Shiga Toxin Interaction with Human Intestinal Epithelium. Toxins 2011, 3, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, H. Shiga-Toxin-Converting Bacteriophages. Res. Microbiol. 2001, 152, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.K.S.; Skinner, C.; Patfield, S.; He, X. Phage-Mediated Shiga Toxin (Stx) Horizontal Gene Transfer and Expression in Non-Shiga Toxigenic Enterobacter and Escherichia coli Strains. Pathog. Dis. 2016, 74, ftw037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Reytor, D.; Jaña, V.; Pavez, L.; Navarrete, P.; García, K. Accessory Toxins of Vibrio pathogens and Their Role in Epithelial Disruption during Infection. Front. Microbiol. 2018, 9, 2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Novick, R.P. Phage-Mediated Intergeneric Transfer of Toxin Genes. Science 2009, 323, 139–141. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.C.; Fierer, J.; Chiu, W.W.; Looney, D.J.; Strain, M.; Mehta, S.R. A Novel Shiga Toxin 1a-Converting Bacteriophage of Shigella sonnei with Close Relationship to Shiga Toxin 2-Converting Pages of Escherichia coli. Open Forum Infect. Dis. 2016, 3, ofw079. [Google Scholar] [CrossRef] [Green Version]
- Strauch, E.; Lurz, R.; Beutin, L. Characterization of a Shiga Toxin-Encoding Temperate Bacteriophage of Shigella sonnei. Infect. Immun. 2001, 69, 7588–7595. [Google Scholar] [CrossRef] [Green Version]
- Colavecchio, A.; Cadieux, B.; Lo, A.; Goodridge, L.D. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family—A Review. Front. Microbiol. 2017, 8, 1108. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rubio, L.; Serna, C.; Ares-Arroyo, M.; Matamoros, B.R.; Delgado-Blas, J.F.; Montero, N.; Bernabe-Balas, C.; Wedel, E.F.; Mendez, I.S.; Muniesa, M.; et al. Extensive Antimicrobial Resistance Mobilization via Multicopy Plasmid Encapsidation Mediated by Temperate Phages. J. Antimicrob. Chemother. 2020, 75, 3173–3180. [Google Scholar] [CrossRef]
- Keen, E.C.; Bliskovsky, V.V.; Malagon, F.; Baker, J.D.; Prince, J.S.; Klaus, J.S.; Adhya, S.L. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation. mBio 2017, 8, e02115-16. [Google Scholar] [CrossRef] [Green Version]
- Marinus, M.G.; Poteete, A.R. High Efficiency Generalized Transduction in Escherichia coli O157:H7. F1000Research 2013, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Kondo, K.; Kawano, M.; Sugai, M. Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens. mSphere 2021, 6, e00452-21. [Google Scholar] [CrossRef] [PubMed]
- Schmieger, H.; Schicklmaier, P. Transduction of Multiple Drug Resistance of Salmonella enterica Serovar Typhimurium DT104. FEMS Microbiol. Lett. 1999, 170, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Picazo, P.; Roscales, G.; Toribio-Avedillo, D.; Gómez-Gómez, C.; Avila, C.; Ballesté, E.; Muniesa, M.; Rodríguez-Rubio, L. Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Microorganisms 2020, 8, 1293. [Google Scholar] [CrossRef]
- Wagner, P.L.; Waldor, M.K. Bacteriophage Control of Bacterial Virulence. Infect. Immun. 2002, 70, 3985–3993. [Google Scholar] [CrossRef] [Green Version]
- Schroven, K.; Aertsen, A.; Lavigne, R. Bacteriophages as Drivers of Bacterial Virulence and Their Potential for Biotechnological Exploitation. FEMS Microbiol. Rev. 2021, 45, fuaa041. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Q.; Qian, X.; Li, D.; Zeng, H.; Li, Y.; Xue, F.; Ren, J.; Zhu Ge, X.; Tang, F.; et al. Prophage Phiv205-1 Facilitates Biofilm Formation and Pathogenicity of Avian Pathogenic Escherichia coli Strain DE205B. Vet. Microbiol. 2020, 247, 108752. [Google Scholar] [CrossRef]
- Shah, J.; Desai, P.T.; Weimer, B.C. Genetic Mechanisms Underlying the Pathogenicity of Cold-Stressed Salmonella enterica Serovar Typhimurium in Cultured Intestinal Epithelial Cells. Appl. Environ. Microbiol. 2014, 80, 6943–6953. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.G.; Grant, C.C.R.; Pollari, F.; Marshall, B.; Moses, J.; Tracz, D.M.; Gilmour, M.W. Effects of the Campylobacter jejuni CJIE1 Prophage Homologs on Adherence and Invasion in Culture, Patient Symptoms, and Source of Infection. BMC Microbiol. 2012, 12, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldor, M.K.; Friedman, D.I. Phage Regulatory Circuits and Virulence Gene Expression. Curr. Opin. Microbiol. 2005, 8, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Catalão, M.J.; Gil, F.; Moniz-Pereira, J.; São-José, C.; Pimentel, M. Diversity in Bacterial Lysis Systems: Bacteriophages Show the Way. FEMS Microbiol. Rev. 2013, 37, 554–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T.; LeJeune, J.T. Why Bacteriophage Encode Exotoxins and Other Virulence Factors. Evol. Bioinform. Online 2005, 1, 97. [Google Scholar] [CrossRef]
- Fortier, L.C.; Sekulovic, O. Importance of Prophages to Evolution and Virulence of Bacterial Pathogens. Virulence 2013, 4, 354–365. [Google Scholar] [CrossRef]
- Kunsmann, L.; Rüter, C.; Bauwens, A.; Greune, L.; Glüder, M.; Kemper, B.; Fruth, A.; Wai, S.N.; He, X.; Lloubes, R.; et al. Virulence from Vesicles: Novel Mechanisms of Host Cell Injury by Escherichia coli O104:H4 Outbreak Strain. Sci. Rep. 2015, 5, 13252. [Google Scholar] [CrossRef] [Green Version]
- Pasqua, M.; Zennaro, A.; Trirocco, R.; Fanelli, G.; Micheli, G.; Grossi, M.; Colonna, B.; Prosseda, G. Modulation of OMV Production by the Lysis Module of the DLP12 Defective Prophage of Escherichia coli K12. Microorganisms 2021, 9, 369. [Google Scholar] [CrossRef]
- Larrañaga, O.; Brown-Jaque, M.; Quirós, P.; Gómez-Gómez, C.; Blanch, A.R.; Rodríguez-Rubio, L.; Muniesa, M. Phage Particles Harboring Antibiotic Resistance Genes in Fresh-Cut Vegetables and Agricultural Soil. Environ. Int. 2018, 115, 133–141. [Google Scholar] [CrossRef]
- Colomer-Lluch, M.; Jofre, J.; Muniesa, M. Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples. PLoS ONE 2011, 6, e17549. [Google Scholar] [CrossRef] [Green Version]
- Colomer-Lluch, M.; Imamovic, L.; Jofre, J.; Muniesa, M. Bacteriophages Carrying Antibiotic Resistance Genes in Fecal Waste from Cattle, Pigs, and Poultry. Antimicrob. Agents Chemother. 2011, 55, 4908–4911. [Google Scholar] [CrossRef] [Green Version]
- Torres-Barceló, C. The Disparate Effects of Bacteriophages on Antibiotic-Resistant Bacteria. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.P.; Christie, G.E.; Penadés, J.R. The Phage-Related Chromosomal Islands of Gram-Positive Bacteria. Nat. Rev. Microbiol. 2010, 8, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Enault, F.; Briet, A.; Bouteille, L.; Roux, S.; Sullivan, M.B.; Petit, M.A. Phages Rarely Encode Antibiotic Resistance Genes: A Cautionary Tale for Virome Analyses. ISME J. 2017, 11, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero-Rello, A.; López-Sanz, M.; Quevedo-Olmos, A.; Sorokin, A.; Ayora, S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front. Microbiol. 2017, 8, 1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturini, C.; Zingali, T.; Wyrsch, E.R.; Bowring, B.; Iredell, J.; Partridge, S.R.; Djordjevic, S.P. Diversity of P1 Phage-like Elements in Multidrug Resistant Escherichia coli. Sci. Rep. 2019, 9, 18861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcázar, J.L. How Do Bacteriophages Promote Antibiotic Resistance in the Environment? Clin. Microbiol. Infect. 2018, 24, 447–449. [Google Scholar] [CrossRef]
- Moon, K.; Jeon, J.H.; Kang, I.; Park, K.S.; Lee, K.; Cha, C.J.; Lee, S.H.; Cho, J.C. Freshwater Viral Metagenome Reveals Novel and Functional Phage-Borne Antibiotic Resistance Genes. Microbiome 2020, 8, 75. [Google Scholar] [CrossRef]
- Debroas, D.; Siguret, C. Viruses as Key Reservoirs of Antibiotic Resistance Genes in the Environment. ISME J. 2019, 13, 2856–2867. [Google Scholar] [CrossRef]
- Yaron, S.; Römling, U. Biofilm Formation by Enteric Pathogens and Its Role in Plant Colonization and Persistence. Microb. Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Joo, H.S.; Otto, M. Molecular Basis of In Vivo Biofilm Formation by Bacterial Pathogens. Chem. Biol. 2012, 19, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.F.; Svenningsen, S.L.; Røder, H.L.; Middelboe, M.; Burmølle, M. Big Impact of the Tiny: Bacteriophage–Bacteria Interactions in Biofilms. Trends Microbiol. 2019, 27, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Carrolo, M.; Frias, M.J.; Pinto, F.R.; Melo-Cristino, J.; Ramirez, M. Prophage Spontaneous Activation Promotes DNA Release Enhancing Biofilm Formation in Streptococcus pneumoniae. PLoS ONE 2010, 5, e15678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, N.I.; Agafonov, D.A.; Kul’shan’, T.A.; Shchelkanova, E.Y.; Krasnov, Y.M.; Lozovsky, Y.V.; Kutyrev, V.V. Effect of CTXφ Prophage Deletion in Cholera Agent on Expression of Regulatory Genes Controlling Virulence and Biofilm Formation. Russ. J. Genet. 2017, 53, 302–313. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Yu, P.; Ren, S.; Zhu, Z.; Jin, Y.; Yan, J.; Peng, X.; Chen, L. Prophage-related gene VpaChn25_0724 contributes to cell membrane integrity and growth of Vibrio parahaemolyticus CHN25. Front. Cell. Infect. Microbiol. 2020, 10, 595709. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Guo, Y.; Zeng, Z.; Li, B.; Wood, T.K.; Cai, X.; Wang, X. Physiological Function of Rac Prophage during Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12. Sci. Rep. 2015, 5, 16074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlich, G.A.; Chen, C.Y.; Cottrell, B.J.; Hofmann, C.S.; Yan, X.; Nguyen, L. Stx1 Prophage Excision in Escherichia coli Strain PA20 Confers Strong Curli and Biofilm Formation by Restoring Native MlrA. FEMS Microbiol. Lett. 2016, 363, fnw123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gummalla, V.S.; Zhang, Y.; Liao, Y.-T.; Wu, V.C.H. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023, 11, 541. https://doi.org/10.3390/microorganisms11030541
Gummalla VS, Zhang Y, Liao Y-T, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms. 2023; 11(3):541. https://doi.org/10.3390/microorganisms11030541
Chicago/Turabian StyleGummalla, Vimathi S., Yujie Zhang, Yen-Te Liao, and Vivian C. H. Wu. 2023. "The Role of Temperate Phages in Bacterial Pathogenicity" Microorganisms 11, no. 3: 541. https://doi.org/10.3390/microorganisms11030541
APA StyleGummalla, V. S., Zhang, Y., Liao, Y. -T., & Wu, V. C. H. (2023). The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms, 11(3), 541. https://doi.org/10.3390/microorganisms11030541