Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain and Culture Conditions
2.2. Growth Analysis
2.3. Pigment Extraction
2.4. Fatty Acid Profile
2.5. Proteomics
2.5.1. Proteomic Analysis
2.5.2. Bioinformatics Analysis
3. Results and Discussion
3.1. Influence of Cu(I) and Cu(II) on R. toruloides
3.2. Influence of Cu(I) and Cu(II) on R. toruloides IFO0559
3.3. Influence of Cu(I) and Cu(II) on R. toruloides IFO0880
3.4. Comparison on Growth and Adaptation of R. toruloides IFO0559 and IFO0880
3.5. Influence of Cu(I) and Cu(II) on Fatty Acid Composition of R. toruloides IFO0559 and IFO0880
3.6. Effect of Cu(I) and Cu(II) on the Protein Expression
3.6.1. Effect of Copper on Oxidative Stress
3.6.2. Effect of Copper on Iron-Sulfur Proteins
IFO0559 | IFO0880 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu(I) | Cu(II) | Cu(I) | Cu(II) | ||||||||
Accession | 96 h | 144 h | 96 h | 144 h | Accession | 96 h | 144 h | 96 h | 144 h | ||
Iron–sulfur cluster assembly | |||||||||||
Iron–sulfur cluster assembly protein | M7X0I3 | 0.42 | 0.44 | n.d. | down | Iron–sulfur cluster assembly protein | A0A0K3C953 | n.d. | up | 0.28 | n.d. |
Iron–sulfur cluster assembly accessory protein Isa2 | M7WS85 | n.d. | 0.47 | 3.70 | 5.44 | Probable cytosolic iron-sulfur protein assembly protein 1 | A0A0K3C8P4 | up | n.d. | 0.46 | 0.48 |
Fe–S cluster assembly protein DRE2 | M7WV82 | n.d. | 0.24 | n.d. | up | Fe–S cluster assembly protein DRE2 | A0A2T0AFS9 | n.d. | 3.54 | n.d. | up |
Cytosolic Fe–S cluster assembly factor NBP35 | M7WL71 | up | 0.28 | n.d. | 0.18 | ||||||
Cytosolic Fe–S cluster assembly factor CFD1 | M7X358 | down | 0.37 | down | 2.35 | ||||||
Iron transporter | |||||||||||
Zip-like iron-zinc transporter | M7X8Q2 | 10.14 | 4.85 | 33.33 | 4.31 | Zip-like iron-zinc transporter | A0A0K3CEY7 | 18.26 | 7.18 | n.d. | n.d. |
Zip-like iron-zinc transporter | M7WSK3 | n.d. | 0.4 | up | n.d. | ||||||
Iron permease | M7X6M4 | n.d. | up | 0.34 | up | Iron permease FTR1/Fip1/EfeU | A0A2T0A4Z9 | 3.94 | up | n.d. | 2.38 |
MFS transporter siderophore-iron: H+ symporter | M7WNH3 | 0.26 | n.d. | 0.30 | down | MFS transporter siderochrome-iron transporter | A0A0K3C6P7 | up | n.d. | n.d. | 3.70 |
Iron/copper transporter Atx1 | M7X0X4 | down | 0.44 | up | 2.81 | ||||||
Iron complex transport system ATP-binding protein | M7X547 | 3.12 | up | n.d. | down | Iron complex transport system ATP-binding protein | A0A0K3CJI3 | up | 2.47 | down | down |
Siderophore iron transporter mirC | M7X1M8 | up | 5.07 | down | n.d. | Siderophore iron transporter mirC | A0A0K3CCV2 | down | up | 0.25 | 3.33 |
3.6.3. Effect of Copper on Zinc Proteins
IFO0559 | IFO0880 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu(I) | Cu(II) | Cu(I) | Cu(II) | ||||||||
Accession | 96 h | 144 h | 96 h | 144 h | Accession | 96 h | 144 h | 96 h | 144 h | ||
Zinc homeostasis | |||||||||||
Protein of cation efflux protein family zinc transporter | M7XE18 | 0.44 | n.d. | 0.37 | 0.46 | Mitochondrial zinc maintenance protein 1 mitochondria | A0A0K3CHC4 | up | n.d. | down | 0.34 |
Cation efflux protein zinc transporter | M7XHN8 | up | 3.13 | 0.30 | n.d. | Mitochondrial zinc maintenance protein 1 mitochondria | A0A0K3CUM1 | 3.41 | up | up | n.d. |
Solute carrier family 30 (Zinc transporter) member 1 | M7WTR0 | up | 2.82 | n.d. | down | Mitochondrial zinc maintenance protein 1 mitochondria | A0A2T0AG28 | n.d. | 2.06 | n.d. | n.d. |
Zip-like iron-zinc transporter | M7X8Q2 | 10.14 | 4.85 | 33.33 | 4.31 | Zip-like iron-zinc transporter | A0A0K3CEY7 | 18.26 | 7.18 | n.d. | n.d. |
Zip-like iron-zinc transporter | M7WSK3 | n.d. | 0.4 | up | n.d. |
3.6.4. Storage of Copper Ions
IFO0559 | IFO0880 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu(I) | Cu(II) | Cu(I) | Cu(II) | |||||||
Accession | 96 h | 144 h | 96 h | 144 h | Accession | 96 h | 144 h | 96 h | 144 h | |
Copper ion storage | ||||||||||
Lipid droplet protein 1 (Perilipin-like protein) LDP1 | M7WE51 | n.d. | down | 2.56 | up | A0A2T0A369 | down | 2.23 | n.d. | 16.67 |
Vacuolar ABC heavy metal transporter Hmt1 | M7XIA9 | 17.38 | 7.36 | 5.26 | 2.74 | A0A0K3CL56 | 7.26 | 9.22 | 3.70 | 5.56 |
Vacuolar calcium ion transporter H+ exchanger | M7X2U4 | 0.28 | 2.58 | 0.22 | 34.66 | |||||
Vacuolar calcium ion transporter | M7XNE5 | 2.03 | 3.38 | n.d. | n.d. | A0A2T0A7V0 | n.d. | n.d. | down | n.d. |
Copper P-type ATPase | A0A2T0A6Z7 | 2.81 | 3.19 | n.d. | 2.17 | |||||
Vacuolar transporter chaperone 2 | M7WMK7 | 64.00 | 17.05 | n.d. | n.d. | |||||
Vacuolar transporter chaperone 4 | M7XMX5 | n.d. | 2.26 | n.d. | n.d. | |||||
Mitochondrial inner membrane metallopeptidase Oma1 | M7X2Q6 | down | n.d. | down | down | A0A0K3C9S0 | down | 0.46 | n.d. | n.d. |
Mitochondrial outer membrane protein IML2 | M7X0Q4 | n.d. | up | down | down | A0A2T0A031 | n.d. | up | 0.40 | down |
Maintenance of mitochondrial morphology protein 1 MMM1 | M7X412 | 0.38 | down | down | n.d. | A0A2T0AGR5 | down | down | n.d. | n.d. |
Mitochondrial distribution and morphology protein 12 MDM12 | M7X8M4 | n.d. | up | n.d. | n.d. | A0A0K3C7P5 | n.d. | up | n.d. | 0.50 |
Mitochondrial distribution and morphology protein 10 MDM10 | M7WSP8 | n.d. | 0.34 | n.d. | down | A0A0K3CJ28 | 0.5 | down | 2.33 | up |
Sensitive to high expression protein 9, mitochondrial | M7XMC6 | 0.41 | n.d. | 0.39 | n.d. | A0A2T0AFZ7 | n.d. | n.d. | n.d. | n.d. |
Mitochondrial inner membrane protein 1 | M7XNS0 | n.d. | n.d. | 0.35 | down | A0A0K3CI34 | 0.29 | down | up | n.d. |
Mitochondrial ABC transporter ATM | M7XAM6 | 4.62 | 4.85 | up | up |
3.6.5. Effect of Copper on the Fatty Acid Profile
IFO0559 | IFO0880 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu(I) | Cu(II) | Cu(I) | Cu(II) | |||||||
Accession | 96 h | 144 h | 96 h | 144 h | Accession | 96 h | 144 h | 96 h | 144 h | |
Fatty acid biosynthesis | ||||||||||
ATP citrate synthase Acl1 | M7WHC9 | 2.61 | up | up | 3.33 | A0A0K3CJ29 | 2.2 | up | up | up |
Malic enzyme Me1 | M7WHN9 | up | up | 2.44 | up | A0A0K3CAF6 | 0.35 | down | n.d. | 0.49 |
Acetyl-CoA carboxylase Acc1 | M7XLR4 | 4.25 | 3.93 | n.d. | up | A0A0K3C6V6 | up | up | down | down |
Fatty acid synthase subunit beta, fungi type Fas1 | M7WSW5 | 3.47 | 2.29 | up | n.d. | |||||
Fatty acid synthase subunit alpha, fungi type Fas2 | M7XM89 | 4.09 | 2.95 | up | up | A0A0K3C4G6 | 2.76 | up | n.d. | down |
Glycerol-3-phosphate dehydrogenase (NAD+) Gpd | M7WSY9 | n.d. | n.d. | up | n.d. | A0A2S9ZYP9 | 0.27 | 0.48 | down | down |
Glycerol-3-phosphate dehydrogenase (NAD+) Gpd | A0A2T0A892 | down | up | up | n.d. | |||||
Glycerol-3-phosphate dehydrogenase (NAD+) Gpd | A0A0K3CDD5 | 0.48 | down | up | up | |||||
Glycerol-3-phosphate O-acyltransferase Gat1 | M7X5G5 | 2.66 | up | n.d. | down | A0A0K3CHG4 | down | up | down | 4.35 |
Delta-9 fatty acid desaturase 9FAD | M7XI95 | up | up | down | n.d. | A0A191UMV5 | n.d. | 2.03 | up | up |
Diacylglycerol O-acyltransferase DGA1 | M7WKS9 | up | n.d. | n.d. | n.d. | A0A191UMW0 | down | 3.13 | n.d. | n.d. |
3.6.6. Effect of Ammonia Supplementation on the Protein Expression
IFO0559 | IFO0880 | |||||
---|---|---|---|---|---|---|
Accession | 96 h | 144 h | Accession | 96 h | 144 h | |
Ammonia and Urea Cylce | ||||||
Glutamate dehydrogenase (NADP+) Gdh1 | M7X2B5 | down | up | A0A2T0AGW3 | n.d. | n.d. |
Glutamine synthetase Gln1 | M7XEY4 | n.d. | up | A0A0K3C755 | up | n.d. |
Glutamine synthetase Gln2 | M7Y051 | 0.49 | n.d. | A0A0K3CSP6 | n.d. | 0.44 |
Glutamate synthase (NADPH/NADH) Glt1 | M7WY92 | n.d. | n.d. | A0A0K3CF34 | down | n.d. |
Arginosuccinase | M7X7Q5 | up | n.d. | A0A0K3CRK9 | up | 2.63 |
Argininosuccinate synthase | M7WMY0 | 2.08 | up | A0A0K3CJ95 | up | up |
Arginase | M7XGF4 | 2.17 | n.d. | A0A0K3CJ80 | 3.57 | up |
Ornithine carbamoyltransferase | M7WUR1 | up | n.d. | A0A2T0AE55 | 2.44 | up |
Carbamoyl-phosphate synthase (glutamine-hydrolyzing) | M7WUQ8 | down | up | A0A0K3C8U1 | 0.39 | 0.33 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Z.; Zhang, S.; Odoh, C.K.; Jin, M.; Zhao, Z.K. Rhodosporidium toruloides—A potential red yeast chassis for lipids and beyond. FEMS Yeast Res. 2020, 20, foaa038. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, B.; Li, J.; Zhang, J. Rhodotorula toruloides: An ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J. Microbiol. Biotechnol. 2021, 38, 13. [Google Scholar] [CrossRef]
- Mannazzu, I.; Landolfo, S.; Lopes da Silva, T.; Buzzini, P. Red yeasts and carotenoid production: Outlining a future for non-conventional yeasts of biotechnological interest. World J. Microbiol. Biotechnol. 2015, 31, 1665–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.K.; Nicaud, J.M.; Ledesma-Amaro, R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol. 2018, 36, 304–317. [Google Scholar] [CrossRef]
- Saini, R.; Hegde, K.; Brar, S.K.; Vezina, P. Advanced biofuel production and road to commercialization: An insight into bioconversion potential of Rhodosporidium sp. Biomass Bioenergy 2020, 132, 105439. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chu, Y.; Zhang, Q.; Zhou, R.; Yu, D.; Wang, S.; Lyu, L.; Xu, G.; Zhao, Z.K. Genetic manipulation of the interconversion between diacylglycerols and triacylglycerols in Rhodosporidium toruloides. Front. Bioeng. Biotechnol. 2022, 10, 1034972. [Google Scholar] [CrossRef]
- Saini, R.; Hegde, K.; Osorio-Gonzalez, C.S.; Brar, S.K.; Vezina, P. Evaluating the Potential of Rhodosporidium toruloides-1588 for High Lipid Production Using Undetoxified Wood Hydrolysate as a Carbon Source. Energies 2020, 13, 5960. [Google Scholar] [CrossRef]
- Michou, S.; Tsouko, E.; Vastaroucha, E.-S.; Diamantopoulou, P.; Papanikolaou, S. Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. Fermentation 2022, 8, 713. [Google Scholar] [CrossRef]
- Filippousi, R.; Diamantopoulou, P.; Stavropoulou, M.; Makris, D.P.; Papanikolaou, S. Lipid production by Rhodosporidium toruloides from biodiesel-derived glycerol in shake flasks and bioreactor: Impact of initial C/N molar ratio and added onion-peel extract. Process Biochem. 2022, 123, 52–62. [Google Scholar] [CrossRef]
- Zhang, S.; Skerker, J.M.; Rutter, C.D.; Maurer, M.J.; Arkin, A.P.; Rao, C.V. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol. Bioeng. 2016, 113, 1056–1066. [Google Scholar] [CrossRef]
- Farrugia, G.; Balzan, R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2012, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Engelhart-Straub, S.; Cavelius, P.; Holzl, F.; Haack, M.; Awad, D.; Brueck, T.; Mehlmer, N. Effects of Light on Growth and Metabolism of Rhodococcus erythropolis. Microorganisms 2022, 10, 1680. [Google Scholar] [CrossRef]
- Liu, H.L.; Chang, J.J.; Thia, C.; Lin, Y.J.; Lo, S.C.; Huang, C.C.; Li, W.H. Characterizing an engineered carotenoid-producing yeast as an anti-stress chassis for building cell factories. Microb. Cell Fact 2019, 18, 155. [Google Scholar] [CrossRef]
- Wu, C.C.; Ohashi, T.; Misaki, R.; Limtong, S.; Fujiyama, K. Ethanol and H2O2 stresses enhance lipid production in an oleaginous Rhodotorula toruloides thermotolerant mutant L1-1. FEMS Yeast Res. 2020, 20, foaa030. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Guo, X.; Du, Z.; Liu, X.; Jing, J.; Zhou, C.; Cheng, Y.; Wang, Z.; He, X.P. Enhancement of Intracellular Accumulation of Copper by Biogenesis of Lipid Droplets in Saccharomyces cerevisiae Revealed by Transcriptomic Analysis. J. Agric. Food Chem. 2022, 70, 7170–7179. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, J.; Wang, X.; Wang, Z.; Tang, L.; Chen, H.; Li, Z. Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: From extracellular to intracellular. Appl. Microbiol. Biotechnol. 2020, 104, 10181–10190. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, N.; Prasad, M.N. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 2001, 160, 291–299. [Google Scholar] [CrossRef]
- Irazusta, V.; Estevez, C.; Amoroso, M.J.; de Figueroa, L.I. Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. Biometals 2012, 25, 517–527. [Google Scholar] [CrossRef]
- Shaigani, P.; Awad, D.; Redai, V.; Fuchs, M.; Haack, M.; Mehlmer, N.; Brueck, T. Oleaginous yeasts- substrate preference and lipid productivity: A view on the performance of microbial lipid producers. Microb. Cell Fact 2021, 20, 220. [Google Scholar] [CrossRef]
- Awad, D.; Brueck, T. Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal. Bioanal. Chem. 2020, 412, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.; Melcher, F.; Rerop, Z.S.; Lorenzen, J.; Shaigani, P.; Awad, D.; Haack, M.; Prem, S.A.; Masri, M.; Mehlmer, N.; et al. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb. Cell Fact 2021, 20, 205. [Google Scholar] [CrossRef]
- Tran, N.H.; Qiao, R.; Xin, L.; Chen, X.; Liu, C.; Zhang, X.; Shan, B.; Ghodsi, A.; Li, M. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat. Methods 2019, 16, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Rahman, M.Z.; He, L.; Xin, L.; Shan, B.; Li, M. Complete De Novo Assembly of Monoclonal Antibody Sequences. Sci. Rep. 2016, 6, 31730. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.H.; Zhang, X.; Xin, L.; Shan, B.; Li, M. De novo peptide sequencing by deep learning. Proc. Natl. Acad. Sci. USA 2017, 114, 8247–8252. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Kan, G.; Wang, X.; Jiang, J.; Zhang, C.; Chi, M.; Ju, Y.; Shi, C. Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic. Microbiologyopen 2019, 8, e00657. [Google Scholar] [CrossRef]
- Pham, K.D.; Shida, Y.; Miyata, A.; Takamizawa, T.; Suzuki, Y.; Ara, S.; Yamazaki, H.; Masaki, K.; Mori, K.; Aburatani, S.; et al. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Biosci. Biotechnol. Biochem. 2020, 84, 1501–1512. [Google Scholar] [CrossRef]
- El-Banna, A.A.; El-Razek, A.M.A.; El-Mahdy, A.R. Some Factors Affecting the Production of Carotenoids by Rhodotorula glutinis var. glutinis. Food Nutr. Sci. 2012, 03, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Bhosale, P.B.; Gadre, R.V. Production of beta-carotene by a mutant of Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2001, 55, 423–427. [Google Scholar] [CrossRef]
- Elfeky, N.; Elmahmoudy, M.; Bao, Y. Manipulation of Culture Conditions: Tool for Correlating/Improving Lipid and Carotenoid Production by Rhodotorula glutinis. Processes 2020, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, A.; Avery, S.V.; Willetts, S.A.; Houghton, J.E. Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett. 2004, 556, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Beswick, P.H.; Hall, G.H.; Hook, A.J.; Little, K.; McBrien, D.C.; Lott, K.A. Copper toxicity: Evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem. Biol. Interact. 1976, 14, 347–356. [Google Scholar] [CrossRef]
- Shi, X.; Stoj, C.; Romeo, A.; Kosman, D.J.; Zhu, Z. Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 50309–50315. [Google Scholar] [CrossRef] [Green Version]
- Irazusta, V.; Nieto-Peñalver, C.G.; Cabral, M.E.; Amoroso, M.J.; de Figueroa, L.I.C. Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem. 2013, 48, 803–809. [Google Scholar] [CrossRef]
- Sampath, H.; Ntambi, J.M. Polyunsaturated Fatty Acid Regulation of Genes of Lipid Metabolism. Annu. Rev. Nutr. 2005, 25, 317–340. [Google Scholar] [CrossRef]
- Shanklin, J.; Cahoon, E.B. Desaturation and Related Modifications of Fatty Acids1. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 611–641. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.; Gonzalez, C.S.O.; Hegde, K.; Brar, S.K.; Vezina, P. Evaluating the Effect of Trace Metal Salts on Lipid Accumulation Ability of Rhodosporidium toruloides-1588 Using Wood Hydrolysate as a Carbon Source. BioEnergy Res. 2022, 1–8. [Google Scholar] [CrossRef]
- Tkáčová, J.; Čaplová, J.; Klempová, T.; Čertík, M. Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis. Ann. Microbiol. 2017, 67, 541–551. [Google Scholar] [CrossRef]
- Hopkins, B.L.; Neumann, C.A. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox. Biol. 2019, 21, 101104. [Google Scholar] [CrossRef]
- Grant, C.M.; MacIver, F.H.; Dawes, I.W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 1997, 410, 219–222. [Google Scholar] [CrossRef]
- Li, L.; Hou, M.; Cao, L.; Xia, Y.; Shen, Z.; Hu, Z. Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ. Exp. Bot. 2018, 155, 313–320. [Google Scholar] [CrossRef]
- Penninckx, M. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme. Microb. Technol. 2000, 26, 737–742. [Google Scholar] [CrossRef]
- Gonzalez, C.F.; Proudfoot, M.; Brown, G.; Korniyenko, Y.; Mori, H.; Savchenko, A.V.; Yakunin, A.F. Molecular basis of formaldehyde detoxification. Characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG. J. Biol. Chem. 2006, 281, 14514–14522. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Tran, L.-T.; Yoshikawa, K.; Murata, K.; Kimura, A. Purification and characterization of glyoxalase I from Hansenula mrakii. J. Ferment. Bioeng. 1991, 71, 131–133. [Google Scholar] [CrossRef]
- Chakraborty, S.; Gogoi, M.; Chakravortty, D. Lactoylglutathione lyase, a critical enzyme in methylglyoxal detoxification, contributes to survival of Salmonella in the nutrient rich environment. Virulence 2015, 6, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Macomber, L.; Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 8344–8349. [Google Scholar] [CrossRef] [Green Version]
- Reeder, N.L.; Kaplan, J.; Xu, J.; Youngquist, R.S.; Wallace, J.; Hu, P.; Juhlin, K.D.; Schwartz, J.R.; Grant, R.A.; Fieno, A.; et al. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob Agents Chemother 2011, 55, 5753–5760. [Google Scholar] [CrossRef] [Green Version]
- Chillappagari, S.; Seubert, A.; Trip, H.; Kuipers, O.P.; Marahiel, M.A.; Miethke, M. Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J. Bacteriol. 2010, 192, 2512–2524. [Google Scholar] [CrossRef] [Green Version]
- Barber, R.G.; Grenier, Z.A.; Burkhead, J.L. Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.A.; Pederick, V.G.; Elbourne, L.D.; Paulsen, I.T.; Paton, J.C.; McDevitt, C.A.; Eijkelkamp, B.A. Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiol. 2017, 17, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; McRae, R.; Henary, M.M.; Patel, R.; Lai, B.; Vogt, S.; Fahrni, C.J. Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 11179–11184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Zhang, S.; Liu, H.; Shen, H.; Lin, X.; Yang, F.; Zhou, Y.J.; Jin, G.; Ye, M.; Zou, H.; et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat. Commun. 2012, 3, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; St Leger, R.J. The Metarhizium anisopliae Perilipin Homolog MPL1 Regulates Lipid Metabolism, Appressorial Turgor Pressure, and Virulence. J. Biol. Chem. 2007, 282, 21110–21115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Ding, Y.; Gong, Z.; Yang, L.; Zhang, S.; Zhang, C.; Lin, X.; Shen, H.; Zou, H.; Xie, Z.; et al. Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides. Eukaryot. Cell 2015, 14, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, D.F.; Kreppel, L.; Speiser, D.M.; Scheel, G.; McDonald, G.; Ow, D.W. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 1992, 11, 3491–3499. [Google Scholar] [CrossRef]
- Li, X.; Qian, J.; Wang, C.; Zheng, K.; Ye, L.; Fu, Y.; Han, N.; Bian, H.; Pan, J.; Wang, J.; et al. Regulating cytoplasmic calcium homeostasis can reduce aluminum toxicity in yeast. PLoS ONE 2011, 6, e21148. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Wang, L.; Jiang, X.; Wu, B.; Li, M. Functions of the C2H2 Transcription Factor Gene thmea1 in Trichoderma harzianum under Copper Stress Based on Transcriptome Analysis. Biomed. Res. Int. 2018, 2018, 8149682. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Jiang, Y.; Yang, Y.; Peng, Y.; Li, C. Copper metabolism in Saccharomyces cerevisiae: An update. Biometals 2021, 34, 3–14. [Google Scholar] [CrossRef]
- Chang, A.L.; Doering, T.L. Maintenance of Mitochondrial Morphology in Cryptococcus neoformans Is Critical for Stress Resistance and Virulence. Mbio 2018, 9, e01375-18. [Google Scholar] [CrossRef] [Green Version]
- Bohovych, I.; Donaldson, G.; Christianson, S.; Zahayko, N.; Khalimonchuk, O. Stress-triggered activation of the metalloprotease Oma1 involves its C-terminal region and is important for mitochondrial stress protection in yeast. J. Biol. Chem. 2014, 289, 13259–13272. [Google Scholar] [CrossRef] [Green Version]
- Levytskyy, R.M.; Bohovych, I.; Khalimonchuk, O. Metalloproteases of the Inner Mitochondrial Membrane. Biochemistry 2017, 56, 4737–4746. [Google Scholar] [CrossRef]
- Baker, M.J.; Lampe, P.A.; Stojanovski, D.; Korwitz, A.; Anand, R.; Tatsuta, T.; Langer, T. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 2014, 33, 578–593. [Google Scholar] [CrossRef] [Green Version]
- Do, E.; Park, S.; Li, M.H.; Wang, J.M.; Ding, C.; Kronstad, J.W.; Jung, W.H. The mitochondrial ABC transporter Atm1 plays a role in iron metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Med. Mycol. 2018, 56, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Santamarina, S.; Uzarska, M.A.; Festa, R.A.; Lill, R.; Thiele, D.J. Cryptococcus neoformans Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress. Mbio 2017, 8, e01742-17. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.Y.; Ohashi, T.; Wu, C.C.; Bataa, D.; Misaki, R.; Limtong, S.; Fujiyama, K. Delta-9 fatty acid desaturase overexpression enhanced lipid production and oleic acid content in Rhodosporidium toruloides for preferable yeast lipid production. J. Biosci. Bioeng. 2019, 127, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ito, M.; Skerker, J.M.; Arkin, A.P.; Rao, C.V. Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl. Microbiol. Biotechnol. 2016, 100, 9393–9405. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, C.; Wu, D.; Lu, J.; Chen, J.; Xie, G. Enhancement of urea uptake in Chinese rice wine yeast strain N85 by the constitutive expression ofDUR3for ethyl carbamate elimination. J. Inst. Brew. 2015, 121, 257–261. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Deewan, A.; Liu, J.J.; Walukiewicz, H.E.; Yun, E.J.; Jin, Y.S.; Rao, C.V. Integrating transcriptomic and metabolomic analysis of the oleaginous yeast Rhodosporidium toruloides IFO0880 during growth under different carbon sources. Appl. Microbiol. Biotechnol. 2021, 105, 7411–7425. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Bohnen, F.; Mehlmer, N.; Brueck, T. Multi-Factorial-Guided Media Optimization for Enhanced Biomass and Lipid Formation by the Oleaginous Yeast Cutaneotrichosporon oleaginosus. Front. Bioeng. Biotechnol. 2019, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IFO0559 | IFO0880 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cu(I) | Cu(II) | Cu(I) | Cu(II) | ||||||||
Accession | 96 h | 144 h | 96 h | 144 h | Accession | 96 h | 144 h | 96 h | 144 h | ||
Catalases, peroxidases and superoxide dismutases | |||||||||||
Catalase | M7XNG2 | up | up | 0.49 | n.d. | Catalase | A0A2T0A1Z3 | 0.35 | down | up | up |
Peroxidase | M7XK01 | up | down | 2.22 | 2.76 | Superoxide dismutase | A0A2T0A5F0 | down | down | 3.85 | 3.70 |
Phosphatidic acid phosphatase type 2/haloperoxidase family protein | M7XV48 | n.d. | n.d. | 0.47 | down | Manganese superoxide dismutase | A0A0K3CNV9 | down | n.d. | up | 2.13 |
Glutathione peroxidase | M7WYV4 | up | 0.46 | up | n.d. | ||||||
Phosphatidic acid phosphatase type 2/haloperoxidase | M7XF47 | n.d. | 2.61 | n.d. | n.d. | ||||||
Redoxins | |||||||||||
Thioredoxin | M7WQ15 | n.d. | 0.3 | 2.04 | up | thioredoxin | A0A0K3CIV3 | down | n.d. | 5.88 | up |
Thioredoxin 1 | M7X589 | 3.23 | up | n.d. | up | thioredoxin h | A0A0K3CF59 | n.d. | n.d. | 10.00 | 8.33 |
Thioredoxin family Trp26 | M7XEN4 | n.d. | 0.46 | n.d. | down | thioredoxin family Trp26 | A0A0K3CFJ6 | 0.32 | down | n.d. | n.d. |
Thioredoxin fold domain protein | M7WL87 | 2.02 | 2.06 | n.d. | n.d. | Thioredoxin-like fold | A0A2T0AFR0 | up | 2.76 | n.d. | n.d. |
Thioredoxin-like fold domain protein | M7XWZ6 | 2.05 | down | up | n.d. | Thioredoxin-like_fold domain-containing protei | A0A0K3C742 | n.d. | 2.09 | down | up |
Thioredoxin-like protein 5 | M7XZL4 | down | up | 5.00 | 2.33 | Thioredoxin-domain-containing protein | A0A2T0ABL4 | n.d. | n.d. | 0.41 | n.d. |
Thioredoxin domain-containing protein | A0A2T0AIM8 | 2.02 | 2.23 | 6.25 | n.d. | ||||||
Thioredoxin-like fold | A0A2S9ZX64 | up | n.d. | 2.94 | down | ||||||
Thioredoxin-like protein | A0A2T0A3T0 | down | n.d. | 2.27 | down | ||||||
Thioredoxin-like [2Fe-2S] ferredoxin-domain containing protein | A0A2T0ADW8 | 3.33 | 3.11 | 0.07 | 2.08 | ||||||
putative Phosphoadenylyl-sulfate reductase Thioredoxin | A0A0K3CRW2 | n.d. | n.d. | n.d. | 5.56 | ||||||
Mitochondrial peroxiredoxin 6 1-Cys peroxiredoxin | M7X0P7 | 4.32 | n.d. | down | up | Mitochondrial peroxiredoxin prx1 | A0A2T0A015 | 6.15 | 2.42 | 2.78 | 3.33 |
peroxiredoxin Q/BCP | A0A0K3CD89 | n.d. | down | 3.33 | 2.63 | ||||||
Ferredoxin | M7XKB3 | down | 0.38 | n.d. | up | ||||||
Adrenodoxin-type ferredoxin | M7XYT4 | down | 0.15 | down | down | ||||||
Glutaredoxin 3 | M7XKA6 | up | down | up | 5.07 | Glutaredoxin | A0A0K3CPC6 | n.d. | n.d. | up | 2.70 |
Glutaredoxin-1 | A0A2T0A9I9 | 0.43 | 0.4 | n.d. | n.d. | ||||||
glutaredoxin domain containing protein | A0A0K3CDE9 | n.d. | up | 0.31 | up | ||||||
Redoxin | A0A2T0AE18 | up | 2.14 | n.d. | up | ||||||
Glutathione | |||||||||||
Glutathione S-transferase | M7WZE5 | 4.52 | up | 2.17 | up | glutathione S-transferase | A0A0K3C9R2 | 7.38 | 5.01 | 10.00 | 7.14 |
Glutathione S-transferase | M7X890 | 3.23 | down | 0.40 | 0.29 | glutathione S-transferase | A0A0K3CP32 | 6.28 | 9.48 | 3.13 | 4.17 |
Glutamate synthase (NADH) | M7WY92 | n.d. | n.d. | 6.67 | n.d. | Glutathione S-transferase | A0A2T0AH77 | 3.09 | 3.94 | 2.78 | 3.45 |
Glutathione S-transferase | M7WRR3 | 2.09 | up | n.d. | up | Glutathione-S-transferase | A0A0K3CPH2 | n.d. | up | 3.23 | 2.78 |
Glutathione S-transferase | M7XMG8 | 3.57 | up | n.d. | up | Glutathione S-transferase kappa | A0A0K3CEA2 | up | 0.44 | 2.78 | n.d. |
Glutathione S-transferase | M7WLE1 | n.d. | 0.41 | down | n.d. | Glutathione-S-transferase | A0A2T0A4G8 | n.d. | up | up | 2.94 |
Glutathione S-transferase domain containing protein | M7Y0E4 | 2.26 | n.d. | n.d. | n.d. | Glutathione S-transferase C-terminal-like protein | A0A2T0AI77 | up | down | n.d. | 2.70 |
Glutathione S-transferase C-terminal-like protein | A0A0K3CLG9 | up | up | 2.22 | up | ||||||
Glutathione S-transferase C-terminal-like protein | A0A2S9ZZV1 | up | up | 0.15 | up | ||||||
Glutathione S-transferase (fragment) | A0A2T0A7J4 | 2.01 | 2.32 | n.d. | up | ||||||
glutathione transferase omega-1 | A0A0K3CKG3 | n.d. | down | 2.13 | n.d. | ||||||
Glutathione transferase omega-1 | A0A2T0AG77 | n.d. | 12.94 | n.d. | n.d. | ||||||
Glutamate synthase (NADH) | A0A0K3CF34 | 5.00 | down | 2.86 | up | ||||||
Glutamate--cysteine ligase | A0A0K3CD10 | 5.22 | 4.47 | 3.33 | 5.88 | ||||||
Glutathione synthetase | M7WY92 | n.d. | n.d. | 6.67 | n.d. | Glutathione synthetase | A0A2T0A1D6 | up | n.d. | 2.00 | up |
S-formylglutathione hydrolas | A0A0K3CIW3 | n.d. | down | 3.85 | 9.09 | ||||||
Lactoylglutathione lyase | A0A061B476 | n.d. | up | 3.33 | 2.56 | ||||||
Glutathione hydrolase | A0A2T0A164 | 0.49 | up | up | 5.00 | ||||||
Hydroxyacylglutathione hydrolase | M7XFE4 | 2.49 | n.d. | n.d. | n.d. | Hydroxyacylglutathione hydrolase | A0A2T0ADD4 | down | n.d. | up | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavelius, P.; Engelhart-Straub, S.; Biewald, A.; Haack, M.; Awad, D.; Brueck, T.; Mehlmer, N. Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress. Microorganisms 2023, 11, 553. https://doi.org/10.3390/microorganisms11030553
Cavelius P, Engelhart-Straub S, Biewald A, Haack M, Awad D, Brueck T, Mehlmer N. Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress. Microorganisms. 2023; 11(3):553. https://doi.org/10.3390/microorganisms11030553
Chicago/Turabian StyleCavelius, Philipp, Selina Engelhart-Straub, Alexander Biewald, Martina Haack, Dania Awad, Thomas Brueck, and Norbert Mehlmer. 2023. "Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress" Microorganisms 11, no. 3: 553. https://doi.org/10.3390/microorganisms11030553
APA StyleCavelius, P., Engelhart-Straub, S., Biewald, A., Haack, M., Awad, D., Brueck, T., & Mehlmer, N. (2023). Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress. Microorganisms, 11(3), 553. https://doi.org/10.3390/microorganisms11030553