Rotaviruses in Wild Ungulates from Germany, 2019–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Nucleic Acid Extraction and Real-Time RT-PCR
2.3. Genotyping of RVA Strains
2.4. Calculation of Nucleotide Sequence Identities and Phylogenetic Analysis of RVA Sequences
3. Results
3.1. Detection of RVA in Samples of Wild Ungulates from Germany
3.2. Genotyping of Detected RVA Strains
3.3. Nucleotide Sequence Identities with Closely Related RVA Strains
3.4. Phylogenetic Analysis of Nucleotide Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Otto, P.H.; Ahmed, M.U.; Hotzel, H.; Machnowska, P.; Reetz, J.; Roth, B.; Trojnar, E.; Johne, R. Detection of avian rotaviruses of groups A, D, F and G in diseased chickens and turkeys from Europe and Bangladesh. Vet. Microbiol. 2012, 156, 8–15. [Google Scholar] [CrossRef]
- Otto, P.H.; Rosenhain, S.; Elschner, M.C.; Hotzel, H.; Machnowska, P.; Trojnar, E.; Hoffmann, K.; Johne, R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet. Microbiol. 2015, 179, 168–176. [Google Scholar] [CrossRef]
- Simsek, C.; Corman, V.M.; Everling, H.U.; Lukashev, A.N.; Rasche, A.; Maganga, G.D.; Binger, T.; Jansen, D.; Beller, L.; Deboutte, W.; et al. At Least Seven Distinct Rotavirus Genotype Constellations in Bats with Evidence of Reassortment and Zoonotic Transmissions. mBio 2021, 12, e02755-20. [Google Scholar] [CrossRef] [PubMed]
- Sachsenröder, J.; Braun, A.; Machnowska, P.; Ng, T.F.F.; Deng, X.; Guenther, S.; Bernstein, S.; Ulrich, R.G.; Delwart, E.; Johne, R. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J. Gen. Virol. 2014, 95 Pt 12, 2734–2747. [Google Scholar] [CrossRef] [Green Version]
- Niendorf, S.; Harms, D.; Hellendahl, K.F.; Heuser, E.; Böttcher, S.; Bock, C.T.; Ulrich, R.G. Presence and Diversity of Different Enteric Viruses in Wild Norway Rats (Rattus norvegicus). Viruses 2021, 13, 992. [Google Scholar] [CrossRef]
- Falkenhagen, A.; Tausch, S.H.; Labutin, A.; Grützke, J.; Heckel, G.; Ulrich, R.G.; Johne, R. Genetic and biological characteristics of species A rotaviruses detected in common shrews suggest a distinct evolutionary trajectory. Virus Evol. 2022, 8, veac004. [Google Scholar] [CrossRef] [PubMed]
- Johne, R.; Tausch, S.H.; Schilling-Loeffler, K.; Ulrich, R.G. Genome sequence analysis of a novel rotavirus strain indicates a broad genetic diversity of rotavirus A in shrews. Infect. Genet. Evol. 2023, 107, 105392. [Google Scholar] [CrossRef] [PubMed]
- Moutelíková, R.; Dufková, L.; Kamler, J.; Drimaj, J.; Plhal, R.; Prodělalová, J. Epidemiological survey of enteric viruses in wild boars in the Czech Republic: First evidence of close relationship between wild boar and human rotavirus A strains. Vet. Microbiol. 2016, 193, 28–35. [Google Scholar] [CrossRef]
- Čolić, D.; Krešić, N.; Mihaljević, Ž.; Andreanszky, T.; Balić, D.; Lolić, M.; Brnić, D. A Remarkable Genetic Diversity of Rotavirus A Circulating in Red Fox Population in Croatia. Pathogens 2021, 10, 485. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Attoui, H.; Bányai, K.; Brussaard, C.P.D.; Danthi, P.; Del Vas, M.; Dermody, T.S.; Duncan, R.; Fāng, Q.; Johne, R.; et al. ICTV Virus Taxonomy Profile: Sedoreoviridae 2022. J. Gen. Virol. 2022, 103, 001782. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, E.; Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in low-income settings. Muc. Immunol. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johne, R.; Tausch, S.H.; Grützke, J.; Falkenhagen, A.; Patzina-Mehling, C.; Beer, M.; Höper, D.; Ulrich, R.G. Distantly Related Rotaviruses in Common Shrews, Germany, 2004-2014. Emerg. Inf. Dis. 2019, 25, 2310–2314. [Google Scholar] [CrossRef]
- Johne, R.; Schilling-Loeffler, K.; Ulrich, R.G.; Tausch, S.H. Whole Genome Sequence Analysis of a Prototype Strain of the Novel Putative Rotavirus Species L. Viruses 2022, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Bányai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotavirus Classification Working Group. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (accessed on 22 December 2022).
- Martella, V.; Bányai, K.; Matthijnssens, J.; Buonavoglia, C.; Ciarlet, M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 2010, 140, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Díaz Alarcón, R.G.; Liotta, D.J.; Miño, S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022, 14, 2554. [Google Scholar] [CrossRef]
- Okadera, K.; Abe, M.; Ito, N.; Morikawa, S.; Yamasaki, A.; Masatani, T.; Nakagawa, K.; Yamaoka, S.; Sugiyama, M. Evidence of natural transmission of group A rotavirus between domestic pigs and wild boars (Sus scrofa) in Japan. Infect. Genet. Evol. 2013, 20, 54–60. [Google Scholar] [CrossRef]
- Brnić, D.; Čolić, D.; Kunić, V.; Maltar-Strmečki, N.; Krešić, N.; Konjević, D.; Bujanić, M.; Bačani, I.; Hižman, D.; Jemeršić, L. Rotavirus A in Domestic Pigs and Wild Boars: High Genetic Diversity and Interspecies Transmission. Viruses 2022, 14, 2028. [Google Scholar] [CrossRef]
- Jamnikar-Ciglenecki, U.; Kuhar, U.; Sturm, S.; Kirbis, A.; Racki, N.; Steyer, A. The first detection and whole genome characterization of the G6P[15] group A rotavirus strain from roe deer. Vet. Microbiol. 2016, 191, 52–59. [Google Scholar] [CrossRef]
- Jamnikar-Ciglenecki, U.; Kuhar, U.; Steyer, A.; Kirbis, A. Whole genome sequence and a phylogenetic analysis of the G8P[14] group A rotavirus strain from roe deer. BMC Vet. Res. 2017, 13, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Choi, H.; Yoon, J.; Woo, C.; Chung, H.M.; Kim, J.T.; Shin, J.H. Pathogens in water deer (Hydropotes inermis) in South Korea, 2010–2012. J. Wildl. Dis. 2014, 50, 478–483. [Google Scholar] [CrossRef]
- Tzipori, S.; Caple, I.W.; Butler, R. Isolation of a rotavirus from deer. Vet. Rec. 1976, 99, 398. [Google Scholar] [CrossRef]
- Anbalagan, S.; Peterson, J. Detection and Whole-Genome Characterization of a G8P[1] Group A Rotavirus Strain from Deer. Genome Announc. 2016, 4, e01339-16. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.L.; Lee, B.; Boroumand, N.; Leblanc, B.; Preiksaitis, J.K.; Yu Ip, C.C. Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. J. Med. Virol. 2004, 72, 496–501. [Google Scholar] [CrossRef]
- Ruhanya, V.; Diez-Valcarce, M.; D’Agostino, M.; Cook, N.; Hernández, M.; Rodríguez-Lázaro, D. Monitoring of Extraction Efficiency by a Sample Process Control Virus Added Immediately Upon Sample Receipt. Food Environ. Virol. 2015, 7, 413–416. [Google Scholar] [CrossRef]
- Eurorotanet. Rotavirus Detection and Typing Version 4. 2009. Available online: https://www.eurorotanet.com/project-information/documents-and-methods/ (accessed on 28 September 2022).
- Mijatovic-Rustempasic, S.; Esona, M.D.; Williams, A.L.; Bowen, M.D. Sensitive and specific nested PCR assay for detection of rotavirus A in samples with a low viral load. J. Virol. Methods 2016, 236, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Theuns, S.; Desmarets, L.M.; Heylen, E.; Zeller, M.; Dedeurwaerder, A.; Roukaerts, I.D.; Van Ranst, M.; Matthijnssens, J.; Nauwynck, H.J. Porcine group A rotaviruses with heterogeneous VP7 and VP4 genotype combinations can be found together with enteric bacteria on Belgian swine farms. Vet. Microbiol. 2014, 172, 23–34. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Saltik, H.S.; Kale, M.; Atli, K. First molecular evidence of border disease virus in wild boars in Turkey. Vet. Res. Comm. 2022, 46, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Vlasova, A.N.; Amimo, J.O.; Saif, L.J. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017, 9, 48. [Google Scholar] [CrossRef]
- Kumar, D.; Shepherd, F.K.; Springer, N.L.; Mwangi, W.; Marthaler, D.G. Rotavirus Infection in Swine: Genotypic Diversity, Immune Responses, and Role of Gut Microbiome in Rotavirus Immunity. Pathogens 2022, 11, 1078. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, W.; Zhai, J.; Chen, X.; Qi, Y. Prevalence of bovine rotavirus among cattle in mainland China: A meta-analysis. Microbial Pathog. 2022, 170, 105727. [Google Scholar] [CrossRef]
- Trimmel, N.E.; Walzer, C. Infectious Wildlife Diseases in Austria—A Literature Review From 1980 Until 2017. Front. Vet. Sci. 2020, 7, 3. [Google Scholar] [CrossRef] [Green Version]
Sample Number | Animal Species | Age Group | Hunting Area | Year of Sampling | RVA-Specific Ct Value |
---|---|---|---|---|---|
324 | Fallow deer | 2–3 years | I | 2019 | 35.9 |
489 | Wild boar | 1–2 years | B | 2019 | 35.1 |
490 | Wild boar | <1 year | B | 2019 | 35.5 |
537 | Roe deer | <1 year | M | 2019 | 35.4 |
272 | Roe deer | <1 year | H | 2021 | 35.8 |
292 | Fallow deer | <1 year | I | 2021 | 37.3 |
Sample Number | Animal Species | RT-PCR [29] ~880 bp (G-Type) | Nested PCR [29] ~300 bp (G-Type) | Nested PCR [30] ~200 bp (G-Type) | RT-PCR [31] ~800 bp (P-Type) | Nested PCR [30] ~210 bp (P-Type) |
---|---|---|---|---|---|---|
324 | Fallow deer | - | + (G3) | + (G3) | - | - |
489 | Wild boar | + (G3) | + (nd 1) | + (nd) | + (P[13]) | + (nd) |
490 | Wild boar | + (G3) | + (nd) | + (nd) | + (P[13]) | + (nd) |
537 | Roe deer | - | - | + (G10) | - | + (P[15]) |
272 | Roe deer | - | + (G10) | + (nd) | + (P[15]) | + (nd) |
292 | Fallow deer | + (G3) | + (nd) | + (nd) | + (P[3]) | + (nd) |
Sample Number | Animal Species | VP7 Gene | VP4 Gene | ||
---|---|---|---|---|---|
Identity (%) | Strain (GenBank Acc.-No.) | Identity (%) | Strain (GenBank Acc.-No.) | ||
324 | Fallow deer | 98 | RVA/Env-wt/SVN/ V1_09_KL1/2009/G3P[x] (JF830580) | - | - |
489 | Wild boar | 92 | RVA/Pig-wt/UK/ RO8-G3/2011/G3P[x] (KJ135166) | 98 | RVA/Pig-wt/SVK/ KO16/2016/GxP[13] (MN203587) |
490 | Wild boar | 92 | RVA/Pig-wt/UK/ RO8-G3/2011/G3P[x] (KJ135166) | 98 | RVA/Pig-wt/SVK/ KO16/2016/GxP[13] (MN203587) |
537 | Roe deer | 97 | RVA/Ovine-wt/Northern Ireland/R2WTA65/2014/G10P[15] (OL988994) | 99 | RVA/Roe deer-wt/SVN/ D38-14/2014/G6P[15] (KU708257) |
272 | Roe deer | 97 | RVA/Ovine-wt/Northern Ireand/R2WTA65/2014/G10P[15] (OL988994) | 98 | RVA/Roe deer-wt/SVN/ D38-14/2014/G6P[15] (KU708257) |
292 | Fallow deer | 90 | RVA/Cat-tc/JPN/ FRV348/1994/G3P[3] (LC328207) | 94 | RVA/Horse-wt/IND/ ERV6/2017/G3P[3] (OK651093) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althof, N.; Trojnar, E.; Johne, R. Rotaviruses in Wild Ungulates from Germany, 2019–2022. Microorganisms 2023, 11, 566. https://doi.org/10.3390/microorganisms11030566
Althof N, Trojnar E, Johne R. Rotaviruses in Wild Ungulates from Germany, 2019–2022. Microorganisms. 2023; 11(3):566. https://doi.org/10.3390/microorganisms11030566
Chicago/Turabian StyleAlthof, Nadine, Eva Trojnar, and Reimar Johne. 2023. "Rotaviruses in Wild Ungulates from Germany, 2019–2022" Microorganisms 11, no. 3: 566. https://doi.org/10.3390/microorganisms11030566
APA StyleAlthof, N., Trojnar, E., & Johne, R. (2023). Rotaviruses in Wild Ungulates from Germany, 2019–2022. Microorganisms, 11(3), 566. https://doi.org/10.3390/microorganisms11030566