Microbial Populations in Ruminal Liquid Samples from Young Beefmaster Bulls at Both Extremes of RFI Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. DNA Extraction
2.3. PCR and Sequencing
2.4. Bioinformatics
2.5. Microbial Taxa Abundance
2.6. Prediction of Functional Profiles
2.7. Analysis of Volatile Fatty Acids
2.8. Statistical Analysis
3. Results
3.1. Samples
3.2. Sequencing Results
3.3. Variation Analysis
3.4. Differences in Microbial Abundances between LRFI and HRFI
3.5. Alpha Diversity
3.6. Beta Diversity
3.7. Functional Predictions Using PICRUSt2
3.8. Volatile Fatty Acids
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantalapiedra-Hijar, G.; Abo-Ismail, M.; Carstens, G.E.; Guan, L.L.; Hegarty, R.; Kenny, D.A.; McGee, M.; Plastow, G.; Relling, A.; Ortigues-Marty, I. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018, 12 (Suppl. S2), s321–s335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Invited review: Improving feed efficiency of beef cattle–The current state of the art and future challenges. Animal 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 2019, 7 Pt A, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7 Pt B, 92. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.K.; McGee, M.; Crews, D.H.; Fahey, A.G.; Wylie, A.R.; Kenny, D.A. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. J. Anim. Sci. 2010, 88, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Snelling, T.J.; Auffret, M.D.; Duthie, C.A.; Stewart, R.D.; Watson, M.; Dewhurst, R.J.; Roehe, R.; Walker, A.W. Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Anim. Microbiome 2019, 1, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Mu, C.; Xu, Y.; Shen, J.; Zhu, W. Changes in the solid-, liquid-, and epithelium-associated bacterial communities in the rumen of Hu lambs in response to dietary urea supplementation. Front. Microbiol. 2020, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Song, S.J.; Amir, A.; Metcalf, J.L.; Amato, K.R.; Zech Xu, Z.; Humphrey, G.; Knight, R. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 2016, 1, e00021-16. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Cox, F.; Kittelmann, S.; Miri, V.H.; Zethof, M.; Noel, S.J.; Waghorn, G.C.; Janssen, P.H. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 2013, 8, e74787. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- McGovern, E.; Waters, S.M.; Blackshields, G.; McCabe, M.S. Evaluating established methods for rumen 16S rRNA amplicon sequencing with mock microbial populations. Front. Microbiol. 2018, 9, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Mazcorro, J.F.; Kawas, J.R.; Licona-Cassani, C.; Mertens-Talcott, S.; Noratto, G. Different analysis strategies of 16S rRNA gene data from rodent studies generate contrasting views of gut bacterial communities associated with diet, health and obesity. PeerJ 2020, 8, e10372. [Google Scholar] [CrossRef] [PubMed]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Comm. 2022, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H., Jr.; Moore, S.S. Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe System. J. Anim. Sci. 2006, 84, 2289–2298. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugan, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Estaki, M.; Jiang, L.; Bokulich, N.A.; McDonald, D.; González, A.; Kosciolek, T.; Martino, C.; Zhu, Q.; Birmingham, A.; Vázquez-Baeza, Y.; et al. QIIME2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr. Protoc. Bioinform. 2020, 70, e100. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, K.; Zhang, C.; Feng, Y.; Zhang, X. Dynamics and stabilization of the rumen microbiome in yearling Tibetan sheep. Sci. Rep. 2019, 9, 19620. [Google Scholar] [CrossRef] [Green Version]
- Abbas, W.; Howard, J.T.; Paz, H.A.; Hales, K.E.; Wells, J.E.; Kuehn, L.A.; Erickson, G.E.; Spangler, M.L.; Fernando, S.C. Influence of host genetics in shaping the rumen bacterial community in beef cattle. Sci. Rep. 2020, 10, 15101. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, G.; Liu, Z.; Wu, P.; Yu, Z.; Wang, J. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and cooccurrence of the rumen and colon of lambs. BMC Microbiol. 2020, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 1896, 60, 489–498. [Google Scholar]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe 2019, 25, 324–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Golder, H.M.; Denman, S.E.; McSweeney, C.; Celi, P.; Lean, I.J. Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers. J. Dairy Sci. 2014, 97, 5131–5150. [Google Scholar] [CrossRef] [Green Version]
- Solden, L.M.; Hoyt, D.W.; Collins, W.B.; Plank, J.E.; Daly, R.A.; Hildebrand, E.; Beavers, T.J.; Wolfe, R.; Nicora, C.D.; Purvine, S.O.; et al. New roles in hemicellulosic sugar fermentation for the uncultivated family BS11. ISME J. 2017, 11, 691–703. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, R.; Zeeshan Ijaz, U.; Schirmer, M.; Kenny, J.G.; Gregory, R.; Darby, A.C.; Shakya, M.; Podar, M.; Quince, C.; Hall, N. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 2016, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Jewell, K.A.; McCormick, C.A.; Odt, C.L.; Weimer, P.J.; Suen, G. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl. Environ. Microbiol. 2015, 81, 4697–4710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, S.W.; Guan, L.L. Understanding the role of rumen epithelial host-microbe interactions in cattle feed efficiency. Anim. Nutr. 2022, 10, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Zhao, S.; Wang, P.; Zheng, N.; Bu, D.; Beckers, Y.; Wang, J. Insights into abundant rumen ureolytic bacterial community using rumen simulation system. Front. Microbiol. 2016, 7, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, M.C.; Costa, D.F.; Meale, S.J.; Silva, L.F.P. Rumen bacteria and feed efficiency of beef cattle fed diets with different protein content. Anim. Prod. Sci. 2022, 62, 10–11. [Google Scholar] [CrossRef]
- van Gylswyk, N.O. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 1995, 45, 297–300. [Google Scholar] [CrossRef] [Green Version]
- van Gylswyk, N.O.; Hippe, H.; Rainey, F.A. Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source. Int. J. Syst. Bacteriol. 1997, 47, 155–159. [Google Scholar] [CrossRef]
- Myer, P.R.; Smith, T.P.L.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen microbiome from steers differing in feed efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, J.C. Effect of Post-Extraction Algal Residue Supplementation on the Rumen Microbiome of Steers Consuming Low-Quality Forage. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- McCann, J.C.; Wickersham, T.A.; Loor, J.J. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. 2014, 8, 109–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q.; Li, Y.; Meng, Q.; Zhou, Z. The effect of calcium propionate on the ruminal bacterial community composition in finishing bulls. Asian-Australas J. Anim. Sci. 2017, 30, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl. Environ. Microbiol. 2013, 79, 3744–3755. [Google Scholar] [CrossRef] [Green Version]
- McCabe, M.S.; Cormican, P.; Keogh, K.; O’Connor, A.; O’Hara, E.; Palladino, R.A.; Kenny, D.A.; Waters, S.M. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS ONE 2015, 10, e0133234. [Google Scholar] [CrossRef]
- Luo, D.; Gao, Y.; Lu, Y.; Qu, M.; Xiong, X.; Xu, L.; Zhao, X.; Pan, K.; Ouyang, K. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition. Anim. Nutr. 2017, 3, 180–185. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Global Rumen Census Collaborators; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bai, Y.; Liu, F.; Kohn, R.A.; Tadesse, D.A.; Sarria, S.; Li, R.W.; Song, J. Rumen microbial predictors for short-chain fatty acid levels and the grass-fed regimen in Angus cattle. Animals 2022, 12, 2995. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, T.H.; Hungate, R.E. Succinic acid turnover and propionate production in the bovine rumen. Appl. Microbiol. 1962, 11, 132–135. [Google Scholar] [CrossRef]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Speirs, L.B.M.; Rice, D.T.F.; Petrovski, S.; Seviour, R.J. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front. Microbiol. 2019, 10, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, A.G.; Schwientek, P.; Vishnivetskaya, T.; Woyke, T.; Levy, S.; Beall, C.J.; Griffen, A.; Leys, E.; Podar, M. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. Environ. Microbiol. 2014, 16, 2635–2643. [Google Scholar] [CrossRef] [Green Version]
- De Nardi, R.; Marchesini, G.; Li, S.; Khafipour, E.; Plaizier, K.J.C.; Gianesella, M.; Ricci, R.; Andrighetto, I.; Segato, S. Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Vet. Res. 2016, 12, 29. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Wang, Y.; Chin, F.Y.L.; Zhang, T. Cellular adhesiveness and cellulolytic capacity in Anaerolineae re-vealed by omics-based genome interpretation. Biotechnol. Biofuels 2016, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Lodge-Ivey, S.L.; May, T.; Petersen, M.K.; Strickland, J.R. Determination of methylglyoxal in ruminal fluid by high-performance liquid chromatography using fluorometric detection. J. Agric. Food Chem. 2004, 52, 6875–6878. [Google Scholar] [CrossRef]
- Russell, J.B. Glucose toxicity in Prevotella ruminicola: Methylglyoxal accumulation and its effect on membrane physiology. Appl. Environ. Microbiol. 1993, 59, 2844–2850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.E.; Russell, J.B. Why do many ruminal Bacteria die and lyse so quickly? J. Dairy Sci. 1996, 79, 1487–1495. [Google Scholar] [CrossRef]
- Lima, J.; Auffret, M.D.; Stewart, R.D.; Dewhurst, R.J.; Duthie, C.-A.; Snelling, T.J.; Walker, A.W.; Freeman, T.C.; Watson, M.; Roehe, R. Identification of rumen microbial genes involved in pathways linked to appetite, growth, and feed conversion efficiency in cattle. Front. Genet. 2019, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Petri, R.M.; Pourazad, P.; Khiaosa-ard, R.; Klevenhusen, F.; Metzler-Zebeli, B.; Zebeli, Q. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling. PLoS ONE 2017, 13, e0204600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freetly, H.C.; Dickey, A.; Lindholm-Perry, A.K.; Thallman, R.M.; Keele, J.W.; Foote, A.P.; Wells, J.E. Digestive tract microbiota of beef cattle that differed in feed efficiency. J. Anim. Sci. 2020, 98, skaa008. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, J.M.; Welch, C.B.; Krause, T.R.; Wieczorek, M.A.; Fluharty, F.L.; Rothrock, M.J.; Dean Pringle, T.; Callaway, T.R. Fecal microbiome differences in Angus steers with differing feed efficiencies during the feedlot-finishing phase. Microorganisms 2022, 10, 1128. [Google Scholar] [CrossRef]
- Claussen, J.C.; Skiecevičienė, J.; Wang, J.; Rausch, P.; Karlsen, T.H.; Lieb, W.; Baines, J.F.; Franke, A.; Hütt, M.-T. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome. PLoS Comput. Biol. 2017, 13, e1005361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Efficient (LRFI) | Inefficient (HRFI) | p-Value |
---|---|---|---|
RFI | −1.17 (−0.74, −1.56) | 0.89 (0.65, 1.29) | 0.008 |
Start weight (kg) | 370.4 (344.6, 387.5) | 312.9 (235.4, 397.6) | 0.22 |
End weight (kg) | 491.3 (461.5, 528.4) | 437.8 (343.2, 552.4) | 0.40 |
Duration per feeding event (seconds) | 199.8 (170.9, 249.9) | 197.8 (138.0, 256.7) | 0.94 |
Intake per feeding event (grams) | 307.7 (247.7, 353.0) | 281.1 (152.5, 363.5) | 0.57 |
Visits per day | 30.3 (26.3, 33.8) | 41.2 (29.1, 63.9) | 0.21 |
Feeding duration per day (minutes) | 101.0 (85.5, 135.6) | 128.1 (110.9, 147.1) | 0.06 |
ADG (kg/day) 2 | 1.57 (1.35, 1.60) | 1.62 (1.21, 2.01) | 0.53 |
DMI (kg/day) 3 | 8.77 (7.54, 10.02) | 10.12 (7.87, 12.83) | 0.21 |
Raw F:G | 5.64 (5.31, 6.51) | 6.33 (5.62, 8.24) | 0.29 |
Adj. F:G 4 | 5.51 (4.46, 5.04) | 6.62 (5.04, 8.16) | 0.21 |
Method | Raw Input Sequences | Sequences after Filtering | Non-Chimeric |
---|---|---|---|
A | 1,501,305 | 1,491,595 | 796,559 |
B | 1,578,049 | 1,547,278 | 802,904 |
Phylum | Time Points | DNA Extraction Methods | RFI Groups |
---|---|---|---|
Actinobacteria | 0.1520 | <0.0001 | 0.1449 |
Bacteroidetes 2 | 0.7356 NP (p = NS) | 0.1503 NP (p = NS) | 0.8797 NP (p = NS) |
Chloroflexi | 0.4963 | 0.0020 | 0.0059 |
Cyanobacteria | 0.6211 | 0.0002 | 0.3826 |
Elusimicrobia | 0.5500 | <0.0001 | 0.0157 |
Euryarchaeota | 0.2068 | <0.0001 | 0.2544 |
Fibrobacteres | 0.3888 | <0.0001 | 0.9421 |
Firmicutes | 0.5853 | 0.0007 | 0.3500 |
Lentisphaerae | 0.4119 | 0.0579 | 0.8404 |
Planctomycetes | 0.2967 | <0.0001 | 0.6573 |
Proteobacteria | 0.1577 | 0.0008 | 0.3968 |
Spirochaetes | 0.4740 | <0.0001 | 0.1146 |
SR1 | 0.6005 | <0.0001 | 0.0338 |
Synergistetes | 0.8530 | 0.0369 | 0.2161 |
Tenericutes | 0.1650 | 0.7420 | 0.3420 |
TM7 | 0.7447 | 0.1730 | 0.0731 |
Unassigned phylum 2 | 0.8166 NP (p = NS) | 0.0012 NP (p = NS) | 0.4094 NP (p = NS) |
Verrucomicrobia | 0.4860 | 0.5238 | 0.6398 |
Parameter | LRFI | HRFI | p-Value 1 |
---|---|---|---|
Observed features | 685 | 680 | 0.65 |
Evenness | 0.79 | 0.81 | 0.41 |
Faith PD | 30.3 | 28.7 | 0.23 |
Shannon | 7.5 | 7.6 | 0.65 |
Parameter | LRFI | HRFI | p-Value 1 |
---|---|---|---|
Observed features | 539 | 587 | 0.36 |
Evenness | 0.77 | 0.78 | 0.41 |
Faith PD | 26.9 | 27.6 | 0.65 |
Shannon | 6.9 | 7.2 | 0.49 |
Item | Efficient (LRFI) | Inefficient (HRFI) | p-Value |
---|---|---|---|
Acetic (mM/L) | 38.8 (28.6, 47.9) | 36.9 (23.7, 51.2) | 0.61 |
Propionic (mM/L) | 14.9 (6.6, 22.2) | 12.8 (4.5, 21.2) | 0.44 |
Butyric (mM/L) | 6.4 (4.2, 9.3) | 6.6 (3.7, 12.2) | 0.84 |
Total VFAs | 60.1 (41.6, 78.4) | 56.3 (33.1, 81.7) | 0.58 |
Acetic (%) | 64.9 (59.3, 72.4) | 66.7 (59.6, 75.1) | 0.47 |
Propionic (%) | 24.4 (15.9, 31.7) | 21.6 (13.7, 30.2) | 0.32 |
Butyric (%) | 10.7 (7.8, 13.7) | 11.7 (10.2, 15.1) | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzanares-Miranda, N.; Garcia-Mazcorro, J.F.; Pérez-Medina, E.B.; Vaquera-Vázquez, A.; Martínez-Ruiz, A.; Ramos-Zayas, Y.; Kawas, J.R. Microbial Populations in Ruminal Liquid Samples from Young Beefmaster Bulls at Both Extremes of RFI Values. Microorganisms 2023, 11, 663. https://doi.org/10.3390/microorganisms11030663
Manzanares-Miranda N, Garcia-Mazcorro JF, Pérez-Medina EB, Vaquera-Vázquez A, Martínez-Ruiz A, Ramos-Zayas Y, Kawas JR. Microbial Populations in Ruminal Liquid Samples from Young Beefmaster Bulls at Both Extremes of RFI Values. Microorganisms. 2023; 11(3):663. https://doi.org/10.3390/microorganisms11030663
Chicago/Turabian StyleManzanares-Miranda, Nelson, Jose F. Garcia-Mazcorro, Eduardo B. Pérez-Medina, Anakaren Vaquera-Vázquez, Alejandro Martínez-Ruiz, Yareellys Ramos-Zayas, and Jorge R. Kawas. 2023. "Microbial Populations in Ruminal Liquid Samples from Young Beefmaster Bulls at Both Extremes of RFI Values" Microorganisms 11, no. 3: 663. https://doi.org/10.3390/microorganisms11030663
APA StyleManzanares-Miranda, N., Garcia-Mazcorro, J. F., Pérez-Medina, E. B., Vaquera-Vázquez, A., Martínez-Ruiz, A., Ramos-Zayas, Y., & Kawas, J. R. (2023). Microbial Populations in Ruminal Liquid Samples from Young Beefmaster Bulls at Both Extremes of RFI Values. Microorganisms, 11(3), 663. https://doi.org/10.3390/microorganisms11030663