Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission
Abstract
:1. Introduction
2. Review Methodology
3. Bacteria-Fresh Produce Interaction (Bacterial Internalization Methods)
3.1. Stomata
3.2. Rhizosphere or Root
3.3. Plant Tissue Damage
4. Factors Affecting the Interaction between Pathogenic Bacteria and Fresh Produce
4.1. Factor Associated with Bacteriological Agents
4.1.1. Biofilm
4.1.2. Bacterial Curli
4.1.3. Flagella
4.1.4. Cellulose and Pili/Fimbriae
4.1.5. Other Factors
4.2. Plant Factors
4.2.1. Properties of Plant Surfaces
4.2.2. Nutrient Content and Its Location in the Plant Tissue
4.2.3. Decontamination Methods Employed
4.2.4. Plant Microbial Flora and Bacteria-to-Bacteria Interactions
4.2.5. Plant Immunity
- (i).
- LPS Perception
- (ii).
- Flagellin Perception
4.3. Environmental Factors
5. Molecular Interactions
6. Outbreaks Associated with Fresh Produce Consumption
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The International Year of Fruits and Vegetables. 2021. Available online: https://www.fao.org/fruits-vegetables-2021/en/ (accessed on 24 February 2022).
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Elias, S.; Noronha, T.B.; Tondo, E.C. Salmonella spp. and Escherichia coli O157: H7 prevalence and levels on lettuce: A systematic review and meta-analysis. Food Microbiol. 2019, 84, 103217. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.F.G.; Verbrugh, H.A.; Ad Hoc Advisory Committee on Disinfectants of the Health Council of the Netherlands. Resisting disinfectants. Commun. Med. 2022, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M. Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef]
- Bennett, S.; Sodha, S.; Ayers, T.; Lynch, M.; Gould, L.; Tauxe, R. Produce-associated foodborne disease outbreaks, USA, 1998–2013. Epidemiol. Infect. 2018, 146, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- USDA. Vegetables and Pulses Yearbook Tables. Available online: https://www.ers.usda.gov/data-products/vegetables-and-pulses-data/vegetables-and-pulses-yearbook-tables/ (accessed on 11 April 2019).
- Available online: https://arefiles.ucdavis.edu/uploads/filer_public/fb/7b/fb7b6380-cdf9-4db5-b5d2-993640bcc1e6/freshcut2016cook20160926final.pdf (accessed on 15 September 2016).
- Barak, J.D.; Schroeder, B.K. Interrelationships of food safety and plant pathology: The life cycle of human pathogens on plants. Annu. Rev. Phytopathol. 2012, 50, 241–266. [Google Scholar] [CrossRef]
- Sapers, G.M.; Doyle, M.P. Scope of the produce contamination problem. In The Produce Contamination Problem; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–20. [Google Scholar]
- Jay-Russell, M.T. What is the risk from wild animals in food-borne pathogen contamination of plants? CABI Rev. 2014, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Chen, Z.; Dharmasena, M. The role of animal manure in the contamination of fresh food. In Advances in Microbial Food Safety; Elsevier: Amsterdam, The Netherlands, 2015; pp. 312–350. [Google Scholar]
- Yaron, S.; Römling, U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Seo, K.; Frank, J. Attachment of Escherichia coli O157: H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment as demonstrated by using confocal scanning laser microscopy. J. Food Prot. 1999, 62, 3–9. [Google Scholar] [CrossRef]
- Kroupitski, Y.; Golberg, D.; Belausov, E.; Pinto, R.; Swartzberg, D.; Granot, D.; Sela, S. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 2009, 75, 6076–6086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldaña, Z.; Sánchez, E.; Xicohtencatl-Cortes, J.; Puente, J.L.; Girón, J.A. Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157: H7. Front. Microbiol. 2011, 2, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, D.; Panchal, S.; Rosa, B.A.; Melotto, M. Escherichia coli O157: H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344. Phytopathology 2013, 103, 326–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, A.V.; Charrier, A.; Schikora, A.; Bigeard, J.; Pateyron, S.; de Tauzia-Moreau, M.-L.; Evrard, A.; Mithöfer, A.; Martin-Magniette, M.L.; Virlogeux-Payant, I. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol. Plant 2014, 7, 657–674. [Google Scholar] [CrossRef] [Green Version]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, I.; Cottyn, B.; Uyttendaele, M.; Vlaemynck, G.; Heyndrickx, M.; Maes, M.; Holden, N. Microarray-based screening of differentially expressed genes of E. coli O157: H7 Sakai during preharvest survival on butterhead lettuce. Agriculture 2016, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, J.; Fallon, S.; Sanchez, C.; Nolte, K. Escherichia coli survival in lettuce fields following its introduction through different irrigation systems. J. Appl. Microbiol. 2011, 110, 893–902. [Google Scholar] [CrossRef]
- Kisluk, G.; Yaron, S. Presence and persistence of Salmonella enterica serotype Typhimurium in the phyllosphere and rhizosphere of spray-irrigated parsley. Appl. Environ. Microbiol. 2012, 78, 4030–4036. [Google Scholar] [CrossRef] [Green Version]
- Barak, J.D.; Kramer, L.C.; Hao, L.-Y. Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred colonization sites. Appl. Environ. Microbiol. 2011, 77, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Golberg, D.; Kroupitski, Y.; Belausov, E.; Pinto, R.; Sela, S. Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs. Int. J. Food Microbiol. 2011, 145, 250–257. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Williams, A.P.; Jones, D.L. Lettuce cultivar mediates both phyllosphere and rhizosphere activity of Escherichia coli O157: H7. PLoS ONE 2012, 7, e33842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macarisin, D.; Patel, J.; Bauchan, G.; Giron, J.A.; Ravishankar, S. Effect of spinach cultivar and bacterial adherence factors on survival of Escherichia coli O157: H7 on spinach leaves. J. Food Prot. 2013, 76, 1829–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, P.J.; Shaw, R.K.; Berger, C.N.; Frankel, G.; Pink, D.; Hand, P. Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves. FEMS Microbiol. Lett. 2015, 362, fnv077. [Google Scholar] [CrossRef] [Green Version]
- Crozier, L.; Hedley, P.E.; Morris, J.; Wagstaff, C.; Andrews, S.C.; Toth, I.; Jackson, R.W.; Holden, N.J. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157: H7 (Sakai) suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts. Front. Microbiol. 2016, 7, 1088. [Google Scholar]
- Erickson, M.C.; Liao, J.-Y.; Payton, A.S.; Cook, P.W.; Den Bakker, H.C.; Bautista, J.; Pérez, J.C.D. Fate of enteric pathogens in different spinach cultivars cultivated in growth chamber and field systems. Food Qual. Saf. 2018, 2, 221–228. [Google Scholar] [CrossRef]
- Roy, D.; Melotto, M. Stomatal response and human pathogen persistence in leafy greens under preharvest and postharvest environmental conditions. Postharvest Biol. Technol. 2019, 148, 76–82. [Google Scholar] [CrossRef]
- Wong, C.W.; Wang, S.; Levesque, R.C.; Goodridge, L.; Delaquis, P. Fate of 43 Salmonella strains on lettuce and tomato seedlings. J. Food Prot. 2019, 82, 1045–1051. [Google Scholar] [CrossRef]
- Deng, L.-Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef]
- Gil, M.I.; Selma, M.V.; López-Gálvez, F.; Allende, A. Fresh-cut product sanitation and wash water disinfection: Problems and solutions. Int. J. Food Microbiol. 2009, 134, 37–45. [Google Scholar] [CrossRef]
- Cui, H.; Ma, C.; Li, C.; Lin, L. Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control 2016, 70, 183–190. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Brunton, N.P.; Cullen, P.J. Degradation kinetics of tomato juice quality parameters by ozonation. Int. J. Food Sci. Technol. 2009, 44, 1199–1205. [Google Scholar] [CrossRef]
- Rastogi, N.; Raghavarao, K.; Balasubramaniam, V.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutr. 2007, 47, 69–112. [Google Scholar] [CrossRef] [PubMed]
- Kruk, Z.A.; Yun, H.; Rutley, D.L.; Lee, E.J.; Kim, Y.J.; Jo, C. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 2011, 22, 6–12. [Google Scholar] [CrossRef]
- Deering, A.J.; Pruitt, R.E.; Mauer, L.J.; Reuhs, B.L. Identification of the cellular location of internalized Escherichia coli O157: H7 in mung bean, Vigna radiata, by immunocytochemical techniques. J. Food Prot. 2011, 74, 1224–1230. [Google Scholar] [CrossRef]
- Niemira, B.A.; Cooke, P.H. Escherichia coli O157: H7 biofilm formation on Romaine lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes. J. Food Sci. 2010, 75, M270–M277. [Google Scholar] [CrossRef]
- Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 2019, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Berger, C.N.; Shaw, R.K.; Brown, D.J.; Mather, H.; Clare, S.; Dougan, G.; Pallen, M.J.; Frankel, G. Interaction of Salmonella enterica with basil and other salad leaves. ISME J. 2009, 3, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gou, X. The first line of defense: Receptor-like protein kinase-mediated stomatal immunity. Int. J. Mol. Sci. 2021, 23, 343. [Google Scholar] [CrossRef]
- Riggio, G.M.; Jones, S.L.; Gibson, K.E. Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. Horticulturae 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Klerks, M.; Van Gent-Pelzer, M.; Franz, E.; Zijlstra, C.; Van Bruggen, A. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin. Appl. Environ. Microbiol. 2007, 73, 4905–4914. [Google Scholar] [CrossRef] [Green Version]
- Tyler, H.L.; Triplett, E.W. Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu. Rev. Phytopathol. 2008, 46, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Chapman, S.; McGeachy, K.; Humphris, S.; Campbell, E.; Toth, I.K.; Holden, N.J. The endophytic lifestyle of Escherichia coli O157: H7: Quantification and internal localization in roots. Phytopathology 2013, 103, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooley, M.B.; Miller, W.G.; Mandrell, R.E. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157: H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 2003, 69, 4915–4926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, E.B.; Yaron, S.; Matthews, K.R. Transmission of Escherichia coli O157: H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol. 2002, 68, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Franz, E.; Visser, A.A.; Van Diepeningen, A.D.; Klerks, M.M.; Termorshuizen, A.J.; van Bruggen, A.H. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157: H7 and Salmonella enterica serovar Typhimurium. Food Microbiol. 2007, 24, 106–112. [Google Scholar] [CrossRef]
- Savatin, D.V.; Gramegna, G.; Modesti, V.; Cervone, F. Wounding in the plant tissue: The defense of a dangerous passage. Front. Plant Sci. 2014, 5, 470. [Google Scholar] [CrossRef] [Green Version]
- Brandl, M. Plant lesions promote the rapid multiplication of Escherichia coli O157: H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [Green Version]
- Jacob, C.; Melotto, M. Human pathogen colonization of lettuce dependent upon plant genotype and defense response activation. Front. Plant Sci. 2020, 10, 1769. [Google Scholar] [CrossRef] [Green Version]
- Kljujev, I.; Raicevic, V.; Jovicic-Petrovic, J.; Vujovic, B.; Mirkovic, M.; Rothballer, M. Listeria monocytogenes—Danger for health safety vegetable production. Microb. Pathog. 2018, 120, 23–31. [Google Scholar] [CrossRef]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- Macarisin, D.; Patel, J.; Bauchan, G.; Giron, J.A.; Sharma, V.K. Role of curli and cellulose expression in adherence of Escherichia coli O157: H7 to spinach leaves. Foodborne Pathog. Dis. 2012, 9, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, J.D.; Jahn, C.E.; Gibson, D.L.; Charkowski, A.O. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant-Microbe Interact. 2007, 20, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.; Hensel, M. Adhesive mechanisms of Salmonella enterica. Bact. Adhes. Chem. Biol. Phys. 2011, 715, 17–34. [Google Scholar]
- Hassan, A.; Frank, J. Influence of surfactant hydrophobicity on the detachment of Escherichia coli O157: H7 from lettuce. Int. J. Food Microbiol. 2003, 87, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ukuku, D.O.; Fett, W.F. Effects of cell surface charge and hydrophobicity on attachment of 16 Salmonella serovars to cantaloupe rind and decontamination with sanitizers. J. Food Prot. 2006, 69, 1835–1843. [Google Scholar] [CrossRef] [Green Version]
- Karamanoli, K.; Thalassinos, G.; Karpouzas, D.; Bosabalidis, A.; Vokou, D.; Constantinidou, H.-I. Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth? J. Chem. Ecol. 2012, 38, 476–485. [Google Scholar] [CrossRef]
- Patel, J.; Sharma, M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 2010, 139, 41–47. [Google Scholar] [CrossRef]
- Ge, C.; Lee, C.; Lee, J. The impact of extreme weather events on Salmonella internalization in lettuce and green onion. Food Res. Int. 2012, 45, 1118–1122. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I.; Allende, A. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce. Food Microbiol. 2018, 70, 155–161. [Google Scholar] [CrossRef]
- Pu, S.; Beaulieu, J.C.; Prinyawiwatkul, W.; Ge, B. Effects of plant maturity and growth media bacterial inoculum level on the surface contamination and internalization of Escherichia coli O157: H7 in growing spinach leaves. J. Food Prot. 2009, 72, 2313–2320. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Sharma, M.; Kniel, K.E. Human enteric pathogen internalization by root uptake into food crops. Foodborne Pathog. Dis. 2012, 9, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.M.; Crozier, L.; Marshall, J.; Merget, B.; Holmes, A.; Holden, N.J. Differences in internalization and growth of Escherichia coli O157: H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana. Microb. Biotechnol. 2017, 10, 555–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, M.C.; Webb, C.C.; Davey, L.E.; Payton, A.S.; Flitcroft, I.D.; Doyle, M.P. Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157: H7 isolates in leafy green roots. J. Food Prot. 2014, 77, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Jeter, C.; Langley, W.; Matthysse, A.G. Differential binding of Escherichia coli O157: H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Appl. Environ. Microbiol. 2005, 71, 8008–8015. [Google Scholar] [CrossRef] [Green Version]
- Saggers, E.; Waspe, C.; Parker, M.; Waldron, K.; Brocklehurst, T. Salmonella must be viable in order to attach to the surface of prepared vegetable tissues. J. Appl. Microbiol. 2008, 105, 1239–1245. [Google Scholar] [CrossRef]
- Tan, M.S.; Rahman, S.; Dykes, G.A. Pectin and xyloglucan influence the attachment of Salmonella enterica and Listeria monocytogenes to bacterial cellulose-derived plant cell wall models. Appl. Environ. Microbiol. 2016, 82, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Annous, B.A.; Solomon, E.B.; Cooke, P.H.; Burke, A. Biofilm formation by Salmonella spp. on cantaloupe melons. J. Food Saf. 2005, 25, 276–287. [Google Scholar] [CrossRef]
- Beattie, G.A.; Lindow, S.E. Bacterial colonization of leaves: A spectrum of strategies. Phytopathology 1999, 89, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.; Rothwell, S.; Keevil, C. Use of episcopic differential interference contrast microscopy to identify bacterial biofilms on salad leaves and track colonization by Salmonella Thompson. Environ. Microbiol. 2008, 10, 918–925. [Google Scholar] [CrossRef]
- Takeuchi, K.; Matute, C.M.; Hassan, A.N.; Frank, J.F. Comparison of the attachment of Escherichia coli O157: H7, Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas fluorescens to lettuce leaves. J. Food Prot. 2000, 63, 1433–1437. [Google Scholar] [CrossRef]
- Lapidot, A.; Yaron, S. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 2009, 72, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Matthysse, A.G.; Kijne, J.W. Attachment of Rhizobiaceae to plant cells. In The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria; Springer: Berlin/Heidelberg, Germany, 1998; pp. 235–249. [Google Scholar]
- Jeter, C.; Matthysse, A.G. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Mol. Plant-Microbe Interact. 2005, 18, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, E.; Matthews, K. Interaction of live and dead Escherichia coli O157: H7 and fluorescent microspheres with lettuce tissue suggests bacterial processes do not mediate adherence. Lett. Appl. Microbiol. 2006, 42, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Murata, M.; Isshiki, K. Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157: H7, Salmonella Typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce. J. Food Prot. 2006, 69, 323–329. [Google Scholar] [CrossRef]
- Shirron, N.; Kisluk, G.; Zelikovich, Y.; Eivin, I.; Shimoni, E.; Yaron, S. A comparative study assaying commonly used sanitizers for antimicrobial activity against indicator bacteria and a Salmonella Typhimurium strain on fresh produce. J. Food Prot. 2009, 72, 2413–2417. [Google Scholar] [CrossRef]
- Wells, J.; Butterfield, J. Salmonella contamination associated with bacterial soft rot of fresh fruits and vegetables in the marketplace. Plant Dis. 1997, 81, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Poza-Carrion, C.; Suslow, T.; Lindow, S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology 2013, 103, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Potnis, N.; Soto-Arias, J.P.; Cowles, K.N.; van Bruggen, A.H.; Jones, J.B.; Barak, J.D. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 2014, 80, 3173–3180. [Google Scholar] [CrossRef] [Green Version]
- Kwan, G.; Charkowski, A.O.; Barak, J.D. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. MBio 2013, 4, e00557-12. [Google Scholar] [CrossRef] [Green Version]
- Albert, I.; Hua, C.; Nürnberger, T.; Pruitt, R.N.; Zhang, L. Surface sensor systems in plant immunity. Plant Physiol. 2020, 182, 1582–1596. [Google Scholar] [CrossRef] [Green Version]
- Naveed, Z.A.; Wei, X.; Chen, J.; Mubeen, H.; Ali, G.S. The PTI to ETI continuum in Phytophthora-plant interactions. Front. Plant Sci. 2020, 11, 593905. [Google Scholar] [CrossRef] [PubMed]
- De Jong, H.K.; Parry, C.M.; van der Poll, T.; Wiersinga, W.J. Host—Pathogen interaction in invasive salmonellosis. PLOS Pathog. 2012, 10, e10029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirron, N.; Yaron, S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS ONE 2011, 6, e18855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, F.; Altier, C.; Martin, G.B. S almonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ. Microbiol. 2013, 15, 2418–2430. [Google Scholar] [CrossRef]
- Felix, G.; Duran, J.D.; Volko, S.; Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 1999, 18, 265–276. [Google Scholar] [CrossRef]
- Iniguez, A.L.; Dong, Y.; Carter, H.D.; Ahmer, B.M.; Stone, J.M.; Triplett, E.W. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol. Plant-Microbe Interact. 2005, 18, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 2020, 10, 1975. [Google Scholar] [CrossRef]
- Hou, Z.; Fink, R.; Black, E.; Sugawara, M.; Zhang, Z.; Diez-Gonzalez, F.; Sadowsky, M. Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere. J. Appl. Microbiol. 2012, 113, 1076–1086. [Google Scholar] [CrossRef]
- Fink, R.C.; Black, E.P.; Hou, Z.; Sugawara, M.; Sadowsky, M.J.; Diez-Gonzalez, F. Transcriptional responses of Escherichia coli K-12 and O157: H7 associated with lettuce leaves. Appl. Environ. Microbiol. 2012, 78, 1752–1764. [Google Scholar] [CrossRef] [Green Version]
- Kyle, J.L.; Parker, C.T.; Goudeau, D.; Brandl, M.T. Transcriptome analysis of Escherichia coli O157: H7 exposed to lysates of lettuce leaves. Appl. Environ. Microbiol. 2010, 76, 1375–1387. [Google Scholar] [CrossRef] [Green Version]
- Kroupitski, Y.; Brandl, M.; Pinto, R.; Belausov, E.; Tamir-Ariel, D.; Burdman, S.; Sela, S. Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vivo expression technology. Phytopathology 2013, 103, 362–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, M.C.; Liao, J.; Payton, A.S.; Riley, D.G.; Webb, C.C.; Davey, L.E.; Kimbrel, S.; Ma, L.; Zhang, G.; Flitcroft, I. Preharvest internalization of Escherichia coli O157: H7 into lettuce leaves, as affected by insect and physical damage. J. Food Prot. 2010, 73, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.K.; Deng, K.; Tortorello, M.L.; Brandl, M.T.; Wang, H.; Zhang, W. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce. PLoS ONE 2013, 8, e57272. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.G.; Al-Hindi, R.R.; Esmael, A.; Alotibi, I.A.; Azhari, S.A.; Alseghayer, M.S.; Teklemariam, A.D. The “big six”: Hidden emerging foodborne bacterial pathogens. Trop. Med. Infect. Dis. 2022, 7, 356. [Google Scholar] [CrossRef]
- Mariani-Kurkdjian, P.; Bingen, E. Escherichia coli O104: H4: Un pathotype hybride. Arch. Pédiatrie 2012, 19, S97–S100. [Google Scholar] [CrossRef]
- CDC. National Outbreak Reporting System (NORS). Available online: https://wwwn.cdc.gov/norsdashboard/ (accessed on 27 October 2018).
- CDC. Outbreak of E. coli Infections Linked to Leafy Greens. Available online: https://col.st/BLGLr (accessed on 22 December 2020).
- CDC. Salmonella Outbreak Linked to BrightFarms Packaged Salad Greens. Cent. Dis. Control. Prev. 2021. Available online: https://www.cdc.gov/salmonella/typhimurium-07-21/index.html (accessed on 6 October 2021).
- CDC. Multistate Outbreak of Shiga Toxin-Producing Escherichia coli O157:H7 Infections Linked to Leafy Greens (Final Update). Available online: https://www.cdc.gov/ecoli/2017/o157h7-12-17/index.html (accessed on 10 May 2019).
- Agency, C.F.I. Canadian Food Inspection Agency’s (CFIA) Investigation into E. coli O121 in Flour and Flour Products. Available online: https://inspection.canada.ca/about-cfia/transparency/regulatory-transparency-and-openness/food-safety-investigations/e-coli-o121/eng/1492621159359/1492621214587 (accessed on 2 June 2020).
- CDC. Multistate Outbreak of Shiga Toxin-Producing Escherichia coli Infections Linked to Flour (Final Update). Available online: https://www.cdc.gov/ecoli/2016/o121-06-16/ (accessed on 11 July 2019).
- Self, J.L.; Conrad, A.; Stroika, S.; Jackson, A.; Whitlock, L.; Jackson, K.A.; Beal, J.; Wellman, A.; Fatica, M.K.; Bidol, S. Multistate outbreak of listeriosis associated with packaged leafy green salads, United States and Canada, 2015–2016. Emerg. Infect. Dis. 2019, 25, 1461. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, A.; Jenkins, C.; Dallman, T.; Inns, T.; Douglas, A.; Martín, A.; Fox, A.; Cleary, P.; Elson, R.; Hawker, J. An outbreak of Shiga toxin-producing Escherichia coli O157: H7 associated with contaminated salad leaves: Epidemiological, genomic and food trace back investigations. Epidemiol. Infect. 2018, 146, 187–196. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, E.; Einöder-Moreno, M.; Borgen, K.; Thorstensen Brandal, L.; Diab, L.; Fossli, Ø.; Guzman Herrador, B.; Hassan, A.A.; Johannessen, G.S.; Johansen, E.J. National outbreak of Yersinia enterocolitica infections in military and civilian populations associated with consumption of mixed salad, Norway, 2014. Eurosurveillance 2016, 21, 30321. [Google Scholar] [CrossRef] [Green Version]
- Vestrheim, D.; Lange, H.; Nygård, K.; Borgen, K.; Wester, A.; Kvarme, M.; Vold, L. Are ready-to-eat salads ready to eat? An outbreak of Salmonella Coeln linked to imported, mixed, pre-washed and bagged salad, Norway, November 2013. Epidemiol. Infect. 2016, 144, 1756–1760. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, M.; Sundborger, C.; Hergens, M.-P.; Ivarsson, S.; Dryselius, R.; Insulander, M.; Jernberg, C.; Hutin, Y.; Wallensten, A. Barriers to trace-back in a salad-associated EHEC outbreak, Sweden, June 2013. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Tataryn, J.; Morton, V.; Cutler, J.; McDonald, L.; Whitfield, Y.; Billard, B.; Gad, R.; Hexemer, A. Foodborne illness and more: Outbreak of E. coli O157: H7 associated with lettuce served at fast food chains in the Maritimes and Ontario, Canada, Dec 2012. Can. Commun. Dis. Rep. 2014, 40, 2. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | Gene | Function | References |
---|---|---|---|
Salmonella enterica sv. Typhimurium | flic | Flagella biosynthesis | [42] |
E. coli K-12 | fliN | Flagella biosynthesis | [94] |
S. enterica sv. Typhimurium | bcsA | Cellulose biosynthesis | [97] |
E. coli K-12 | crl | Regulation of curl formation | [94,95] |
E. coli K-12 | csgA | Curl formation and curl major subunit | [94,98] |
S. enterica sv. Typhimurium | yidR | Putative ATP/GTP binding protein | [97] |
S. enterica sv. Typhimurium | misL | Adhesin expressed from pathogenicity island-3 | [97] |
E. coli K-12, E. coli O157:H7 | ybiM | Regulator of biofilm formation via the production of colonic acid | [95] |
S. enterica sv. Typhimurium S. enterica sv. Saintpaul | sirA | Response regulator involved in biofilm formation | [99] |
S. enterica sv. Typhimurium S. enterica sv. Saintpaul | yigG | Putative inner membrane protein of unknown function | [95] |
Year | Country | Fresh Produce | Pathogen | Cases (Death) | References |
---|---|---|---|---|---|
2021 | USA | leafy greens | E. coli O157:H7 | 40 (0) | [103] |
2021 | USA | Bright Farms Packaged Salad Greens | Salmonella | 31 (0) | [104] |
2018 | USA | Chicken salad | Salmonella Typhimurium | 265 (0) | [105] |
2017 | Canada | Romaine lettuce | E. coli O157 | 29 (0) | [106] |
2016 | UK | Salad mix | E. coli O157 | 161 (2) | [107] |
2015–2016 | United States and Canada | Packaged Leafy Green Salads | Listeria monocytogenes | 16 (USA) 14 (Canada) (0) | [108] |
2015 | UK | Salad leaves | STEC O157:H7 | 51 | [109] |
2014 | Norway | Salad mix | Yersinia enterocolitica O:9 | 0 (0) | [110] |
2014 | Norway | RTE salad mix | Salmonella enterica spp. enterica | 0 (0) | [111] |
2013 | Sweden | Mixed green salad | E. coli O157:H7 | 19 (0) | [112] |
2013 | Canada | Lettuce (RTE) | E. coli O157:H7 | 31 (0) | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmael, A.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Filimban, A.A.R.; Alseghayer, M.S.; Almaneea, A.M.; Alhadlaq, M.A.; Ayubu, J.; Teklemariam, A.D. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms 2023, 11, 753. https://doi.org/10.3390/microorganisms11030753
Esmael A, Al-Hindi RR, Albiheyri RS, Alharbi MG, Filimban AAR, Alseghayer MS, Almaneea AM, Alhadlaq MA, Ayubu J, Teklemariam AD. Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms. 2023; 11(3):753. https://doi.org/10.3390/microorganisms11030753
Chicago/Turabian StyleEsmael, Ahmed, Rashad R. Al-Hindi, Raed S. Albiheyri, Mona G. Alharbi, Amani A. R. Filimban, Mazen S. Alseghayer, Abdulaziz M. Almaneea, Meshari Ahmed Alhadlaq, Jumaa Ayubu, and Addisu D. Teklemariam. 2023. "Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission" Microorganisms 11, no. 3: 753. https://doi.org/10.3390/microorganisms11030753
APA StyleEsmael, A., Al-Hindi, R. R., Albiheyri, R. S., Alharbi, M. G., Filimban, A. A. R., Alseghayer, M. S., Almaneea, A. M., Alhadlaq, M. A., Ayubu, J., & Teklemariam, A. D. (2023). Fresh Produce as a Potential Vector and Reservoir for Human Bacterial Pathogens: Revealing the Ambiguity of Interaction and Transmission. Microorganisms, 11(3), 753. https://doi.org/10.3390/microorganisms11030753