Towards a Standardized Antimicrobial Susceptibility Testing Method for Mycoplasma hyorhinis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Media
2.3. Growth Curves
2.4. Storage and Quantification of Mycoplasma hyorhinis and M. hyopneumoniae
2.5. Antimicrobial Susceptibility Testing of M. hyorhinis
3. Results & Discussion
3.1. Broth Media Comparison and Growth Curves
3.2. Antimicrobial Susceptibility Testing of M. hyorhinis DSM 25591
3.3. Antimicrobial Susceptibility Testing of M. hyorhinis Field Isolates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helke, K.L.; Ezell, P.C.; Duran-Struuck, R.; Swindle, M.M. Chapter 16—Biology and Diseases of Swine. In Laboratory Animal Medicine, 3rd ed.; Fox, J.G., Anderson, L.C., Otto, G.M., Pritchett-Corning, K.R., Whary, M.T., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 695–769. [Google Scholar]
- Palzer, A.; Ritzmann, M.; Spergser, J. Mycoplasma hyorhinis and Mycoplasma hyosynoviae in pig herds. In Mycoplasmas in Swine, 1st ed.; Maes, D., Sibila, M., Pieters, M., Eds.; Uitgeverij Acco: Leuven, Belgium, 2021; pp. 247–265. [Google Scholar]
- Bunger, M.; Brunthaler, R.; Unterweger, C.; Loncaric, I.; Dippel, M.; Ruczizka, U.; Schwarz, L.; Griessler, A.; Voglmayr, T.; Verhovsek, D.; et al. Mycoplasma hyorhinis as a possible cause of fibrinopurulent meningitis in pigs?—A case series. Porc. Health Manag. 2020, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Kobisch, M.; Friis, N.F. Swine mycoplasmoses. Rev. Sci. Tech. 1996, 15, 1569–1605. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Oh, Y.R.; Hwang, M.A.; Lee, J.B.; Park, S.Y.; Song, C.S.; Choi, I.S.; Lee, S.W. Mycoplasma hyorhinis is a potential pathogen of porcine respiratory disease complex that aggravates pneumonia caused by porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 2016, 177, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Ustulin, M.; Rossi, E.; Vio, D. A case of pericarditis caused by Mycoplasma hyorhinis in a weaned piglet. Porc. Health Manag. 2021, 7, 32. [Google Scholar] [CrossRef]
- Clavijo, M.J.; Murray, D.; Oliveira, S.; Rovira, A. Infection dynamics of Mycoplasma hyorhinis in three commercial pig populations. Vet. Rec. 2017, 181, 68. [Google Scholar] [CrossRef] [PubMed]
- Ter Laak, E.A.; Pijpers, A.; Noordergraaf, J.H.; Schoevers, E.C.; Verheijden, J.H.M. Comparison of Methods for In Vitro Testing of Susceptibility of Porcine Mycoplasma Species to Antimicrobial Agents. Antimicrob. Agents Chemother. 1991, 35, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.Y.; Hyoung-Joon, M.; Bo-Kyu, K.; Man, K.J.; Wan-Kyu, L. In vitro antimicrobial susceptibility of Mycoplasma hyorhinis field isolates collected from swine lung specimens in Korea. J. Swine Health Prod. 2014, 22, 193–196. [Google Scholar]
- Breuer, M.; Earnest, T.M.; Merryman, C.; Wise, K.S.; Sun, L.; Lynott, M.R.; Hutchison, C.A.; Smith, H.O.; Lapek, J.D.; Gonzalez, D.J.; et al. Essential metabolism for a minimal cell. Elife 2019, 8, e36842. [Google Scholar] [CrossRef]
- Ferrarini, M.G.; Siqueira, F.M.; Mucha, S.G.; Palama, T.L.; Jobard, E.; Elena-Herrmann, B.; AT, R.V.; Tardy, F.; Schrank, I.S.; Zaha, A.; et al. Insights on the virulence of swine respiratory tract mycoplasmas through genome-scale metabolic modeling. BMC Genomics 2016, 17, 353. [Google Scholar] [CrossRef] [Green Version]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6, ARBA-0030-2018. [Google Scholar] [CrossRef]
- Käbisch, L.; Schink, A.K.; Hanke, D.; Semmler, T.; Kehrenberg, C.; Schwarz, S. Whole-Genome Sequence of the Mycoplasma (Mesomycoplasma) hyorhinis DSM 25591 Type Strain. Microbiol. Resour. Announc. 2021, 10, e00164-21. [Google Scholar] [CrossRef]
- Kobayashi, H.; Nakajima, H.; Shimizu, Y.; Eguchi, M.; Hata, E.; Yamamoto, K. Macrolides and Lincomycin Susceptibility of Mycoplasma hyorhinis and Variable Mutation of Domain II and V in 23S Ribosomal RNA. J. Vet. Med. Sci. 2005, 67, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Shryock, T.R.; Lin, T.L.; Faderan, M.; Veenhuizen, M.F. Antimicrobial susceptibility of Mycoplasma hyorhinis. Vet. Microbiol. 2000, 76, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Sonmez, N.; Morozumi, T.; Mitani, K.; Ito, N.; Shiono, H.; Yamamoto, K. In vitro Susceptibility of Mycoplasma hyosynoviae and M. hyorhinis to Antimicrobial Agents. J. Vet. Med. Sci. 1996, 58, 1107–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, A.; Feßler, A.T.; Böttner, A.; Koper, L.M.; Wallmann, J.; Schwarz, S. Reasons for antimicrobial treatment failures and predictive value of in-vitro susceptibility testing in veterinary practice: An overview. Vet. Microbiol. 2020, 245, 108694. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing for Human Mycoplasmas; Approved Guideline; CLSI document M43-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Beko, K.; Felde, O.; Sulyok, K.M.; Kreizinger, Z.; Hrivnak, V.; Kiss, K.; Biksi, I.; Jerzsele, A.; Gyuranecz, M. Antibiotic susceptibility profiles of Mycoplasma hyorhinis strains isolated from swine in Hungary. Vet. Microbiol. 2019, 228, 196–201. [Google Scholar] [CrossRef]
- Klein, U.; Foldi, D.; Belecz, N.; Hrivnak, V.; Somogyi, Z.; Gastaldelli, M.; Merenda, M.; Catania, S.; Dors, A.; Siesenop, U.; et al. Antimicrobial susceptibility profiles of Mycoplasma hyorhinis strains isolated from five European countries between 2019 and 2021. PLoS ONE 2022, 17, e0272903. [Google Scholar] [CrossRef]
- Käbisch, L.; Schink, A.K.; Kehrenberg, C.; Schwarz, S. Provisional Use of CLSI-Approved Quality Control Strains for Antimicrobial Susceptibility Testing of Mycoplasma (‘Mesomycoplasma’) hyorhinis. Microorganisms 2021, 9, 1829. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Hu, M.; Lee, S.; Roblin, R. A polymerase chain reaction based method for detecting Mycoplasma/Acholeplasma contaminants in cell culture. J. Microbiol. Methods 2000, 39, 121–126. [Google Scholar] [CrossRef]
- Friis, N.F. Some Recommendations Concerning Primary Isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare A Survey. Nord. Vet. Med. 1975, 27, 337–339. [Google Scholar]
- Leibniz Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH. Medium 1078 FRIIS MEDIUM. Available online: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1078.pdf (accessed on 21 November 2019).
- Hannan, P.C.T. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet. Res. 2000, 31, 373–395. [Google Scholar] [CrossRef] [Green Version]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. Resistenzmonitoring Bericht 2020; Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL): Berlin, Germany, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI standard VET01; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Cook, B.S.; Beddow, J.G.; Manso-Silvan, L.; Maglennon, G.A.; Rycroft, A.N. Selective medium for culture of Mycoplasma hyopneumoniae. Vet. Microbiol. 2016, 195, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Gardella, R.S.; Delgiudice, R.A. Growth of Mycoplasma hyorhinis Cultivar-Alpha on Semisynthetic Medium. Appl. Environ. Microb. 1995, 61, 1976–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, L.S.; Siqueira, F.M.; Schrank, I.S. Evaluation of growth and gene expression of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in defined medium. Mol. Biol. Rep. 2018, 45, 2469–2479. [Google Scholar] [CrossRef] [PubMed]
- Pieters, M.G.; Maes, D. Mycoplasmosis. In Diseases of Swine; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 863–883. [Google Scholar]
- Leuwerke, B. Mycoplasma hyorhinis-Field experiences in diagnosis and control. In Proceedings of the Allen D. Leman Swine Conference, University of Minnesota, Saint Paul, MN, USA, 19–22 September 2009. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters, 5th ed.; CLSI guideline M23; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- ISO 20776-2:2021. Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices Against Reference Broth Micro-Dilution; ISO/IEC: Geneva, Switzerland, 2021. [Google Scholar]
- Kobayashi, H.; Morozumi, T.; Munthali, G.; Mitani, K.; Ito, N.; Yamamoto, K. Macrolide Susceptibility of Mycoplasma hyorhinis Isolated from Piglets. Antimicrob. Agents Chemother. 1996, 40, 1030–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosales, R.S.; Ramirez, A.S.; Tavio, M.M.; Poveda, C.; Poveda, J.B. Antimicrobial susceptibility profiles of porcine mycoplasmas isolated from samples collected in southern Europe. BMC Vet. Res. 2020, 16, 324. [Google Scholar] [CrossRef] [PubMed]
- Piontek, F.B. Etablierung einer Resistenzprüfung im Mikrodilutionsverfahren für Mycoplasmenisolate von landwirtschaftlich genutzten Klauentieren. Bachelor Thesis, Hochschule Coburg, Coburg, Germany, 2019. [Google Scholar]
- Kobayashi, H.; Morozumi, T.; Miyamoto, C.; Shimizu, M.; Yamada, S.; Ohashi, S.; Kubo, M.; Kimura, K.; Mitani, K.; Ito, N.; et al. Mycoplasma hyorhinis infection levels in lungs of piglets with porcine reproductive and respiratory syndrome (PRRS). J. Vet. Med. Sci. 1996, 58, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wei, Y.; Wang, J.; Li, Y.; Shao, G.; Feng, Z.; Xiong, Q. Characterization of Mutations in DNA Gyrase and Topoisomerase IV in Field Strains and In Vitro Selected Quinolone-Resistant Mycoplasma hyorhinis Mutants. Antibiotics 2022, 11, 494. [Google Scholar] [CrossRef]
- Hannan, P.C.; Windsor, G.D.; de Jong, A.; Schmeer, N.; Stegemann, M. Comparative susceptibilities of various animal-pathogenic mycoplasmas to fluoroquinolones. Antimicrob. Agents Chemother. 1997, 41, 2037–2040. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Drews, J.; Georgopoulos, A.; Laber, G.; Schutze, E.; Unger, J. Antimicrobial activities of 81.723 hfu, a new pleuromutilin derivative. Antimicrob. Agents Chemother. 1975, 7, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Beggs, W.H.; Andrews, F.A. Role of ionic strength in salt antagonism of aminoglycoside action on Escherichia coli and Pseudomonas aeruginosa. J. Infect. Dis. 1976, 134, 500–504. [Google Scholar] [CrossRef] [PubMed]
Isolate ID | Origin | Used in | |||
---|---|---|---|---|---|
Country | Year | Tissue | Growth Curves | AST | |
M. hyorhinis DSM 25591 type strain | Unknown | 1955 | Nasal cavity | x | x |
M. hyopneumoniae NCTC 10110 type strain | Great Britain | 1967 | Nasal cavity | x | |
M. hyorhinis 2158N03 | Austria | 2003 | Nasal cavity | x | x |
M. hyorhinis 1191L09 | Austria | 2009 | Lung | x | x |
M. hyorhinis 1533S10 | Austria | 2010 | Serosa | x | |
M. hyorhinis 507S11 | Austria | 2011 | Serosa | x | x |
M. hyorhinis 3661N14 | Austria | 2014 | Nasal cavity | x | |
M. hyorhinis 1191L15 | Austria | 2015 | Lung | x | |
M. hyorhinis 1209G18 | Austria | 2018 | Joint | x | |
M. hyorhinis 222S20 | Austria | 2020 | Serosa | x | x |
M. hyorhinis T/0423263 | Germany | 2021 | Lung (BALF) | x |
Number of Tests and MIC Values Obtained (mg/L) * | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | 0.008 | 0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |
Gentamicin | - | - | - | 11 | 11 | - | - | - | - | - | - | - | - | ||||
Enrofloxacin | - | - | - | - | - | - | 8 | 14 | - | - | - | - | - | ||||
Marbofloxacin | - | - | - | - | - | - | 2 | 16 | - | - | - | - | - | ||||
Florfenicol | - | 3 | 18 | 1 | - | - | - | - | - | - | - | - | - | ||||
Clindamycin | - | - | 2 | 20 | - | - | - | - | - | - | - | - | - | ||||
Erythromycin | - | - | - | - | - | - | - | - | - | 3 | 11 | 8 | - | ||||
Tilmicosin | - | - | - | 1 | 5 | 11 | 5 | - | - | - | - | - | - | ||||
Tulathromycin | 16 | 6 | - | - | - | - | - | - | - | - | - | ||||||
Tylosin | 6 | 12 | 4 | - | - | - | - | - | - | - | - | - | - | ||||
Tiamulin | 18 | 4 | - | - | - | - | - | - | - | - | - | - | - | ||||
Doxycycline | 22 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
Tetracycline | 22 | - | - | - | - | - | - | - | - | - | - | - | - |
Deviation from Mode MIC | Exact MIC Agreement (%) | Essential MIC Agreement (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | −3 | −2 | −1 | 0 | +1 | +2 | +3 | ||
Gentamicin | 22 | 100 | 100 | ||||||
Enrofloxacin | 8 | 14 | 64 | 100 | |||||
Marbofloxacin | 3 | 18 | 1 | 82 | 100 | ||||
Florfenicol | 10 | 11 | 1 | 50 | 100 | ||||
Clindamycin | 2 | 20 | 91 | 100 | |||||
Erythromycin | 3 | 11 | 8 | 50 | 100 | ||||
Tilmicosin | 1 | 5 | 11 | 5 | 50 | 95 | |||
Tulathromycin | 16 | 6 | 73 | 100 | |||||
Tylosin | 6 | 12 | 4 | 55 | 100 | ||||
Tiamulin | 18 | 4 | 82 | 100 | |||||
Doxycycline | 22 | 100 | 100 | ||||||
Tetracycline | 22 | 100 | 100 |
Number of Tests and MIC Values Obtained (mg/L) * | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | 0.008 | 0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |
Gentamicin | - | - | - | 4 | 12 | 5 | - | - | - | - | - | - | - | ||||
Enrofloxacin | - | - | - | - | - | - | 6 | 15 | - | - | - | - | - | ||||
Marbofloxacin | - | - | - | - | - | - | 3 | 18 | - | - | - | - | - | ||||
Florfenicol | - | 2 | 10 | 9 | - | - | - | - | - | - | - | - | - | ||||
Clindamycin | - | - | 3 | 9 | 8 | 1 | - | - | - | - | - | - | - | ||||
Erythromycin | - | - | - | - | - | - | - | - | - | 2 | 10 | 9 | - | ||||
Tilmicosin | - | - | - | - | 3 | 11 | 7 | - | - | - | - | - | - | ||||
Tulathromycin | 15 | 6 | - | - | - | - | - | - | - | - | - | ||||||
Tylosin | 5 | 9 | 7 | - | - | - | - | - | - | - | - | - | - | ||||
Tiamulin | 8 | 7 | 6 | - | - | - | - | - | - | - | - | - | - | ||||
Doxycycline | 21 | - | - | - | - | - | - | - | - | - | - | - | - | ||||
Tetracycline | 21 | - | - | - | - | - | - | - | - | - | - | - | - |
Deviation from Mode MIC | Exact MIC Agreement (%) | Essential MIC Agreement (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | −3 | −2 | −1 | 0 | +1 | +2 | +3 | ||
Gentamicin | 16 | 5 | 76 | 100 | |||||
Enrofloxacin | 6 | 15 | 71 | 100 | |||||
Marbofloxacin | 3 | 18 | 86 | 100 | |||||
Florfenicol | 2 | 10 | 9 | 48 | 100 | ||||
Clindamycin | 3 | 9 | 8 | 1 | 43 | 95 | |||
Erythromycin | 2 | 10 | 9 | 48 | 100 | ||||
Tilmicosin | 3 | 11 | 7 | 52 | 100 | ||||
Tulathromycin | 15 | 6 | 71 | 100 | |||||
Tylosin | 5 | 9 | 7 | 43 | 100 | ||||
Tiamulin | 8 | 7 | 6 | 38 | 71 | ||||
Doxycycline | 21 | 100 | 100 | ||||||
Tetracycline | 21 | 100 | 100 |
Number of Tests and MIC Values Obtained (mg/L) * | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | 0.008 | 0.015 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |
Gentamicin | - | - | 4 | 2 | - | - | - | - | - | - | - | - | - | ||||
Enrofloxacin | - | - | - | - | - | - | 2 | 2 | 2 | - | - | - | - | ||||
Marbofloxacin | - | - | - | - | - | - | - | 4 | 2 | - | - | - | - | ||||
Florfenicol | - | 2 | 3 | 1 | - | - | - | - | - | - | - | - | - | ||||
Clindamycin | - | - | - | 1 | - | - | - | - | - | - | 2 | 3 | - | ||||
Erythromycin | - | - | - | - | - | - | - | - | - | - | - | 1 | 5 | ||||
Tilmicosin | - | - | - | - | - | 1 | - | - | - | - | - | - | 5 | ||||
Tulathromycin | - | 1 | - | - | - | - | - | - | 1 | - | 4 | ||||||
Tylosin | - | - | 1 | - | - | - | - | - | - | 1 | 4 | - | - | ||||
Tiamulin | - | 1 | 3 | 2 | - | - | - | - | - | - | - | - | - | ||||
Doxycycline | - | - | 4 | 2 | - | - | - | - | - | - | - | - | - | ||||
Tetracycline | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - | - |
Deviation from Mode MIC | Exact MIC Agreement (%) | Essential MIC Agreement (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | −3 | −2 | −1 | 0 | +1 | +2 | +3 | ||
Gentamicin | 15 | 13 | 6 | 2 | 42 | 78 | |||
Enrofloxacin | 7 | 24 | 5 | 67 | 100 | ||||
Marbofloxacin | 2 | 25 | 9 | 69 | 100 | ||||
Florfenicol | 1 | 9 | 18 | 8 | 50 | 97 | |||
Clindamycin | 4 | 31 | 1 | 86 | 100 | ||||
Erythromycin | 1 | 3 | 32 | 89 | 97 | ||||
Tilmicosin | 1 | 2 | 33 | 92 | 97 | ||||
Tulathromycin | 4 | 27 | 3 | 2 | 75 | 94 | |||
Tylosin | 3 | 9 | 19 | 5 | 53 | 92 | |||
Tiamulin | 3 | 26 | 7 | 72 | 100 | ||||
Doxycycline | 12 | 23 | 1 | 64 | 100 | ||||
Tetracycline | 8 | 19 | 9 | 53 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Käbisch, L.; Schink, A.-K.; Höltig, D.; Spergser, J.; Kehrenberg, C.; Schwarz, S. Towards a Standardized Antimicrobial Susceptibility Testing Method for Mycoplasma hyorhinis. Microorganisms 2023, 11, 994. https://doi.org/10.3390/microorganisms11040994
Käbisch L, Schink A-K, Höltig D, Spergser J, Kehrenberg C, Schwarz S. Towards a Standardized Antimicrobial Susceptibility Testing Method for Mycoplasma hyorhinis. Microorganisms. 2023; 11(4):994. https://doi.org/10.3390/microorganisms11040994
Chicago/Turabian StyleKäbisch, Lisa, Anne-Kathrin Schink, Doris Höltig, Joachim Spergser, Corinna Kehrenberg, and Stefan Schwarz. 2023. "Towards a Standardized Antimicrobial Susceptibility Testing Method for Mycoplasma hyorhinis" Microorganisms 11, no. 4: 994. https://doi.org/10.3390/microorganisms11040994
APA StyleKäbisch, L., Schink, A. -K., Höltig, D., Spergser, J., Kehrenberg, C., & Schwarz, S. (2023). Towards a Standardized Antimicrobial Susceptibility Testing Method for Mycoplasma hyorhinis. Microorganisms, 11(4), 994. https://doi.org/10.3390/microorganisms11040994