Metagenomic Sequencing Reveals the Taxonomic and Functional Characteristics of Rumen Micro-organisms in Gayals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experimental Animals and Sample
2.3. Total DNA Extraction and Metagenomic Sequencing
2.4. Sequencing Data Analysis
2.5. Metagenome Library Construction, Sequencing and Assembly
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Metagenomic Sequences Data Statistics
3.2. Taxonomic Composition of the Rumen Microbiota
3.2.1. Taxonomic Composition of Rumen Bacteria
3.2.2. Taxonomic Composition of Rumen Fungi
3.2.3. Taxonomic Composition of Rumen Protozoa
3.2.4. Taxonomic Composition of Rumen Archaea
3.3. Key Enzymes and Micro-organisms Involved in Acetic Acid Production Pathway
3.4. Key Enzymes and Micro-organisms Involved in Butyric Acid Production Pathway
3.5. Enzymes and Micro-organisms Related to Fiber Degradation in Rumen
3.6. Construction of Rumen Fiber Degradation Models for Gayals and Yunnan Yellow Cattle
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanderson, K. Lignocellulose: A chewy problem. Nature 2011, 474, S12–S14. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Liu, R.; Li, K.; Ma, R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Russell, J.B.; O’Connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Demeyer, D.I. Rumen microbes and digestion of plant cell walls. Agric. Environ. 1981, 6, 295–337. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.W.; van Bueren, A.L. Using structure to inform carbohydrate binding module function. Curr. Opin. Struct. Biol. 2014, 28, 32–40. [Google Scholar] [CrossRef]
- Campanaro, S.; Treu, L.; Kougias, P.G.; Luo, G.; Angelidaki, I. Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Res. 2018, 140, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Jin, W.; Si, H.; Yuan, Y.; Tao, Y.; Liu, J.; Wang, X.; Yang, C.; Li, Q.; Yan, X.; et al. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome 2021, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Sadan, T.; Aravindakshan, T.V.; Radhika, G.; Anand, L.F.; Ally, K. Metagenomic analysis exploring taxonomic diversity of rumen microbial communities in Vechur and crossbred cattle of Kerala state, India. J. Appl. Genet. 2020, 61, 287–297. [Google Scholar] [CrossRef]
- Deng, W.; Wang, L.; Ma, S.; Jin, B.; He, T.; Yang, Z.; Mao, H.; Wanapat, M. Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): Rumen Function, Digestibilities and Nitrogen Balance during Feeding of Pelleted Lucerne (Medicago sativum). Asian-Australas. J. Anim. Sci. 2007, 20, 900–907. [Google Scholar] [CrossRef]
- Xi, D.; Wanapat, M.; Deng, W.; He, T.; Mao, H. Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): In vitro Dry Matter Digestibility and Gas Production for a Range of Forages. Asian-Australas. J. Anim. Sci. 2007, 20, 1208–1214. [Google Scholar] [CrossRef]
- Leng, J.; Cheng, Y.M.; Zhang, C.Y.; Zhu, R.J.; Yang, S.L.; Gou, X.; Deng, W.D.; Mao, H.M. Molecular diversity of bacteria in Yunnan yellow cattle (Bos taurs) from Nujiang region, China. Mol. Biol. Rep. 2012, 39, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yujie, Z.; Huan, G.; Binlong, F.; Jing, L. Analysis of Rumen Microbial Protein Abundance of Gayals based on Metaproteomics. Indian J. Anim. Res. 2022, 56, 15–23. [Google Scholar] [CrossRef]
- Hazra, A.; Gogtay, N. Biostatistics Series Module 3: Comparing Groups: Numerical Variables. Indian J. Derm. 2016, 61, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 2019, 7, 6. [Google Scholar] [CrossRef]
- Singh, K.M.; Ahir, V.B.; Tripathi, A.K.; Ramani, U.V.; Sajnani, M.; Koringa, P.G.; Jakhesara, S.; Pandya, P.R.; Rank, D.N.; Murty, D.S.; et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study. Mol. Biol. Rep. 2012, 39, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.C.; Purvis, H.T., 2nd; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; Desilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Chai, Z.; Zhang, C.; Zhang, Q.; Zhu, Y.; Cao, H.; Zhong, J.; Ji, Q. Comparing the Microbial Community in Four Stomach of Dairy Cattle, Yellow Cattle and Three Yak Herds in Qinghai-Tibetan Plateau. Front. Microbiol. 2019, 10, 1547. [Google Scholar] [CrossRef]
- Parmar, N.R.; Solanki, J.V.; Patel, A.B.; Shah, T.M.; Patel, A.K.; Parnerkar, S.; Kumar, J.I.; Joshi, C.G. Metagenome of Mehsani buffalo rumen microbiota: An assessment of variation in feed-dependent phylogenetic and functional classification. J. Mol. Microbiol. Biotechnol. 2014, 24, 249–261. [Google Scholar] [CrossRef]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef]
- Huws, S.A.; Edwards, J.E.; Creevey, C.J.; Rees Stevens, P.; Lin, W.; Girdwood, S.E.; Pachebat, J.A.; Kingston-Smith, A.H. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol. Ecol. 2016, 92, fiv137. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.J.; Hinsu, A.T.; Patel, S.H.; Jakhesara, S.J.; Koringa, P.G.; Bruno, F.; Psifidi, A.; Shah, S.V.; Joshi, C.G. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Syst. Appl. Microbiol. 2018, 41, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Fonty, G.; Williams, A.G.; Bonnemoy, F.; Morvan, B.; Withers, S.E.; Gouet, P. Effect of Methanobrevibacter sp MF1 inoculation on glycoside hydrolase and polysaccharide depolymerase activities, wheat straw degradation and volatile fatty acid concentrations in the rumen of gnotobiotically-reared lambs. Anaerobe 1997, 3, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, J.L.; May, T. The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr. Microbiol. 2000, 40, 176–180. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The Role of Ciliate Protozoa in the Rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cantarel, B.; Henrissat, B.; Gevers, D.; Birren, B.W.; Huttenhower, C.; Ko, G. Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. Isme J. 2014, 8, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Ilmberger, N.; Güllert, S.; Dannenberg, J.; Rabausch, U.; Torres, J.; Wemheuer, B.; Alawi, M.; Poehlein, A.; Chow, J.; Turaev, D.; et al. A comparative metagenome survey of the fecal microbiota of a breast- and a plant-fed Asian elephant reveals an unexpectedly high diversity of glycoside hydrolase family enzymes. PLoS ONE 2014, 9, e106707. [Google Scholar] [CrossRef]
- Dai, X.; Zhu, Y.; Luo, Y.; Song, L.; Liu, D.; Liu, L.; Chen, F.; Wang, M.; Li, J.; Zeng, X.; et al. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 2012, 7, e40430. [Google Scholar] [CrossRef]
- Pope, P.B.; Mackenzie, A.K.; Gregor, I.; Smith, W.; Sundset, M.A.; McHardy, A.C.; Morrison, M.; Eijsink, V.G. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 2012, 7, e38571. [Google Scholar] [CrossRef]
- Wang, L.; Hatem, A.; Catalyurek, U.V.; Morrison, M.; Yu, Z. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS ONE 2013, 8, e78507. [Google Scholar] [CrossRef]
- Basit, A.; Liu, J.; Rahim, K.; Jiang, W.; Lou, H. Thermophilic xylanases: From bench to bottle. Crit. Rev. Biotechnol. 2018, 38, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Lay, J.; Andries, K.; McManus, C.J.; Bebe, F. Effects of live yeast on differential genetic and functional attributes of rumen microbiota in beef cattle. J. Anim. Sci. Biotechnol. 2019, 10, 68. [Google Scholar] [CrossRef]
- Lin, L.; Xie, F.; Sun, D.; Liu, J.; Zhu, W.; Mao, S. Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model. Microbiome 2019, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Salekdeh, G.H. A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 2018, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef] [PubMed]
- El Kaoutari, A.; Armougom, F.; Gordon, J.I.; Raoult, D.; Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat. Rev. Microbiol. 2013, 11, 497–504. [Google Scholar] [CrossRef]
- Pope, P.B.; Denman, S.E.; Jones, M.; Tringe, S.G.; Barry, K.; Malfatti, S.A.; McHardy, A.C.; Cheng, J.F.; Hugenholtz, P.; McSweeney, C.S.; et al. Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc. Natl. Acad. Sci. USA 2010, 107, 14793–14798. [Google Scholar] [CrossRef]
Item | G1 | G2 | G3 | Y1 | Y2 | Y3 |
---|---|---|---|---|---|---|
Clean reads | 159,215,532 | 144,433,815 | 148,517,286 | 150,279,539 | 140,500,483 | 137,835,736 |
Clean bases (bp) | 23,683,460,283 | 21,514,126,650 | 22,093,344,676 | 22,374,123,929 | 20,910,006,607 | 20,516,301,816 |
Contigs | 564,487 | 573,604 | 536,523 | 504,896 | 532,382 | 497,977 |
Contigs bases (bp) | 632,832,801 | 685,122,613 | 615,685,117 | 679,612,644 | 773,370,470 | 584,110,955 |
N50 (bp) | 1187 | 1317 | 1214 | 1631 | 1931 | 1263 |
ORFs | 903,591 | 977,743 | 891,354 | 921,056 | 1,022,585 | 834,031 |
Taxon | Families (GH) | G (% ± SD) | Y (% ± SD) | p |
---|---|---|---|---|
Fibrobacter | 5, 9, 44, 45, 8, 11, 10, 51, 53, 54, 2, 3, 39, 43, 94 | 29.58 ± 3.93 | 22.29 ± 5.54 | 0.14 |
Prevotella | 5, 9, 10, 28, 51, 53, 67, 78, 8, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 14.80 ± 3.12 | 26.24 ± 2.24 | 0.01 |
Bacteroides | 5, 9, 8, 10, 28, 51, 53, 54, 67, 78, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 11.97 ± 2.82 | 18.89 ± 1.34 | 0.02 |
Ruminococcus | 5, 9, 44, 48, 8, 10, 11, 28, 51, 53, 67, 78, 1, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 9.13 ± 3.61 | 4.81 ± 1.90 | 0.14 |
Butyrivibrio | 5, 9, 8, 10, 11, 28, 51, 53, 67, 78, 1, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 5.81 ± 1.51 | 4.98 ± 2.02 | 0.60 |
Treponema | 5, 8, 9, 10, 28, 51, 53, 78, 1, 2, 3, 29, 35, 38, 39, 43, 94 | 2.37 ± 0.77 | 1.50 ± 0.36 | 0.15 |
Roseburia | 5, 8, 10, 11, 23, 28, 51, 53, 78, 1, 2, 3, 29, 38, 39, 42, 43, 94 | 1.46 ± 0.73 | 0.40 ± 0.18 | 0.07 |
Alistipes | 5, 9, 8, 10, 11, 25, 28, 53, 78, 2, 3, 29, 38, 39, 42, 43 | 2.16 ± 0.95 | 3.52 ± 0.86 | 0.14 |
Ovis | 11 | 1.29 ± 0.20 | 0.89 ± 0.40 | 0.19 |
Clostridium | 5, 9, 8, 10, 11, 28, 51, 53, 78, 1, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 1.43 ± 0.60 | 1.29 ± 0.63 | 0.79 |
Faecalibacterium | 5, 8, 10, 28, 51, 67, 78, 1, 2, 3, 39, 43, 94 | 0.96 ± 0.35 | 0.70 ± 0.19 | 0.32 |
Polyplastron | 5, 10, 11 | 0.63 ± 0.57 | 0.12 ± 0.04 | 0.27 |
Cytophaga | 5, 9, 8, 10, 67, 2, 3, 29, 43 | 0.70 ± 0.41 | 0.29 ± 0.36 | 0.25 |
Marvinbryantia | 5, 78, 1, 2, 3, 35, 39, 43, 94 | 0.86 ± 0.49 | 0.10 ± 0.06 | 0.048 |
Piromyces | 3, 9, 11 | 0.57 ± 0.51 | 0.06 ± 0.03 | 0.46 |
Epidinium | 5, 10 | 0.46 ± 0.48 | 0.04 ± 0.03 | 0.61 |
Parabacteroides | 5, 8, 10, 28, 51, 78, 2, 3, 38, 42, 43 | 1.03 ± 0.11 | 1.11 ± 0.43 | 0.76 |
Paenibacillus | 5, 9, 8, 10, 28, 51, 53, 67, 78, 1, 2, 3, 29, 35, 38, 39, 42, 43, 94 | 0.90 ± 0.43 | 0.67 ± 0.32 | 0.49 |
Paraprevotella | 5, 9, 10, 51, 67, 78, 2, 29, 35, 43 | 1.00 ± 0.20 | 1.14 ± 0.66 | 0.74 |
others | 12.87 ± 0.89 | 10.96 ± 2.90 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yu, Y.; Lv, Y.; Wang, D.; Li, H.; Li, Z.; Zhang, Y.; Chen, L.; Leng, J. Metagenomic Sequencing Reveals the Taxonomic and Functional Characteristics of Rumen Micro-organisms in Gayals. Microorganisms 2023, 11, 1098. https://doi.org/10.3390/microorganisms11051098
Gao H, Yu Y, Lv Y, Wang D, Li H, Li Z, Zhang Y, Chen L, Leng J. Metagenomic Sequencing Reveals the Taxonomic and Functional Characteristics of Rumen Micro-organisms in Gayals. Microorganisms. 2023; 11(5):1098. https://doi.org/10.3390/microorganisms11051098
Chicago/Turabian StyleGao, Huan, Ye Yu, Yaqi Lv, Deao Wang, Haonan Li, Zhe Li, Yuchen Zhang, Lan Chen, and Jing Leng. 2023. "Metagenomic Sequencing Reveals the Taxonomic and Functional Characteristics of Rumen Micro-organisms in Gayals" Microorganisms 11, no. 5: 1098. https://doi.org/10.3390/microorganisms11051098
APA StyleGao, H., Yu, Y., Lv, Y., Wang, D., Li, H., Li, Z., Zhang, Y., Chen, L., & Leng, J. (2023). Metagenomic Sequencing Reveals the Taxonomic and Functional Characteristics of Rumen Micro-organisms in Gayals. Microorganisms, 11(5), 1098. https://doi.org/10.3390/microorganisms11051098