In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains
Abstract
:1. Introduction
1.1. Adhesion Molecules of B. cenocepacia: State of the Art
1.2. Comparative Transcriptomic Analysis to Identify New Candidate Adhesion-Related Genes
2. Materials and Methods
3. Results and Discussion
3.1. Computational Analysis of Collagen-like Domain-Containing Proteins in Members of Bcc Bacteria
Distribution, Phylogeny, and Variable-Number of Tandem-Repeat Analysis
3.2. Bcc-CLPs in Burkholderia cenocepacia
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahenthiralingam, E.; Urban, T.A.; Goldberg, J.B. The Multifarious, Multireplicon Burkholderia Cepacia Complex. Nat. Rev. Microbiol. 2005, 3, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T.; Vandamme, P.; Govan, J.R.W.; Lipuma, J.J. Taxonomy and Identification of the Burkholderia Cepacia Complex. J. Clin. Microbiol. 2001, 39, 3427–3436. [Google Scholar] [CrossRef] [PubMed]
- Lessie, T.G.; Hendrickson, W.; Manning, B.D.; Devereux, R. Genomic Complexity and Plasticity of Burkholderia cepacia. FEMS Microbiol. Lett. 1996, 144, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, D.A.; Klinger, J.D. Pseudomonas cepacia: Biology, Mechanisms of Virulence, Epidemiology. J. Pediatr. 1986, 108, 806–812. [Google Scholar] [CrossRef]
- Isles, A.; Maclusky, I.; Corey, M.; Gold, R.; Prober, C.; Fleming, P.; Levison, H. Pseudomonas cepacia Infection in Cystic Fibrosis: An Emerging Problem. J. Pediatr. 1984, 104, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Biddick, R.; Spilker, T.; Martin, A.; LiPuma, J.J. Evidence of Transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among Persons with Cystic Fibrosis. FEMS Microbiol. Lett. 2003, 228, 57–62. [Google Scholar] [CrossRef] [PubMed]
- McClean, S.; Callaghan, M. Burkholderia Cepacia Complex: Epithelial Cell-Pathogen Confrontations and Potential for Therapeutic Intervention. J. Med. Microbiol. 2009, 58, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.C.C.; Chatterjee, N.; Li, Y.; Andrade, J.; Federle, M.J. Transcriptomic Analysis of Streptococcus Pyogenes Colonizing. MBio 2019, 10, e00848-19. [Google Scholar]
- Khater, F.; Balestrino, D.; Charbonnel, N.; Dufayard, J.F.; Brisse, S.; Forestier, C. In Silico Analysis of Usher Encoding Genes in Klebsiella Pneumoniae and Characterization of Their Role in Adhesion and Colonization. PLoS ONE 2015, 10, e0116215. [Google Scholar] [CrossRef]
- Bierne, H.; Cossart, P. Listeria monocytogenes Surface Proteins: From Genome Predictions to Function. Microbiol. Mol. Biol. Rev. 2007, 71, 377–397. [Google Scholar] [CrossRef]
- Pimenta, A.I.; Bernardes, N.; Alves, M.M.; Mil-Homens, D.; Fialho, A.M. Burkholderia cenocepacia Transcriptome during the Early Contacts with Giant Plasma Membrane Vesicles Derived from Live Bronchial Epithelial Cells. Sci. Rep. 2021, 11, 5624. [Google Scholar] [CrossRef] [PubMed]
- Williamson, Y.M.; Whitmon, J.; West-Deadwyler, R.; Moura, H.; Woolfitt, A.R.; Rees, J.; Schieltz, D.M.; Barr, J.R. Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis. In The Surfaceome; Boheler, K., Gundry, R., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1722, pp. 3–20. [Google Scholar]
- McClean, S.; Healy, M.E.; Collins, C.; Carberry, S.; O’Shaughnessy, L.; Dennehy, R.; Adams, Á.; Kennelly, H.; Corbett, J.M.; Carty, F.; et al. Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia Cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection. Infect. Immun. 2016, 84, 1424–1437. [Google Scholar] [CrossRef] [PubMed]
- Sackstein, R.; Fuhlbrigge, R. The Blot Rolling Assay. In Methods in Molecular Biology; Colgan, S., Ed.; Humana Press: Totowa, NJ, USA, 2006; Volume 341, pp. 217–226. [Google Scholar]
- Thewes, N.; Loskill, P.; Jung, P.; Peisker, H.; Bischoff, M.; Herrmann, M.; Jacobs, K. Hydrophobic Interaction Governs Unspecific Adhesion of Staphylococci: A Single Cell Force Spectroscopy Study. Beilstein J. Nanotechnol. 2014, 5, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Beaussart, A.; El-Kirat-Chatel, S.; Herman, P.; Alsteens, D.; Mahillon, J.; Hols, P.; Dufrêne, Y.F. Single-Cell Force Spectroscopy of Probiotic Bacteria. Biophys. J. 2013, 104, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Drevinek, P.; Mahenthiralingam, E. Burkholderia cenocepacia in Cystic Fibrosis: Epidemiology and Molecular Mechanisms of Virulence. Clin. Microbiol. Infect. 2010, 16, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Urban, T.A.; Goldberg, J.B.; Forstner, J.F.; Sajjan, U.S. Cable Pili and the 22-Kilodalton Adhesin Are Required for Burkholderia cenocepacia Binding to and Transmigration across the Squamous Epithelium. Infect. Immun. 2005, 73, 5426–5437. [Google Scholar] [CrossRef]
- Dennehy, R.; Romano, M.; Ruggiero, A.; Mohamed, Y.F.; Dignam, S.L.; Mujica Troncoso, C.; Callaghan, M.; Valvano, M.A.; Berisio, R.; McClean, S. The Burkholderia cenocepacia Peptidoglycan-Associated Lipoprotein Is Involved in Epithelial Cell Attachment and Elicitation of Inflammation. Cell. Microbiol. 2017, 19, e12691. [Google Scholar] [CrossRef]
- Mil-Homens, D.; Rocha, E.P.C.; Fialho, A.M. Genome-Wide Analysis of DNA Repeats in Burkholderia cenocepacia J2315 Identifies a Novel Adhesin-like Gene Unique to Epidemic-Associated Strains of the ET-12 Lineage. Microbiology 2010, 156, 1084–1096. [Google Scholar] [CrossRef]
- Sajjan, U.S.; Xie, H.; Lefebre, M.D.; Valvano, M.A.; Forstner, J.F. Identification and Molecular Analysis of Cable Pilus Biosynthesis Genes in Burkholderia cepacia. Microbiology 2003, 149, 961–971. [Google Scholar] [CrossRef]
- Shinoy, M.; Dennehy, R.; Coleman, L.; Carberry, S.; Schaffer, K.; Callaghan, M.; Doyle, S.; McClean, S. Immunoproteomic Analysis of Proteins Expressed by Two Related Pathogens, Burkholderia multivorans and Burkholderia cenocepacia, during Human Infection. PLoS ONE 2013, 8, e80796. [Google Scholar] [CrossRef]
- O’Grady, E.P.; Sokol, P.A. Burkholderia cenocepacia Differential Gene Expression during Host-Pathogen Interactions and Adaptation to the Host Environment. Front. Cell. Infect. Microbiol. 2011, 1, 15. [Google Scholar] [CrossRef] [PubMed]
- Linke, D.; Riess, T.; Autenrieth, I.B.; Lupas, A.; Kempf, V.A.J. Trimeric Autotransporter Adhesins: Variable Structure, Common Function. Trends Microbiol. 2006, 14, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.T.G.; Seth-Smith, H.M.B.; Crossman, L.C.; Sebaihia, M.; Bentley, S.D.; Cerdeño-Tárraga, A.M.; Thomson, N.R.; Bason, N.; Quail, M.A.; Sharp, S.; et al. The Genome of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients. J. Bacteriol. 2009, 91, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.; Sokol, P.A.; Parkhill, J.; Mahenthiralingam, E. The Burkholderia Cepacia Epidemic Strain Marker Is Part of A Novel Genomic Island Encoding Both Virulence and Metabolism-Associated Genes in Burkholderia Cenocepacia. Infect. Immun. 2004, 72, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Mil-Homens, D.; Fialho, A.M. Trimeric Autotransporter Adhesins in Members of the Burkholderia Cepacia Complex: A Multifunctional Family of Proteins Implicated in Virulence. Front. Cell. Infect. Microbiol. 2011, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Mil-Homens, D.; Fialho, A.M. A BCAM0223 Mutant of Burkholderia cenocepacia Is Deficient in Hemagglutination, Serum Resistance, Adhesion to Epithelial Cells and Virulence. PLoS ONE 2012, 7, e41747. [Google Scholar] [CrossRef]
- Mil-Homens, D.; Leç, M.I.; Fernandes, F.; Pinto, S.N.; Fialho, A.M. Characterization of BCAM0224, a Multifunctional Trimeric Autotransporter from the Human Pathogen Burkholderia cenocepacia. J. Bacteriol. 2014, 196, 1968–1979. [Google Scholar] [CrossRef]
- Mil-Homens, D.; Pinto, S.N.; Matos, R.G.; Arraiano, C.; Fialho, A.M. Burkholderia cenocepacia K56-2 Trimeric Autotransporter Adhesin BcaA Binds TNFR1 and Contributes to Induce Airway Inflammation. Cell. Microbiol. 2017, 19, e12677. [Google Scholar] [CrossRef]
- Pimenta, A.I.; Kilcoyne, M.; Bernardes, N.; Mil-Homens, D.; Joshi, L.; Fialho, A.M. Burkholderia cenocepacia BCAM2418-Induced Antibody Inhibits Bacterial Adhesion, Confers Protection to Infection and Enables Identification of Host Glycans as Adhesin Targets. Cell. Microbiol. 2021, 23, e13340. [Google Scholar] [CrossRef]
- Winsor, G.L.; Khaira, B.; Van Rossum, T.; Lo, R.; Whiteside, M.D.; Brinkman, F.S.L. The Burkholderia Genome Database: Facilitating Flexible Queries and Comparative Analyses. Bioinformatics 2008, 24, 2803–2804. [Google Scholar] [CrossRef]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved Protein Subcellular Localization Prediction with Refined Localization Subcategories and Predictive Capabilities for All Prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-azeroual, O.; Mareuil, F.; Cohen-boulakia, S.; Gascuel, O. NGPhylogeny.Fr: New Generation Phylogenetic Services for Non-Specialists. Nucleic Acids Res. 2019, 47, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Cooper, J.B. XSTREAM: A Practical Algorithm for Identification and Architecture Modeling of Tandem Repeats in Protein Sequences. BMC Bioinform. 2007, 8, 382. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Katuwawala, A.; Wang, K.; Wu, Z.; Ghadermarzi, S.; Gao, J.; Kurgan, L. FlDPnn: Accurate Intrinsic Disorder Prediction with Putative Propensities of Disorder Functions. Nat. Commun. 2021, 12, 4438. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 Years of the SMART Protein Domain Annotation Resource. Nucleic Acids Res. 2018, 46, 493–496. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhai, C.; Chen, L.; Liu, X.; Yeo, J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater. Sci. Eng. 2021. [Google Scholar] [CrossRef]
- Beth, A.B.; Soo, J.C.; Anna, K.S.; Rita, V.M.R.; Brandon, C.D.; Lisa, A.H.; Kei, A.; Susan, L.W.; Joel, A.B.; Christopher, K.C.; et al. A Unique Set of the Burkholderia Collagen-like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection. PLoS ONE 2015, 10, e0137578. [Google Scholar] [CrossRef]
- Yu, Z.; An, B.; Ramshaw, J.A.M.; Brodsky, B. Bacterial Collagen-like Proteins That Form Triple-Helical Structures. J. Struct. Biol. 2014, 186, 451–461. [Google Scholar] [CrossRef]
- Zhou, K.; Aertsen, A.; Michiels, C.W. The Role of Variable DNA Tandem Repeats in Bacterial Adaptation. FEMS Microbiol. Rev. 2014, 38, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.M.; Ponnuraj, K. Sequence and Structural Analysis of Fibronectin-Binding Protein Reveals Importance of Multiple Intrinsic Disordered Tandem Repeats. J. Mol. Recognit. 2019, 32, e2768. [Google Scholar] [CrossRef] [PubMed]
- Nykyri, J.; Mattinen, L.; Niemi, O.; Adhikari, S.; Kõiv, V.; Somervuo, P.; Fang, X.; Auvinen, P.; Mäe, A.; Palva, E.T.; et al. Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS ONE 2013, 8, e73718. [Google Scholar] [CrossRef] [PubMed]
- Alteri, C.J.; Rios-Sarabia, N.; De la Cruz, M.A.; González-y-Merchand, J.A.; Soria-Bustos, J.; Maldonado-Bernal, C.; Cedillo, M.L.; Yáñez-Santos, J.A.; Martínez-Laguna, Y.; Torres, J.; et al. The Flp Type IV Pilus Operon of Mycobacterium tuberculosis is Expressed upon Interaction with Macrophages and Alveolar Epithelial Cells. Front. Cell. Infect. Microbiol. 2022, 12, 916247. [Google Scholar] [CrossRef]
- Price, C.T.D.; Jones, S.C.; Amundson, K.E.; Abu Kwaik, Y. Host-Mediated Post-Translational Prenylation of Novel Dot/ Icm-Translocated Effectors of Legionella pneumophila. Front. Microbiol. 2010, 1, 131. [Google Scholar] [CrossRef]
- Raposo, C.J.; McElroy, K.A.; Fuchs, S.M. The Epithelial Adhesin 1 Tandem Repeat Region Mediates Protein Display through Multiple Mechanisms. FEMS Yeast Res. 2020, 20, foaa018. [Google Scholar] [CrossRef]
- Chan, J.M.; Gori, A.; Nobbs, A.H.; Heyderman, R.S. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front. Microbiol. 2020, 11, 593356. [Google Scholar] [CrossRef]
- Habchi, J.; Tompa, P.; Longhi, S.; Uversky, V.N. Introducing Protein Intrinsic Disorder. Chem. Rev. 2014, 114, 6561–6588. [Google Scholar] [CrossRef]
- Peng, Z.; Yan, J.; Fan, X.; Mizianty, M.J.; Xue, B.; Wang, K.; Hu, G.; Uversky, V.N.; Kurgan, L. Exceptionally Abundant Exceptions: Comprehensive Characterization of Intrinsic Disorder in All Domains of Life. Cell. Mol. Life Sci. 2014, 72, 137–151. [Google Scholar] [CrossRef]
- Chen, J.W.; Romero, P.; Uversky, V.N.; Dunker, A.K. Conservation of Intrinsic Disorder in Protein Domains and Families: II. Functions of Conserved Disorder. J. Proteome Res. 2006, 5, 888–898. [Google Scholar] [CrossRef]
- Xue, B.; Dunker, A.K.; Uversky, V.N. Orderly Order in Protein Intrinsic Disorder Distribution: Disorder in 3500 Proteomes from Viruses and the Three Domains of Life. J. Biomol. Struct. Dyn. 2012, 30, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Mier, P.; Andrade-Navarro, M.A. The Conservation of Low Complexity Regions in Bacterial Proteins Depends on the Pathogenicity of the Strain and Subcellular Location of the Protein. Genes 2021, 12, 451. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Genomic Location | Strand | Cellular Localization | Product Description |
---|---|---|---|---|
bcal1519 | 1683715–1684125 | + | Periplasmic | Putative Transposase |
bcal1520 | 1684227–1684688 | - | Periplasmic | Putative Lipoprotein |
bcal1522 | 1684863–1686548 | - | Outer Membrane | Putative Exported Heme Utilization-Related Protein |
bcal1523 | 1686693–1688117 | - | Cytoplasmic Membrane | Bcc-CLP |
bcal1524 | 1688158–1689831 | - | Extracellular | Bcc-CLP |
bcal1525 | 1690509–1690679 | + | Unknown | Flp type Pilus Subunit |
cafA | 2649893–2651362 | + | Cytoplasmic | Ribonuclease G |
bcal2396 | 2651489–2651824 | + | Unknown | Hypothetical Protein |
bcal2397 | 2652280–2653431 | + | Extracellular | Bcc-CLP |
bcal2398 | 2653685–2654650 | + | Unknown | Putative Lipoprotein |
bcal2399 | 2654647–2655906 | + | Cytoplasmic Membrane | Major Facilitator Superfamily Protein |
bcal2400 | 2655945–2656511 | + | Cytoplasmic Membrane | Fusaric acid resistance protein-like |
bcam0693 | 765308–765925 | - | Cytoplasmic | Hypothetical Protein |
bcam0694 | 766473–767756 | - | Cytoplasmic Membrane | Hypothetical Protein |
bcam0695 | 767884–770160 | - | Unknown/Cytoplasmic Membrane | Bcc-CLP |
bcam0696 | 770523–770921 | + | Unknown | Putative Carboxymuconolactone Decarboxylase |
bcam1597 | 1783216–1783677 | + | Cytoplasmic | AsnC Family Regulatory Family |
bcam1598 | 1783790–1785088 | - | Extracellular/Cytoplasmic Membrane | Bcc-CLP |
bcam1600 | 1785332–1785679 | - | Periplasmic | Copper binding periplasmic protein |
Protein | Nº aa | Localization | Collagen Middle Region E-Value | Low Complexity Region (%) | Nº GXX’ Repeats | GXX’ Type |
---|---|---|---|---|---|---|
BCAL1523 | 475 | Cytoplasmic Membrane | 1.8 × 10−63 | 43 | 4 | GTS3GSS1 |
BCAL1524 | 558 | Extracellular | 5.1 × 10−68 | 49 | 18 | GSS1GTS16GVS1 |
BCAL2397 | 384 | Extracellular | 9.4 × 10−58 | 63 | - | - |
BCAM0695 | 758 | Unknown/ Cytoplasmic Membrane | 9.3 × 10−56 | 72 | 83 | GSS3GTS79GTG1 |
BCAM1598 | 433 | Extracellular/Cytoplasmic Membrane | 1.2 × 10−56 | 45 | 36 | GTN1GTG1GTS31GTP1GTN1GII1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estevens, R.; Mil-Homens, D.; Fialho, A.M. In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains. Microorganisms 2023, 11, 1118. https://doi.org/10.3390/microorganisms11051118
Estevens R, Mil-Homens D, Fialho AM. In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains. Microorganisms. 2023; 11(5):1118. https://doi.org/10.3390/microorganisms11051118
Chicago/Turabian StyleEstevens, Ricardo, Dalila Mil-Homens, and Arsenio M. Fialho. 2023. "In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains" Microorganisms 11, no. 5: 1118. https://doi.org/10.3390/microorganisms11051118
APA StyleEstevens, R., Mil-Homens, D., & Fialho, A. M. (2023). In-Silico Analysis Highlights the Existence in Members of Burkholderia cepacia Complex of a New Class of Adhesins Possessing Collagen-like Domains. Microorganisms, 11(5), 1118. https://doi.org/10.3390/microorganisms11051118