Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. difficile Isolates
2.2. PCR Ribotyping
2.3. Minimum Inhibitory Concentration (MIC) Testing
3. Results
4. Discussion
4.1. C. difficile’s Ribotype Prevalence along the Food Chain
4.2. Antimicrobial Resistance of the Selected C. difficile Isolates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, C.; Avesani, V.; Van Broeck, J.; Taminiau, B.; Delmee, M.; Daube, G. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 2012, 18, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.H.; Gerding, D.N.; Johnson, S.; Kelly, C.P.; Loo, V.G.; McDonald, L.C.; Wilcox, M.H. Society for Healthcare Epidemiology of America, Infectious Diseases Society of America, Infectious Diseases Society of America. Clinical practice guidelines for Clostridium difficile in adults, 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control. Hosp. Epidemiol. 2010, 31, 431–455. [Google Scholar] [PubMed]
- Owens, R.C.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46, 19–31. [Google Scholar] [CrossRef]
- Stubbs, S.L.; Brazier, J.S.; O’Neill, G.L.; Duerden, B.I. PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J. Clin. Microbiol. 1999, 37, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Indra, A.; Huhulescu, S.; Schneeweis, M.; Hasenberger, P.; Kernbichler, S.; Fiedler, A.; Wewalka, G.; Allerberger, F.; Kuijper, E.J. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J. Med. Microbiol. 2008, 57 Pt 11, 1377–1382. [Google Scholar] [CrossRef]
- Dayananda, P.; Wilcox, M.H. A Review of Mixed Strain Clostridium difficile Colonization and Infection. Front. Microbiol. 2019, 10, 692. [Google Scholar] [CrossRef]
- Knight, D.R.; Elliott, B.; Chang, B.J.; Perkins, T.T.; Riley, T.V. Diversity and Evolution in the Genome of Clostridium difficile. Clin. Microbiol. Rev. 2015, 28, 721–741. [Google Scholar] [CrossRef]
- Alcalá, L.; Martin, A.; Marin, M.; Sanchez-Somolinos, M.; Catalan, P.; Pelaez, T.; Bouza, E. The undiagnosed cases of Clostridium difficile infection in a whole nation, where is the problem? Clin. Microbiol. Infect. 2012, 18, E204–E213. [Google Scholar] [CrossRef]
- Herbert, R.; Hatcher, J.; Jauneikaite, E.; Gharbi, M.; d’Arc, S.; Obaray, N.; Rickards, T.; Rebec, M.; Blandy, O.; Hope, R.; et al. Two-year analysis of Clostridium difficile ribotypes associated with increased severity. J. Hosp. Infect. 2019, 4, 388–394. [Google Scholar] [CrossRef]
- Couturier, J.; Davies, K.; Gateau, C.; Barbut, F. Ribotypes and New Virulent Strains Across Europe. Adv. Exp. Med. Biol. 2018, 1050, 45–58. [Google Scholar]
- Health Service Executive (HSE)—Health Protection Surveillance Centre (HPSC) Enhanced Surveillance of Clostridioides (Clostridium) difficile Infection in Ireland: Q2 2021 National Report. 2021. Available online: https://www.hpsc.ie/a-z/microbiologyantimicrobialresistance/clostridioidesdifficile/enhancedsurveillance/quarterlyreports/CDINationalReport_Q22022_v2.0_Final.pdf (accessed on 20 January 2023).
- Álvarez-Perez, S.; Blanco, J.L.; Harmanus, C.; Kuijper, E.; Garcia, M.E. Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet. Microbiol. 2017, 199, 15–22. [Google Scholar] [CrossRef]
- Knetsch, C.W.; Connor, T.R.; Mutreja, A.; van Dorp, S.M.; Sanders, I.M.; Browne, H.P.; Harris, D.; Lipman, L.; Keessen, E.C.; Corver, J.; et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro. Surveill. 2014, 19, 20954. [Google Scholar] [CrossRef]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef]
- Weese, J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Investig. Off. Publ. Am. Assoc. Vet. Lab. Diagn. 2020, 32, 213–221. [Google Scholar] [CrossRef]
- Bolton, D.; Marcos, P. The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023, 12, 1094. [Google Scholar] [CrossRef]
- Andres-Lasheras, S.; Bolea, R.; Mainar-Jaime, R.C.; Kuijper, E.; Sevilla, E.; Martin-Burriel, I.; Chirino-Trejo, M. Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J. Appl. Microbiol. 2017, 122, 462–472. [Google Scholar] [CrossRef]
- Harvey, R.B.; Norman, K.N.; Andrews, K.; Hume, M.E.; Scanlan, C.M.; Callaway, T.R.; Anderson, R.C.; Nisbet, D.J. Clostridium difficile in poultry and poultry meat. Foodborne Pathog. Dis. 2011, 8, 1321–1323. [Google Scholar] [CrossRef]
- Costa, M.C.; Stämpfli, H.R.; Arroyo, L.G.; Pearl, D.L.; Weese, J.S. Epidemiology of Clostridium difficile on a veal farm, prevalence, molecular characterization and tetracycline resistance. Vet. Microbiol. 2011, 152, 379–384. [Google Scholar] [CrossRef]
- Knight, D.R.; Riley, T.V. Prevalence of Gastrointestinal Clostridium difficile Carriage in Australian Sheep and Lambs. Appl. Environ. Microbiol. 2013, 79, 5689–5692. [Google Scholar] [CrossRef]
- Romano, V.; Albanese, F.; Dumontet, S.; Krovacek, K.; Petrini, O.; Pasquale, V. Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 2012, 59, 545–548. [Google Scholar] [CrossRef]
- Avberšek, J.; Pirš, T.; Pate, M.; Rupnik, M.; Ocepek, M. Clostridium difficile in goats and sheep in Slovenia, characterisation of strains and evidence of age-related shedding. Anaerobe 2014, 28, 163–167. [Google Scholar] [CrossRef]
- Songer, J.G.; Trinh, H.T.; Killgore, G.E.; Thompson, A.D.; McDonald, L.C.; Limbago, B.M. Clostridium difficile in Retail Meat Products, USA, 2007. Emerg. Infect. Dis. 2009, 15, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Avery, B.; Rousseau, J.; Reid-Smith, R. Detection and Enumeration of Clostridium difficile Spores in Retail Beef and Pork. Appl. Environ. Microbiol. 2009, 15, 5009–5011. [Google Scholar] [CrossRef]
- Varshney, J.B.; Very, K.J.; Williams, J.L.; Hegarty, J.P.; Stewart, D.B.; Lumadue, J. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania. Foodborne Pathog. Dis. 2014, 11, 822–829. [Google Scholar] [CrossRef]
- Weese, J.S.; Reid-Smith, R.J.; Avery, B.P.; Rousseau, J. Detection and characterization of Clostridium difficile in retail chicken. Lett. Appl. Microbiol. 2010, 50, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, V.; Romano, V.; Rupnik, M.; Capuano, F.; Bove, D.; Aliberti, F.; Krovacek, K.; Dumontet, S. Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol. 2012, 31, 309–312. [Google Scholar] [CrossRef]
- Troiano, T.; Harmanus, C.; Sanders, I.M.J.G.; Pasquale, V.; Dumontet, S.; Capuano, F.; Kuijper, E.J. Toxigenic Clostridium difficile PCR ribotypes in edible marine bivalve molluscs in Italy. Int. J. Food Microbiol. 2015, 208, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Agnoletti, F.; Arcangeli, G.; Barbanti, F.; Barco, L.; Brunetta, R.; Cocchi, M.; Conedera, G.; D’Este, L.; Drigo, I.; Spigaglia, P.; et al. Survey, characterization and antimicrobial susceptibility of Clostridium difficile from marine bivalve shellfish of North Adriatic Sea. Int. J. Food Microbiol. 2019, 298, 74–80. [Google Scholar] [CrossRef]
- Metcalf, D.S.; Costa, M.C.; Dew, W.M.; Weese, J.S. Clostridium difficile in vegetables, Canada. Lett. Appl. Microbiol. 2010, 51, 600–602. [Google Scholar] [CrossRef]
- Eckert, C.; Burghoffer, B.; Barbut, F. Contamination of ready-to-eat raw vegetables with Clostridium difficile, France. J. Med. Microbiol. 2013, 62, 1435–1438. [Google Scholar] [CrossRef]
- Primavilla, S.; Farneti, S.; Petruzzelli, A.; Drigo, I.; Scuota, S. Contamination of hospital food with Clostridium difficile in Central Italy. Anaerobe 2019, 55, 8–10. [Google Scholar] [CrossRef]
- Tkalec, V.; Janezica, S.; Skoka, B.; Simonica, T.; Mesarica, S.; Vrabica, T.; Rupnik, M. High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol. 2019, 78, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Dingle, K.E.; Didelot, X.; Quan, T.P.; Eyre, D.W.; Stoesser, N.; Marwick, C.A.; Coia, J.; Brown, D.; Buchanan, S.; Ijaz, U.Z.; et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio 2019, 10, e02790-18. [Google Scholar] [CrossRef]
- Lim, S.C.; Androga, G.O.; Knight, D.R.; Moono, P.; Foster, N.F.; Riley, T.V. Antimicrobial susceptibility of Clostridium difficile isolated from food and environmental sources in Western Australia. Int. J. Antimicrob. Agents 2018, 52, 411–415. [Google Scholar] [CrossRef]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 2013, 108, 478–498. [Google Scholar] [CrossRef]
- Boekhoud, I.M.; Hornung, B.V.H.; Sevilla, E.; Harmanus, C.; Bos-Sanders, I.M.J.G.; Terveer, E.M.; Bolea, R.; Corver, J.; Kuijper, E.J.; Smits, W.K. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat. Commun. 2020, 11, 598. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 5, e1029–e1044. [Google Scholar] [CrossRef]
- Spigaglia, P.; Mastrantonio, P.; Barbanti, F. Antibiotic Resistances of Clostridium difficile. Adv. Exp. Med. Biol. 2018, 1050, 137–159. [Google Scholar]
- Adler, A.; Miller-Roll, T.; Bradenstein, R.; Block, C.; Mendelson, B.; Parizade, M.; Paitan, Y.; Schwartz, D.; Peled, N.; Carmeli, Y.; et al. A national survey of the molecular epidemiology of Clostridium difficile in Israel, the dissemination of the ribotype 027 strain with reduced susceptibility to vancomycin and metronidazole. Diagn. Microbiol. Infect. Dis. 2015, 83, 21–24. [Google Scholar] [CrossRef]
- Snydman, D.R.; McDermott, L.A.; Jacobus, N.V.; Thorpe, C.; Stone, S.; Jenkins, S.G.; Goldstein, E.J.; Patel, R.; Forbes, B.A.; Mirrett, S.; et al. U.S.-Based National Sentinel Surveillance Study for the Epidemiology of Clostridium difficile-Associated Diarrheal Isolates and Their Susceptibility to Fidaxomicin. Antimicrob. Agents Chemother. 2015, 59, 6437–6443. [Google Scholar] [CrossRef]
- Freeman, J.; Vernon, J.; Morris, K.; Nicholson, S.; Todhunter, S.; Longshaw, C.; Wilcox, M.H. Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Clin. Microbiol. Infect. 2015, 21, 248-e9. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.S.; Jiang, Z.-D.; Garey, K.W.; Lasco, T.; Dupont, H.L. Use of rifamycin drugs and development of infection by rifamycin-resistant strains of Clostridium difficile. Antimicrob. Agents Chemother. 2013, 57, 2690–2693. [Google Scholar] [CrossRef] [PubMed]
- Terhes, G.; Maruyama, A.; Latkóczy, K.; Szikra, L.; Konkoly-Thege, M.; Princz, G.; Nagy, E.; Urbán, E. In vitro antibiotic susceptibility profile of Clostridium difficile excluding PCR ribotype 027 outbreak strain in Hungary. Anaerobe 2014, 30, 41–44. [Google Scholar] [CrossRef]
- Goldstein, E.J.; Citron, D.M.; Sears, P.; Babakhani, F.; Sambol, S.P.; Gerding, D.N. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob. Agents Chemother. 2011, 55, 5194–5199. [Google Scholar] [CrossRef]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar] [CrossRef]
- He, M.; Miyajima, F.; Roberts, P.; Ellison, L.; Pickard, D.J.; Martin, M.J.; Connor, T.R.; Harris, S.R.; Fairley, D.; Bamford, K.B.; et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 2013, 45, 109–113. [Google Scholar] [CrossRef]
- Marcos, P.; Whyte, P.; Rogers, T.; McElroy, M.; Fanning, S.; Frias, J.; Burgess, C.M.; Bolton, D.J. The prevalence of Clostridioides difficile on farms, in abattoirs and in retail foods in Ireland. Food Microbiol. 2021, 98, 103781. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Laboratory Procedures for Diagnosis and Typing of Human Clostridium difficile Infection; Technical Report. 2018. Available online: www.ecdc.europa.eu (accessed on 20 January 2023).
- Bidet, P.; Barbut, F.; Lalande, V.; Burghoffer, B.; Petit, J.C. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol. Lett. 1999, 175, 261–266. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Polyzos, K.A.; Patouni, K.; Rafailidis, P.I.; Samonis, G.; Falagas, M.E. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole, a systematic review of the evidence. Int. J. Antimicrob. Agents 2012, 40, 1–8. [Google Scholar] [CrossRef]
- Curry, S.R.; Marsh, J.W.; Shutt, K.A.; Muto, C.A.; O’Leary, M.M.; Saul, M.I.; Pasculle, A.W.; Harrison, L.H. High frequency of rifampin resistance identified in an epidemic Clostridium difficile clone from a large teaching hospital. Clin. Infect. Dis. 2009, 48, 425–429. [Google Scholar] [CrossRef]
- Obuch-Woszczatyński, P.; Lachowicz, D.; Schneider, A.; Mól, A.; Pawłowska, J.; Ożdżeńska-Milke, E.; Pruszczyk, P.; Wultańska, D.; Młynarczyk, G.; Harmanus, C.; et al. Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008-2010. Anaerobe 2014, 28, 13–17. [Google Scholar] [CrossRef]
- Tijerina-Rodríguez, L.; Garza-González, E.; Martínez-Meléndez, A.; Morfín-Otero, R.; Camacho-Ortiz, A.; Gonzalez-Diaz, E.; Perez-Gomez, H.R.; Villarreal-Treviño, L.; Maldonado-Garza, H.; Esparza-Ahumada, S.; et al. Clinical characteristics associated with the severity of Clostridium [Clostridioides] difficile infection in a tertiary teaching hospital from Mexico. Biomed. J. 2022, 45, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, G.; Tang-Feldman, Y.J.; Schaumann, R.; Henderson, J.P.; Rodloff, A.C.; Silva Jr, J.; Cohen, S.H. Antecedent use of fluoroquinolones is associated with resistance to moxifloxacin in Clostridium difficile. Clin. Microbiol. Infect. 2003, 9, 526–530. [Google Scholar] [CrossRef]
- Carroll, D.N. Moxifloxacin-induced Clostridium difficile-associated diarrhea. Pharmacotherapy 2003, 23, 1517–1519. [Google Scholar] [CrossRef]
- Spigaglia, P.; Barbanti, F.; Mastrantonio, P. European Study Group on Clostridium difficile (ESGCD) Multidrug resistance in European Clostridium difficile clinical isolates. J. Antimicrob. Chemother. 2011, 66, 2227–2234. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Ilic, S.; LeJeune, J.T. Clostridium difficile with Moxifloxacin/Clindamycin Resistance in Vegetables in Ohio, USA, and Prevalence Meta-Analysis. J. Pathog. 2014, 2014, 158601. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC Distribution for Clostridioides Difficie. 2023. Available online: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=564&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50 (accessed on 1 March 2023).
- Keel, K.; Brazier, J.S.; Post, K.W.; Weese, S.; Songer, J.G. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J. Clin. Microbiol. 2007, 45, 1963–1964. [Google Scholar] [CrossRef]
- Abdel-Glil, M.Y.; Thomas, P.; Schmoock, G.; Abou-El-Azm, K.; Wieler, L.H.; Neubauer, H.; Seyboldt, C. Presence of Clostridium difficile in poultry and poultry meat in Egypt. Anaerobe 2018, 51, 21–25. [Google Scholar] [CrossRef]
- Krutova, M.; Zouharova, M.; Matejkova, J.; Tkadlec, J.; Krejci, J.; Faldyna, M.; Nyc, O.; Bernardy, J. The emergence of Clostridium difficile PCR ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int. J. Med. Microbiol. 2018, 308, 770–775. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yang, L.; Gu, X.X.; Chen, P.X.; Fu, J.L.; Jiang, H.X. The first isolation of Clostridium difficile RT078/ST11 from pigs in China. PLoS ONE 2019, 14, e0212965. [Google Scholar] [CrossRef]
- Janezic, S.; Zidaric, V.; Pardon, B.; Indra, A.; Kokotovic, B.; Blanco, J.L.; Seyboldt, C.; Diaz, C.R.; Poxton, I.R.; Perreten, V.; et al. International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol. 2014, 14, 173. [Google Scholar] [CrossRef]
- Berger, F.K.; Mellmann, A.; Bischoff, M.; von Muller, L.; Becker, S.L.; Simango, C.; Gartner, B. Molecular epidemiology and antimicrobial resistance of Clostridioides difficile detected in chicken, soil and human samples from Zimbabwe. Int. J. Infect. Dis. 2020, 96, 82–87. [Google Scholar] [CrossRef]
- de Boer, E.; Zwartkruis-Nahuis, A.; Heuvelink, A.E.; Harmanus, C.; Kuijper, E.J. Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int. J. Food Microbiol. 2011, 144, 561–564. [Google Scholar] [CrossRef]
- Koene, M.G.J.; Mevius, D.; Wagenaar, J.A.; Harmanus, C.; Hensgens, M.P.M.; Meetsma, A.M.; Putirulan, F.F.; van Bergen, M.A.P.; Kuijper, E. Clostridium difficile in Dutch animals, their presence, characteristics and similarities with human isolates. Clin. Microbiol. Infect. 2012, 18, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Frentrup, M.; Thiel, N.; Junker, V.; Behrens, W.; Münch, S.; Siller, P.; Kabelitz, T.; Faust, M.; Indra, A.; Baumgartner, S.; et al. Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ. Microbiol. 2021, 23, 7591–7602. [Google Scholar] [CrossRef] [PubMed]
- Heise, J.; Witt, P.; Maneck, C.; Wichmann-Schauer, H.; Maurischat, S. Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int. J. Food Microbiol. 2021, 339, 109032. [Google Scholar] [CrossRef]
- Solomon, K.; Murray, S.; Scott, L.; McDermott, S.; Drudy, D.; Martin, A.; O’Donoghue, C.; Skally, M.; Burns, K.; Fenelon, L.; et al. An investigation of the subtype diversity of clinical isolates of Irish Clostridium difficile ribotypes 027 and 078 by repetitive-extragenic palindromic PCR. J. Med. Microbiol. 2011, 60 Pt 8, 1080–1087. [Google Scholar] [CrossRef]
- Zidaric, V.; Pardon, B.; Dos Vultos, T.; Deprez, P.; Brouwer, M.S.; Roberts, A.P.; Henriques, A.O.; Rupnik, M. Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl. Environ. Microbiol. 2012, 78, 8515–8522. [Google Scholar] [CrossRef]
- Blasi, F.; Lovito, C.; Albini, E.; Bano, L.; Dalmonte, G.; Drigo, I.; Maresca, C.; Massacci, F.R.; Orsini, S.; Primavilla, S.; et al. Clostridioides difficile in Calves in Central Italy, Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals 2021, 11, 515. [Google Scholar] [CrossRef]
- Keessen, E.C.; Hensgens, M.P.; Spigaglia, P.; Barbanti, F.; Sanders, I.M.; Kuijper, E.J.; Lipman, L.J. Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrob. Resist. Infect. Control. 2013, 2, 14. [Google Scholar] [CrossRef]
- Usui, M.; Nanbu, Y.; Oka, K.; Takahashi, M.; Inamatsu, T.; Asai, T.; Kamiya, S.; Tamura, Y. Genetic relatedness between Japanese and European isolates of Clostridium difficile originating from piglets and their risk associated with human health. Front. Microbiol. 2014, 5, 513. [Google Scholar] [CrossRef]
- Chow, V.C.Y.; Kwong, T.N.Y.; So, E.W.M.; Ho, Y.I.I.; Wong, S.H.; Lai, R.W.M.; Chan, R.C.Y. Surveillance of antibiotic resistance among common Clostridium difficile ribotypes in Hong Kong. Sci. Rep. 2017, 7, 17218. [Google Scholar] [CrossRef] [PubMed]
- Isidro, J.; Menezes, J.; Serrano, M.; Borges, V.; Paixão, P.; Mimoso, M.; Martins, F.; Toscano, C.; Santos, A.; Henriques, A.O.; et al. Genomic Study of a Clostridium difficile Multidrug Resistant Outbreak-Related Clone Reveals Novel Determinants of Resistance. Front. Microbiol. 2018, 9, 2994. [Google Scholar] [CrossRef]
- Rahimi, E.; Jalali, M.; Weese, J.S. Prevalence of Clostridium difficile in raw beef, cow, sheep, goat, camel and buffalo meat in Iran. BMC Public Health 2014, 14, 119. [Google Scholar] [CrossRef]
- Bakri, M.; Brown, D.J.; Butcher, J.P.; Sutherland, A.D. Clostridium difficile in ready-to-eat salads, Scotland. Emerg. Infect. Dis. 2009, 15, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; King, J.; Janes, M.E. Detection of antibiotic resistance toxigenic Clostridium difficile in processed retail lettuce. Food Qual. Saf. 2018, 2, 37–41. [Google Scholar] [CrossRef]
- Rahimi, E.; Afzali, S.Z.; Baghbadorani, Z.T. Clostridium difficile in ready-to-eat foods in Isfahan and Shahrekord, Iran. Asian Pac. J. Trop. Biomed. 2015, 2, 128–131. [Google Scholar] [CrossRef]
- Huang, H.; Weintraub, A.; Fang, H.; Nord, C.E. Antimicrobial resistance in Clostridium difficile. Int. J. Antimicrob. Agents 2009, 34, 516–522. [Google Scholar] [CrossRef]
- Androga, G.O.; Knight, D.R.; Lim, S.C.; Foster, N.F.; Riley, T.V. Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe 2018, 54, 55–60. [Google Scholar] [CrossRef]
- Hampikyan, H.; Bingol, E.B.; Muratoglu, K.; Akkaya, E.; Cetin, O.; Colak, H. The prevalence of Clostridium difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Sci. 2018, 139, 120–124. [Google Scholar] [CrossRef]
- Bingol, E.B.; Hampikyan, H.; Muratoglu, K.; Akkaya, E.; Cetin, O.; Colak, H. Characterisation and Antibiotic Susceptibility Profile of Clostridioides (Clostridium) Difficile Isolated from Chicken Carcasses. J. Vet. Res. 2020, 64, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, Ş.Ş.; Coşansu, S. Prevalence of Clostridium difficile Isolated from Beef and Chicken Meat Products in Turkey. Korean J. Food Sci. Anim. Resour. 2018, 38, 759–767. [Google Scholar] [PubMed]
- Peláez, T.; Alcalá, L.; Alonso, R.; Rodríguez-Créixems, M.; García-Lechuz, J.M.; Bouza, E. Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob. Agents Chemother. 2002, 46, 1647–1650. [Google Scholar] [CrossRef]
- Doosti, A.; Mokhtari-Farsani, A. Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 21. [Google Scholar] [CrossRef]
- Dharmasena, M.; Jiang, X. Isolation of toxigenic Clostridium difficile from animal manure and composts being used as biological soil amendments. Appl. Environ. Microbiol. 2018, 84, e00738-18. [Google Scholar] [CrossRef]
- Kouassi, K.A.; Dadie, A.T.; Nanga, Z.Y.; Dje, K.M.; Loukou, Y.G. Clostridium perfringens and Clostridium difficile in cooked beef sold in Cote d’Ivoire and their antimicrobial susceptibility. Anaerobe 2014, 28, 90–94. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Avesani, V.; Van Broeck, J.; Delmée, M.; Daube, G. Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol. 2014, 42, 166–171. [Google Scholar] [CrossRef]
- Atasoy, F.; Gücükoğlu, A. Detection of Clostridium difficile and toxin genes in samples of modified atmosphere packaged (MAP) minced and cubed beef meat. Ank. Üniversitesi Vet. Fakültesi Derg. 2017, 64, 165–170. [Google Scholar]
- Lee, J.Y.; Lee, D.Y.; Cho, Y.S. Prevalence of Clostridium difficile isolated from various raw meats in Korea. Food Sci. Biotechnol. 2018, 27, 883–889. [Google Scholar] [CrossRef]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans, a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 158. [Google Scholar] [CrossRef]
- Bandelj, P.; Golob, M.; Ocepek, M.; Zdovc, I.; Vengust, M. Antimicrobial Susceptibility Patterns of Clostridium difficile Isolates from Family Dairy Farms. Zoonoses Public Health 2017, 64, 213–221. [Google Scholar] [CrossRef]
- Rodriguez Diaz, C.; Hakimi, D.-E.; Vanleyssem, R.; Taminiau, B.; VanBroeck, J.; Delmee, M.; Kosak Koulagenko, N.; Daube, G. Clostridium difficile in beef cattle farms, farmers and their environment, Assessing the spread of the bacterium. Vet. Microbiol. 2017, 210, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Masarikova, M.; Simkova, I.; Plesko, M.; Eretova, V.; Krutova, M.; Cizek, A. The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126. Microorganisms 2020, 8, 901. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.; Byun, J.W.; Kim, J.W.; Oh, S.I.; Lee, M.H.; Kim, H.Y. Low Prevalence of Clostridium difficile in Slaughter Pigs in Korea. J. Food Prot. 2015, 78, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P.; Barbanti, F.; Dionisi, A.M.; Mastrantonio, P. Clostridium difficile isolates resistant to fluoroquinolones in Italy, emergence of PCR ribotype 018. J. Clin. Microbiol. 2010, 48, 2892–2896. [Google Scholar] [CrossRef]
- Tenover, F.C.; Tickler, I.A.; Persing, D.H. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob. Agents Chemother. 2012, 56, 2929–2932. [Google Scholar] [CrossRef] [PubMed]
- Krutova, M.; Capek, V.; Nycova, E.; Vojackova, S.; Balejova, M.; Geigerova, L.; Tejkalova, R.; Havlinova, L.; Vagnerova, I.; Cermak, P.; et al. The association of a reduced susceptibility to moxifloxacin in causative Clostridium (Clostridioides) difficile strain with the clinical outcome of patients. Antimicrob. Resist. Infect. Control 2020, 9, 98. [Google Scholar] [CrossRef]
- Goudarzi, M.; Goudarzi, H.; Alebouyeh, M.; Azimi Rad, M.; Shayegan Mehr, F.S.; Zali, M.R.; Aslani, M.M. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran. Red Crescent Med. J. 2013, 15, 704–711. [Google Scholar] [CrossRef]
- Hecht, D.W.; Galang, M.A.; Sambol, S.P.; Osmolski, J.R.; Johnson, S.; Gerding, D.N. In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob. Agents Chemother. 2007, 51, 2716–2719. [Google Scholar] [CrossRef]
- O’Connor, J.R.; Galang, M.A.; Sambol, S.P.; Hecht, D.W.; Vedantam, G.; Gerding, D.N.; Johnson, S. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob. Agents Chemother. 2008, 52, 2813–2817. [Google Scholar] [CrossRef]
- Garey, K.W.; Salazar, M.; Shah, D.; Rodrigue, R.; DuPont, H.L. Rifamycin antibiotics for treatment of Clostridium difficile-associated diarrhea. Ann. Pharmacother. 2008, 42, 827–835. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, S.; Wang, L.; Chin, D.P.; Wang, S.; Jiang, G.; Xia, H.; Zhou, Y.; Li, Q.; Ou, X.; et al. National survey of drug-resistant tuberculosis in China. N. Engl. J. Med. 2012, 366, 2161–2170. [Google Scholar] [CrossRef]
- Johanesen, P.A.; Mackin, K.E.; Hutton, M.L.; Awad, M.M.; Larcombe, S.; Amy, J.M.; Lyras, D. Disruption of the Gut Microbiome, Clostridium difficile Infection and the Threat of Antibiotic Resistance. Genes 2015, 6, 1347–1360. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria, An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Doyle, M.E. Multidrug-resistant pathogens in the food supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Mutai, W.C.; Mureithi, M.W.; Anzala, O.; Revathi, G.; Kullin, B.; Brugu, M.; Kany’a, C.; Odoyo, E.; Otieno, P.; Musila, L. High Prevalence of Multidrug-Resistant Clostridioides difficile Following Extensive Use of Antimicrobials in Hospitalized Patients in Kenya. Front. Cell. Infect. Microbiol. 2021, 10, 604986. [Google Scholar] [CrossRef]
Isolate Source | RT 1 | Antimicrobial Susceptibility (S) or Resistance (R) (MIC in µg mL−1) | |||||
---|---|---|---|---|---|---|---|
ERY | MET | CLIN | MOX | VAN | RIF | ||
Bovine farm water | 078 | S (1) | S (0.094) | S (4) | S (<0.002) | R (3) | S (<0.002) |
078 | S (1.5) | S (0.5) | S (<0.016) | S (<0.002) | S (<0.016) | S (<0.002) | |
078/4 | S (0.75) | S (0.047) | S (<0.016) | R (>32) | S (<0.016) | S (<0.002) | |
078/4 | S (0.75) | R (>256) | S (0.032) | S (3) | R (>256) | R (0.5) | |
078/4 | S (0.25) | R (>256) | S (8) | R (>32) | R (>256) | R (0.5) | |
Bovine farm soil | 078 | S (2) | S (0.125) | S (4) | S (<0.002) | R (>256) | S (<0.002) |
078/4 | R (8) | S (0.19) | S (8) | R (>32) | R (>256) | R (0.064) | |
049 | R (>256) | R (>256) | R (>256) | S (3) | R (>256) | R (1) | |
547 | S (0.25) | R (>256) | S (0.064) | S (2) | R (>256) | R (1) | |
683 | S (0.75) | S (0.125) | S (4) | S (<0.002) | S (2) | S (<0.002) | |
IN 2 | R (>256) | R (>256) | R (>256) | S (1) | R (>256) | R (0.19) | |
Bovine carcass | 078/4 | S (0.5) | R (>256) | S (0.047) | S (3) | R (>256) | R (1) |
Ovine feces | 078/4 | S (<0.016) | S (<0.016) | S (6) | R (>32) | S (1.5) | S (<0.002) |
Ovine farm soil | 078 | R (>256) | S (0.125) | R (>256) | R (>32) | S (1) | S (<0.002) |
078 | S (<0.016) | S (<0.016) | S (<0.016) | S (<0.002) | S (<0.016) | S (<0.002) | |
078 | S (1.5) | S (0.047) | S (<0.016) | R (>32) | S (<0.016) | S (<0.002) | |
IN2 | S (<0.016) | S (<0.016) | S (8) | R (>32) | S (0.75) | S (<0.002) | |
Ovine carcasses | 078/4 | R (24) | R (>256) | S (6) | S (0.064) | R (3) | S (0.003) |
078/4 | S (1.5) | S (0.047) | S (2) | S (0.5) | S (1.5) | S (<0.002) | |
Broiler feces | 078 | R (>256) | R (>256) | R (>256) | S (3) | R (>256) | R (0.19) |
Broiler farm water | 078/4 | S (<0.016) | S (<0.016) | S (<0.016) | R (>32) | S (<0.016) | S (<0.002) |
IN 2 | S (<0.016) | S (<0.016) | S (<0.016) | S (<0.002) | S (<0.016) | S (<0.002) | |
Broiler farm soil | 078 | S (<0.016) | S (<0.016) | S (<0.016) | S (0.75) | S (<0.016) | S (<0.002) |
078 | S (0.38) | R (>256) | S (0.064) | S (2) | R (>256) | R (0.5) | |
078 | S (<0.016) | S (<0.016) | S (<0.016) | S (<0.002) | S (<0.016) | S (<0.002) | |
078/4 | S (1.5) | R (>256) | S (<0.016) | S (3) | R (>256) | R (1) | |
078/4 | S (1) | S (0.047) | S (8) | R (>32) | R (3) | S (<0.002) | |
078/4 | S (1) | R (>256) | S (6) | R (>32) | S (<0.016) | S (<0.002) | |
049 | R (>256) | R (>256) | R (>256) | S (1.5) | R (>256) | R (2) | |
002/1 | S (0.25) | S (<0.016) | R (>256) | R (>32) | R (>256) | R (0.75) | |
014/0 | R (>256) | R (>256) | R (>256) | S (1.5) | R (>256) | R (0.75) | |
205 | S (0.25) | S (<0.016) | S (6) | S (<0.002) | S (<0.016) | S (<0.002) | |
530 | S (<0.016) | S (<0.016) | S (<0.016) | S (0.75) | S (<0.016) | S (<0.002) | |
Coleslaw | 078 | S (0.5) | R (>256) | S (0.5) | S (2) | R (>256) | R (1) |
Cottage cheese | 078 | S (0.19) | S (<0.016) | S (<0.016) | S (0.5) | S (<0.016) | S (<0.002) |
Wild rocket leaves | 078 | R (>256) | R (>256) | S (0.25) | S (1.5) | R (>256) | R (0.047) |
% Resistance | 25 (9/36) | 41.6(15/36) | 19.4 (7/36) | 30.5 (11/36) | 52.7 (19/36) | 41.6 (15/36) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, P.; Doyle, A.; Whyte, P.; Rogers, T.R.; McElroy, M.; Fanning, S.; Frias, J.; Bolton, D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023, 11, 1296. https://doi.org/10.3390/microorganisms11051296
Marcos P, Doyle A, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms. 2023; 11(5):1296. https://doi.org/10.3390/microorganisms11051296
Chicago/Turabian StyleMarcos, Pilar, Aoife Doyle, Paul Whyte, Thomas R. Rogers, Máire McElroy, Seamus Fanning, Jesus Frias, and Declan Bolton. 2023. "Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance" Microorganisms 11, no. 5: 1296. https://doi.org/10.3390/microorganisms11051296
APA StyleMarcos, P., Doyle, A., Whyte, P., Rogers, T. R., McElroy, M., Fanning, S., Frias, J., & Bolton, D. (2023). Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms, 11(5), 1296. https://doi.org/10.3390/microorganisms11051296