Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design and Sampling
2.2. Measurement of Nutritional Content
2.3. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) and LC–MS/MS
2.4. 16S rDNA Sequencing
2.5. Untargeted Metabolomics
2.6. Correlation Analysis
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Fermented Feed
3.2. Soybean Antigenic Protein Degradation
3.3. Microbial Diversity Analysis of Fermented Feed
3.4. Cluster Analysis of Metabolomics Data
3.5. Identification and Analysis of Differential Metabolites
3.6. Correlation among Significantly Different Microbiota, Nutritional Indices, and Metabolites
4. Discussion
4.1. Chemical Composition of Fermented Feed and Antigen Protein Degradation
4.2. Microbial Diversity and Data Cluster Analysis of Fermented Feed
4.3. Identification and Analysis of Differential Metabolites
4.4. Correlation among Significantly Different Microbiota, Nutritional Indices, and Metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, A.S.; Zuo, L.L.; Cheng, Y.F.; Wu, Z.H.; Li, X.; Tong, P.; Chen, H.B. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct. 2018, 9, 1899–1909. [Google Scholar] [CrossRef]
- Wang, T.; Qin, G.X.; Sun, Z.W.; Zhao, Y. Advances of research on glycinin and β-conglycinin: A review of two major soybean allergenic proteins. Crit. Rev. Food Sci. 2014, 54, 850–862. [Google Scholar] [CrossRef]
- Zhang, S.T.; Wang, C.F.; Sun, Y.; Wang, G.; Chen, H.; Li, D.; Yu, X.X.; Chen, G. Xylanase and fermented polysaccharide of Hericium caputmedusae reduce pathogenic infection of broilers by improving antioxidant and anti-Inflammatory properties. Oxidative Med. Cell. Longev. 2018, 2018, 4296985. [Google Scholar] [CrossRef]
- Oh, N.S.; Joung, J.Y.; Lee, J.Y.; Song, J.G.; Oh, S.; Kim, Y.; Kim, H.W.; Kim, S.H. Glycated milk protein fermented with Lactobacillus rhamnosus ameliorates the cognitive health of mice under mild-stress condition. Gut Microbes. 2020, 11, 1643–1661. [Google Scholar] [CrossRef]
- Ding, Y.W.; Guo, Y.X.; Wang, H.Y.; Yang, C.H.; Tian, X.Z.; Xu, Y.H.; Duan, C.H.; Yan, H.; Ji, S.K.; Liu, Y.Q.; et al. Effects of compound probiotic fermented feed on nutrient apparent digestibility, serum hormone contents, fecal microbial flora and digestive enzyme activities of lambs. Chin. J. Anim. Nutr. 2022, 34, 7945–7959. [Google Scholar]
- Wang, C.; Wei, S.Y.; Jin, M.L.; Liu, B.J.; Yue, M.; Wang, Y.Z. Integrated microbiomic and metabolomic dynamics of fermented corn and soybean by-product mixed substrate. Front. Nutr. 2022, 9, 831243. [Google Scholar] [CrossRef]
- Rathod, N.B.; Phadke, G.G.; Tabanelli, G.; Mane, A.; Ranveer, R.C.; Pagarkar, A. Recent advances in bio-preservatives impacts of Lactic acid bacteria and their metabolites on aquatic food products. Food Biosci. 2021, 44, 1041440. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Wu, C.; Zhu, Y.; Zhou, C.G.; Xiong, Z.Y.; Eweys, A.S.; Zhou, H.B.; Dong, Y.; Xiao, X. Metabolomics strategy for revealing the components in fermented barley extracts with Lactobacillus plantarum dy-1. Food Res. Int. 2021, 139, 109808. [Google Scholar] [CrossRef]
- Liu, Y.L.; Feng, J.; Wang, Y.M.; Lv, J.; Li, J.H.; Guo, L.J.; Min, Y.N. Fermented corn–soybean meal mixed feed modulates intestinal morphology, barrier functions and cecal microbiota in laying Hens. Animals 2021, 11, 3059. [Google Scholar] [CrossRef]
- Adeyemi, J.A.; Harmon, D.L.; Compart, D.M.P.; Ogunade, I.M. Effects of a blend of Saccharomyces cerevisiae-based direct-fed microbial and fermentation products in the diet of newly weaned beef steers: Growth performance, whole-blood immune gene expression, serum biochemistry, and plasma metabolome. J. Anim. Sci. 2019, 11, 4657–4667. [Google Scholar] [CrossRef]
- Ding, Y.W.; Guo, Y.X.; Wang, H.Y.; Liu, Y.Q.; Zhang, Y.J.; Wang, Y.; Xi, Y.J.; Duan, C.H. Effects of compound probiotic fermented feed on growth performance, blood routine indexes and serum immunity and antioxidant indexes of nursing lambs. Chin. J. Anim. Nutr. 2023, 35, 1–12. [Google Scholar]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2020, 323, 124566. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.M.; Zhao, F.Q.; Zhang, W.W.; Yan, H.J.; Zhao, F.Y.; Ai, D.Y. Monitoring the microbial community succession and diversity of Liangzhou fumigated vinegar during solid-state fermentation with next-generation sequencing. Ann. Microbiol. 2019, 69, 279–289. [Google Scholar] [CrossRef]
- Beaumont, M.; Paës, C.; Mussard, E.; Knudsen, C.; Cauquil, L.; Aymard, P.; Barilly, C.; Gabinaud, B.; Zemb, O.; Fourre, S.; et al. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. Gut Microbes. 2020, 11, 1268–1286. [Google Scholar] [CrossRef]
- Qiao, H.X.; Zhang, L.H.; Zhang, X.J.; Song, Y.Z.; Bian, C.Z. Metabolomics analysis of fermented astragalus by Lactobacillus plantarum based on LC-MS metabolomics. China Anim. Husb. Vet. Med. 2021, 48, 3283–3292. [Google Scholar] [CrossRef]
- Li, Z.Y.; Feng, C.X.; Luo, X.G.; Yao, H.L.; Zhang, D.H.; Zhang, T.C. Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol. 2018, 76, 405–415. [Google Scholar] [CrossRef]
- Guo, Y.X.; Hao, Q.H.; Zhu, B.C. Screening and identification of the probiotics strain Y5-39 showing antidysenteriae effects form sheep. Acta Agric. Boreali-Sin. 2010, 25, 206–210. [Google Scholar]
- Ding, Y.W.; Liu, Y.; Xu, Y.H.; Wang, Y.L.; Wang, H.Y.; Hao, Q.H.; Duan, C.H.; Guo, Y.X.; Ji, S.K.; Yan, H.; et al. Quality evaluation and antimicrobial activity analysis of full price corn-soybean meal feed fermented with compound probiotics. Acta Ecol. Anim. Domest. 2022, 43, 19–24. [Google Scholar]
- Ovissipour, M.; Abedian, A.; Motamedzadegan, A.; Rasco, B.; Safari, R.; Shahiri, H. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chem. 2009, 115, 238–242. [Google Scholar] [CrossRef]
- Shi, C.Y.; Zhang, Y.; Lu, Z.Q.; Wang, Y.Z. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 925–933. [Google Scholar] [CrossRef]
- Faurobert, M. Application of two-dimensional gel electrophoresis to Prunus armeniaca leaf and bark tissues. Electrophoresis 1997, 18, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Q.; Liu, Y.; An, G.J.; Zhang, J.S.; Zhao, X.W.; Zhang, P.Q.; Wang, Z.C. Charateristics of molecular composition and its anti-nutrition of β-conglycinin during flavorzyme proteolysis. Food Biosci. 2021, 42, 101039. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J. SILVA: A comprehensive online resource for quality checked and aligned riboso mal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261. [Google Scholar] [CrossRef]
- Gower, J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Donovan, H.P.; Gene, W.T. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Yu, C.N.; Luo, X.J.; Zhan, X.R.; Hao, J.; Zhang, L.; Yb, L.S.; Shen, C.J.; Dong, M. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC Plant Biol. 2018, 18, 197. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, T.; Shen, X.T.; Liu, J.; Zhao, D.L.; Sun, Y.W.; Wang, L.; Liu, Y.J.; Gong, X.Y.; Liu, Y.X.; et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 2016, 12, 116. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Yin, Y.; Wang, C.; Lu, Z.; Wang, F.; Feng, J.; Wang, Y. Amino acid and phosphorus digestibility of fermented corn-soybean meal mixed feed with Baxillus subtilis and Enterococcus faecium fed to pigs. J. Anim. Sci. 2017, 95, 3996–4004. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Hu, Q.; Lu, Y.; Zhang, F.F.; Ma, G.J.; Liu, J.C.; Zhang, W.J. Studies on nutrient composition of cotton meal fermented by Bacillus subtilis-1 Saccharomyces cerevisiae and their compound bacteria. China Anim. Husb. Vet. Med. 2020, 47, 452–459. [Google Scholar] [CrossRef]
- Hao, Y.N.; Wang, Z.G.; He, R.; Ju, X.R.; Yuan, J. Quality improvement of rapeseed meal based on static-state fermented with mixed microorganisms. Sci. Agric. Sin. 2020, 53, 2066–2077. [Google Scholar]
- Guo, M.M.; Cao, X.; Zhang, K.; Yang, Y.X.; Wang, X.L.; Chen, Y.L. Effects and metabolites of soybean meal fermented by compound microbes. Chin. J. Anim. Nutr. 2022, 34, 1–13. [Google Scholar]
- Feng, J.; Liu, X.; Xu, Z.; Lu, Y.; Liu, Y. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci. 2007, 52, 1845–1850. [Google Scholar] [CrossRef]
- Pi, X.W.; Sun, Y.X.; Guo, X.; Chen, Q.S.; Cheng, J.J.; Guo, M.R. Effects of thermal sterilization on the allergenicity of soybeans. LWT-Food Sci. Technol. 2022, 154, 112678. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, C.Y.; Wang, C.; Lu, Z.Q.; Wang, F.Q.; Feng, J.; Wang, Y.Z. Effect of soybean meal fermented with Bacillus subtillis BS12 on growth performance and small intestinal immune status of piglets. Food Agr. Immunol. 2018, 29, 133–146. [Google Scholar] [CrossRef]
- Wu, J.J.; Cao, C.M.; Meng, T.T.; Zhang, Y.; Xu, S.L.; Feng, S.B.; Li, Y.; Wang, X.C. Induction of immune responses and allergic reactions in piglets by injecting glycinin. Ital. J. Anim. Sci. 2016, 15, 166–173. [Google Scholar] [CrossRef]
- McGarvey, J.A.; Franco, R.B.; Palumbo, J.D.; Hnasko, R.; Stanker, L.; Mitloehner, F.M. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air. J. Appl. Microbiol. 2013, 114, 1661–1670. [Google Scholar] [CrossRef]
- Ni, K.K.; Wang, F.F.; Zhu, B.G.; Yang, J.X.; Zhou, G.A.; Pan, Y.; Tao, Y.; Zhong, J. Effects of Lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Nagao, F.; Nakayama, M.; Muto, T.; Okumura, K. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci. Biotech. Bioch. 2000, 64, 2706–2708. [Google Scholar] [CrossRef]
- Romero, J.J.; Zhao, Y.; Balseca-Paredes, M.A.; Tiezzi, F.; Gutierrez-Rodriguez, E.; Castillo, M.S. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. J. Dairy Sci. 2017, 100, 1812–1828. [Google Scholar] [CrossRef] [PubMed]
- Alcon-Giner, C.; Dalby, M.J.; Caim, S.; Ketskemety, J.; Shaw, A.; Sim, K.; Lawson, M.A.E.; Kiu, R.; Leclaire, C.; Chalklen, L.; et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: An observational study. Cell Rep. Med. 2020, 1, 100077. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T. Analysis of free d-Serine in mammals and its biological relevance. J. Chromatogr. B 2011, 879, 3169–3183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations-A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Fukushima, D. Fermented vegetable protein and related foods of Japan and China. Food Rev. Int. 1995, 1, 149–209. [Google Scholar] [CrossRef]
- Yang, H.; Qu, Y.Z.; Li, J.T.; Liu, X.Q.; Wu, R.N.; Wu, J.R. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT-Food Sci. Technol. 2020, 128, 109442. [Google Scholar] [CrossRef]
- Aguirre, L.; Garro, M.S.; Giori, G.S.D. Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chem. 2008, 111, 976–982. [Google Scholar] [CrossRef]
- Parrado, J.; Rodriguez-Morgado, B.; Tejada, M.; Hernandez, T.; Garcia, C. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Tech. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Sun, J.; Yu, X.J.; Wang, W.; Zhu, Y.G.; Jiang, J.; Wang, Z. Metabolome analysis of Saccharomyces cerevisiae in different culture patterns and growth phases. J. Zhejiang Univ. Technol. 2017, 45, 654–659. [Google Scholar]
- Liu, X.Y.; Zhu, Q.; Yang, F.; Zhang, J.; Zhang, Q.L.; Li, J.H.; Wang, L. Proteomics reveals the effect of phenylalanine metabolism on the flavor of Daqu. Food Sci. Technol. 2021, 46, 1–6. [Google Scholar]
- Frick, O.; Wittmann, C. Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb. Cell Factories 2005, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.B.; Mao, Y.; Li, G.H.; Zhao, Y.Y.; Deng, Y. Analysis and identification of main antibacterial metabolites secreted by Lactobacillus plantarum DY6. Microbiology 2019, 46, 2258–2271. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented liquid feed and fermented grain to piglets-effect on gastrointestinal ecology and growth performance. Livest. Sci. 2007, 108, 198–201. [Google Scholar] [CrossRef]
- Chang, Y.C.; Nair, M.G. Metabolism of daidzein and genistein by intestinal bacteria. J. Nat. Prod. 1995, 58, 1892–1896. [Google Scholar] [CrossRef]
- Pyo, Y.H.; Lee, T.C.; Lee, Y.C. Enrichment of bioactive isoflavones in soymik fermented with β-glucosidase-producing lactic acid bacteria. Food Res. Int. 2005, 38, 551–559. [Google Scholar] [CrossRef]
- Jin, X.L.; Yang, R.T.; Shang, Y.J.; Dai, F.; Qian, Y.P.; Cheng, L.X.; Zhou, B.; Liu, Z.L. Oxidative coupling of cinnamic acid derivatives and their radical scavenging activities. Chin. Sci. Bull. 2010, 55, 2885–2890. [Google Scholar] [CrossRef]
- Cai, Y.W.; Liu, J.H.; Ma, N. Research status of arachidonic acid-targeted metabonomics in inflammation. Chin. J. Clin. Pharmacol. 2021, 37, 2721–2724. [Google Scholar] [CrossRef]
- Walter, B.W.; Bacher, A. Biosynthesis of thiamin in Bacillus subtilis isolation of mutants accumulating 4-Amino-5-hydroxymethyl-2-methylpyrimidine phosphate. J. Gen. Microbiol. 1977, 103, 350–366. [Google Scholar] [CrossRef]
- Mateus, N.; Freitas, V.D. Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem. 2001, 49, 5217–5222. [Google Scholar] [CrossRef]
- Gottschalk, G. Regulation of bacterial metabolism. In Bacterial Metabolism; Springer: New York, NY, USA, 1988; pp. 178–207. [Google Scholar]
- Becker, D.E.; Terrill, S.W. Various carbohydrates in a semipurified diet for the growing pig. Arch. Biochem. Biophys. 1954, 50, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.H.; Yang, E.D.; Yang, H.Y.; Huang, X.L.; Zheng, M.X.; Chen, X.Y.; Zhang, J.J. Dynamic changes in the chemical composition and metabolite profiles of drumstick (Moringa oleifera Lam.) leaf flour during fermentation. LWT-Food Sci. Technol. 2022, 155, 112973. [Google Scholar] [CrossRef]
- Ziegler, F.; Nitenberg, G.; Coudray-Lucas, C.; Lasser, P.; Giboudeau, J.; Cynober, L. Pharmacokinetic assessment of an oligopeptide-based enteral formula in abdominal surgery patients. Am. J. Clin. Nutr. 1998, 67, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Idowu, M.D.; Taiwo, G.; Cervantes, A.P.; Bowdridge, S.A.; Ogunade, I.M. Effects of a multicomponent microbial feed additive containing prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period. Transl. Anim. Sci. 2022, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
Items | Unfermented Feed (0 Days) | Fermented Feed (14 Days) |
---|---|---|
CP % | 26.70 ± 1.29 A | 33.24 ± 1.82 B |
TCA-SP % | 1.74 ± 0.40 A | 7.32 ± 0.79 B |
TCA-SP/CP | 6.70 ± 1.80 A | 21.99 ± 1.25 B |
Glycinin | 36.26 ± 1.38 B | 10.57 ± 1.27 A |
β-conglycinin | 39.27 ± 0.94 B | 13.12 ± 1.54 A |
pH | 5.99 ± 1.08 B | 3.40 ± 0.95 A |
Lactic acid g/kg | 0.245 ± 0.02 A | 30.418 ± 0.12 B |
Accession No. | Master Protein | Peptides | Unique Peptide | Sequence Coverage (%) | pI | Molecular Weight (kDa) |
---|---|---|---|---|---|---|
P04776 | Glycinin G1 | 22 | 18 | 58 | 6.23 | 55.7 |
P02858 | Glycinin G4 | 25 | 19 | 53 | 5.29 | 63.8 |
P04405 | Glycinin G2 | 22 | 16 | 63 | 5.58 | 54.4 |
F7J077 | β-conglycinin β-subunit 2 | 25 | 2 | 57 | 6.24 | 50.4 |
P25974 | β-conglycinin β-subunit 1 | 25 | 2 | 57 | 6.24 | 50.4 |
P11827 | β-conglycinin α′ subunit | 23 | 17 | 36 | 5.71 | 72.2 |
P0DO16 | β-conglycinin α subunit 1 | 20 | 12 | 36 | 5.17 | 70.3 |
P04347 | Glycinin G5 | 19 | 13 | 51 | 5.9 | 57.9 |
P11828 | Glycinin G3 | 13 | 8 | 31 | 5.97 | 54.2 |
P01070 | Trypsin inhibitor A | 9 | 4 | 38 | 5.11 | 24.0 |
Q04672 | Sucrose-binding protein | 10 | 10 | 21 | 6.87 | 60.5 |
P25272 | Kunitz-type trypsin inhibitor KTI1 | 6 | 5 | 31 | 5.12 | 22.5 |
P05046 | Lectin | 6 | 6 | 32 | 6.05 | 30.9 |
P13867 | α-Amylase/trypsin inhibitor | 6 | 2 | 37 | 7.78 | 22.1 |
P01085 | α-Amylase inhibitor | 2 | 2 | 22 | 7.05 | 13.3 |
Metabolites | Log2-Fold Change (Unfermented vs. Fermented Feed) | P | Variable Importance in Projection | Regulated | KEGG | |
---|---|---|---|---|---|---|
Amino acid and its derivatives | Lysyl–Valine | 32.1225 | 0.006042 | 1.139729 | up | NA |
Lysyl–Proline | 30.79547 | 0.000987 | 1.253102 | up | NA | |
L-Lysine | 22.01479 | 8.87 × 10−6 | 1.254099 | up | C00047 | |
Serinyl–Glutamine | 17.55396 | 4.54 × 10−5 | 1.239443 | up | NA | |
Ile–Ala–Arg | 16.92034 | 1.30 × 10−5 | 1.359839 | up | NA | |
Threoninyl–Arginine | 13.2527 | 7.34 × 10−8 | 1.270448 | up | NA | |
Histidinyl–Tryptophan | 11.56049 | 4.68 × 10−8 | 1.271329 | up | NA | |
Phosphatidylinositol 4,5-bisphosphate | 11.48888 | 0.000442 | 1.17491 | up | NA | |
Arachidonic Acid | 12.82632 | 0.004739 | 1.155216 | up | NA | |
Phenylalanyl–Arginine | 7.816741 | 8.64 × 10−8 | 1.269362 | up | NA | |
Glutamyl–Valine | 6.699018 | 0.001401 | 1.239139 | up | NA | |
Acetyllysine | 6.410332 | 5.82 × 10−6 | 1.257408 | up | C12989 | |
Threoninyl–Lysine | 6.298735 | 0.000177 | 1.315232 | up | NA | |
Phenylalanyl–Isoleucine | 6.25610123 | 2.75 × 10−7 | 1.375190642 | up | NA | |
Glycine | 3.29772931 | 2.72 × 10−8 | 1.363462454 | up | C00037 | |
Prolyl–Alanine | 3.634916 | 1.87 × 10−5 | 1.35041 | up | NA | |
Valyl–Phenylalanine | 2.585049 | 6.45 × 10−10 | 1.377709 | up | NA | |
d-Serine | 3.78452377 | 2.43 × 10−7 | 1.374931883 | up | C00955 | |
5-Hydroxy-L-tryptophan | 0.506922 | 0.0009 | 1.11541 | down | C00643 | |
Phenylacetaldehyde | 5.413254 | 7.88 × 10−5 | 1.334544 | up | C00601 | |
12-oxo-LTB4 | 31.85966 | 0.001519 | 1.230829 | up | C05949 | |
Organic acids | Pyridoxamine 5′-phosphate | 25.04453 | 0.002271 | 1.212029 | up | C00647 |
Orotidylic acid | 26.53149 | 0.002344 | 1.209657 | up | C01103 | |
Adenosine 2′,3′-cyclic phosphate | −25.5498 | 0.002113 | 1.214595 | down | C02353 | |
5-Amino-6-(5′-phosphoribitylamino)uracil | −26.0651 | 0.007939 | 1.111522 | down | NA | |
PC(14:0/20:2(11Z,14Z)) | 14.15887894 | 0.000385945 | 1.292795098 | up | C00157 | |
Arachidonic Acid (peroxide free) | 12.82631899 | 0.004739497 | 1.155215501 | up | NA | |
Propionic acid | 10.48348 | 3.21 × 10−8 | 1.273026 | up | C00163 | |
Linoleic acid | 7.218953 | 0.000142 | 1.217527 | up | NA | |
Isovaleric acid | 7.332989 | 0.000122 | 1.213306 | up | C08262 | |
α-D-Glucose 1,6-bisphosphate | 5.720319 | 6.49 × 10−7 | 1.373191 | up | NA | |
2-acylglycerophosphocholine | 5.713364 | 0.003222 | 1.180395 | up | NA | |
Pentanoic acid | 3.168922 | 1.85 × 10−6 | 1.224405 | up | C00803 | |
4-Hydroxycinnamic acid | 3.160283 | 2.99 × 10−6 | 1.248225 | up | C00811 | |
Glutaconic acid | 1.201342 | 6.48 × 10−9 | 1.260067 | up | C02214 | |
α-Ketoisovaleric acid | 0.864318 | 9.00 × 10−7 | 1.236833 | up | C00141 | |
Myristic acid | 0.526749 | 0.000262 | 1.158736 | up | C06424 | |
3-(indol-3-yl)pyruvic acid | −0.92557 | 0.003171 | 1.087165 | down | C00331 | |
Nonanoic acid | −3.05773 | 0.000408 | 1.153522 | down | C01601 | |
Syringic acid | −2.02246 | 0.001712 | 1.129497 | down | C10833 | |
2-Isopropylmalic acid | −1.02382 | 0.005286 | 1.052666 | down | C02504 | |
Isocitric acid | −1.5716 | 0.000408 | 1.166359 | down | C04617 | |
Gamma-Aminobutyric acid | −1.41422 | 1.81 × 10−6 | 1.239942 | down | C00334 | |
Ferulic acid | −0.62699 | 0.000767 | 1.133006 | down | C01494 | |
15(S)-HPETE | 0.695366 | 0.004925 | 1.034271 | up | C05966 | |
Sugar and its derivatives | Maltotriose | 0.293095 | 1.54 × 10−8 | 1.27159 | down | C00420 |
1-Deoxy-D-xylulose | −26.9445 | 0.001035 | 1.254408 | down | C06257 | |
Stachyose | 0.236374 | 2.27 × 10−5 | 1.247808 | down | C01613 | |
Malvidin 3-O-glucoside | 0.03646 | 0.004313 | 1.074059 | down | C12140 | |
Raffinose | 0.48141 | 0.001225 | 1.138124 | down | C00492 | |
β-D-Galactose | 2.032622 | 0.000161 | 1.162937 | up | C00962 | |
Glucosan | 0.278913 | 8.89 × 10−6 | 1.251205 | down | NA | |
Maltopentaose | 0.170101 | 1.54 × 10−6 | 1.264761 | down | NA | |
Apigenin 7-glucoside | 0.024617 | 0.000204 | 1.210975 | down | C04608 | |
Uridine diphosphate glucose | 14.08391 | 3.33 × 10−9 | 1.262763 | up | C00029 | |
Cyclotene | 0.467395 | 0.003040945 | 1.096896721 | down | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hao, Q.; Duan, C.; Ding, Y.; Wang, Y.; Guo, X.; Liu, Y.; Guo, Y.; Zhang, Y. Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains. Microorganisms 2023, 11, 1319. https://doi.org/10.3390/microorganisms11051319
Li Y, Hao Q, Duan C, Ding Y, Wang Y, Guo X, Liu Y, Guo Y, Zhang Y. Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains. Microorganisms. 2023; 11(5):1319. https://doi.org/10.3390/microorganisms11051319
Chicago/Turabian StyleLi, Yue, Qinghong Hao, Chunhui Duan, Yawei Ding, Yuanyuan Wang, Xiaojun Guo, Yueqin Liu, Yunxia Guo, and Yingjie Zhang. 2023. "Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains" Microorganisms 11, no. 5: 1319. https://doi.org/10.3390/microorganisms11051319
APA StyleLi, Y., Hao, Q., Duan, C., Ding, Y., Wang, Y., Guo, X., Liu, Y., Guo, Y., & Zhang, Y. (2023). Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains. Microorganisms, 11(5), 1319. https://doi.org/10.3390/microorganisms11051319