Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cecal Microbiome DNA Extraction, Sequencing and Data Analysis
2.3. Blood Samples Analyses
2.4. Zootechnical Data
2.5. Statistical Analysis
3. Results
3.1. Effect of QC, VN and UF Diet Supplementation on Ceca Bacterial Community Composition in Broiler Chickens
3.2. Effect of QC, VN and UF Diet Supplementation on Hematological Parameters in Broiler Chickens
3.3. Effect of Diet Supplementation on the Broiler Chickens Zootechnical Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castanon, J.I.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32003R1831 (accessed on 1 March 2023).
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj (accessed on 1 March 2023).
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef]
- Bassler, B.L.; Losick, R. Bacterially speaking. Cell 2006, 125, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. Biomed. Res. Int. 2019, 4, 2015978. [Google Scholar] [CrossRef] [PubMed]
- Deryabin, D.G.; Galadzhieva, A.A.; Kosyan, D.B.; Duskaev, G.K. Plant-Derived Inhibitors of Density-Dependent Communication in Bacteria: Diversity of Structures, Bioactivity Mechanisms, and Sources of Origin. Microbiology 2021, 90, 702–720. [Google Scholar] [CrossRef]
- Šimunović, K.; Sahin, O.; Kovač, J.; Shen, Z.; Klančnik, A.; Zhang, Q.; Možina, S.S. (-)-α-Pinene reduces quorum sensing and Campylobacter jejuni colonization in broiler chickens. PLoS ONE 2020, 15, e0230423. [Google Scholar] [CrossRef] [PubMed]
- Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence. PLoS ONE 2015, 10, e0134684. [Google Scholar] [CrossRef]
- Zarshenas, P. EMM-17-801 as a drug delivery platform for Quercetin. J. Mate. Poly. sci. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Ponnusamy, K.; Paul, D.; Kweon, J.H. Inhibition of Quorum Sensing Mechanism and Aeromonas hydrophila Biofilm Formation by Vanillin. Environ. Eng. Sci. 2009, 26, 1359–1363. [Google Scholar] [CrossRef]
- Ting, D.; Yong, L. Quorum sensing inhibitory effects of vanillin on the biofilm formation of Pseudomonas fluorescens P07 by transcriptome analysis. J. Food Sci. Technol. 2020, 5, 275–292. [Google Scholar] [CrossRef]
- Labeling Vanilla Flavorings and Vanilla-Flavored Foods in the U.S. Available online: https://www.perfumerflavorist.com/flavor/sweet-applications/article/21856720/labeling-vanilla-flavorings-and-vanillaflavored-foods-in-the-us (accessed on 5 March 2023).
- Kasthuri, T.; Barath, S.; Nandhakumar, M.; Karutha Pandian, S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferon on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front. Cell Infect. Microbiol. 2022, 12, 998540. [Google Scholar] [CrossRef] [PubMed]
- Mcclean, K.H.; Winson, M.K.; Fish, L.; Taylor, A.; Chhabra, S.R.; Cámara, M.; Daykin, M.; Lamb, J.H.; Swift, S.; Bycroft, B.W.; et al. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997, 143, 3703–3711. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Mazimba, O. Umbelliferon: Sources, chemistry and bioactivities review. Bull. Fac. Pharm. 2017, 55, 223–232. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; Arain, M.; Arif, M.; Abd El-Hack, M.; Alagawany, M.; Siyal, F.; Soomro, R.; Sun, C. Quercetin: Nutritional and beneficial effects in poultry. World’s Poult. Sci. J. 2017, 73, 355–364. [Google Scholar] [CrossRef]
- Dang, X.; Cho, S.; Wang, H.; Seok, W.J.; Ha, J.H.; Kim, I.H. Quercetin extracted from Sophora japonica flower improves growth performance, nutrient digestibility, cecal microbiota, organ indexes, and breast quality in broiler chicks. Anim. Biosci. 2022, 35, 577–586. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Zhou, S.; Liu, J.; Lu, H.; Wu, H.; Ding, M.; Li, Y. Quercetin ameliorates chicken quality by activating the PI3K/PKB/AMPK signaling pathway in broilers. Front. Vet. Sci. 2022, 9, 951512. [Google Scholar] [CrossRef]
- Swaggerty, C.L.; He, H.; Genovese, K.J.; Callaway, T.R.; Kogut, M.H.; Piva, A.; Grilli, E. A microencapsulated feed additive containing organic acids, thymol, and vanillin increases in vitro functional activity of peripheral blood leukocytes from broiler chicks. Poult. Sci. 2020, 99, 3428–3436. [Google Scholar] [CrossRef]
- Stamilla, A.; Russo, N.; Messina, A.; Spadaro, C.; Natalello, A.; Caggia, C.; Randazzo, C.L.; Lanza, M. Effects of Microencapsulated Blend of Organic Acids and Essential Oils as a Feed Additive on Quality of Chicken Breast Meat. Animals 2020, 10, 640. [Google Scholar] [CrossRef]
- Germoush, M.O.; Othman, S.I.; Al-Qaraawi, M.A.; Al-Harbi, H.M.; Hussein, O.E.; Al-Basher, G.; Alotaibi, M.F.; Elgebaly, H.A.; Sandhu, M.A.; Allam, A.; et al. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomed. Pharmacother. 2018, 102, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.F.; Figueiredo, G.F.; Pedro, L.P.; Amorin, Y.M.; Andrade, J.T.; Passos, T.F.; Rodrigues, F.F.; Souza, I.L.A.; Gonçalves, T.P.R.; Dos Santos Lima, L.A.R.; et al. Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed. Pharmacother. 2020, 129, 110432. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, M.A.; Elbestawy, A.R.; El-Far, A.H.; Noreldin, A.E.; Emam, M.; Baty, R.S.; Albadrani, G.M.; Abdel-Daim, M.M.; Abd El-Hamid, H.S. Quercetin Dietary Supplementation Advances Growth Performance, Gut Microbiota, and Intestinal mRNA Expression Genes in Broiler Chickens. Animals 2021, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, L.; Xu, G.; Li, Z.; Appiah, M.O.; Yang, L.; Lu, W. Quercetin Reduces Inflammation and Protects Gut Microbiota in Broilers. Molecules 2022, 27, 3269. [Google Scholar] [CrossRef]
- Guo, J.; Han, X.; Zhan, J.; You, Y.; Huang, W. Vanillin Alleviates High Fat Diet-Induced Obesity and Improves the Gut Microbiota Composition. Front. Microbiol. 2018, 9, 2733. [Google Scholar] [CrossRef]
- Arbor Acres Plant Protein-Based Feeds Nutrition Specifications. Available online: https://ru.aviagen.com/assets/Tech_Center/AA_Broiler/AA-PlantProteinBasedBroilerNutritionSpecifications2022-EN.pdf (accessed on 5 March 2023).
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Edgar, R. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Falà, A.K.; Álvarez-Ordóñez, A.; Filloux, A.; Gahan, C.G.M.; Cotter, P.D. Quorum sensing in human gut and food micro-biomes: Significance and potential for therapeutic targeting. Front. Microbiol. 2022, 13, 1002185. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.C.; Feng, H.X.; Wu, L.; Zhang, M.; Zhou, W.L. Quorum Sensing System in Bacteroides thetaiotaomicron Strain Identified by Genome Sequence Analysis. ACS Omega 2020, 5, 27502–27513. [Google Scholar] [CrossRef] [PubMed]
- Ugurel, E.; Danis, O.; Mutlu, O.; Yuce-Dursun, B.; Gunduz, C.; Turgut-Balik, D. Inhibitory effects of arylcoumarin deriva-tives on Bacteroides fragilisd-lactate dehydrogenase. Int. J. Biol. Macromol. 2019, 127, 197–203. [Google Scholar] [CrossRef]
- Santilli, A.D. Small Molecule Disruption of Starch Utilization in Bacteroides as a Non-Bactericidal Therapeutic Method. Ph.D. Dissertation, Graduate School of Clemson University, Clemson, SC, USA, 2021. [Google Scholar]
- Ramírez, G.; Richardson, E.; Clark, J.; Keshri, J.; Drechsler, Y.; Berrang, M.E.; Meinersmann, R.J.; Cox, N.A.; Oakley, B.B. Broiler chickens and early life programming: Microbiome transplant-induced cecal community dynamics and phenotypic effects. PLoS ONE 2020, 15, e0242108. [Google Scholar] [CrossRef]
- Rychlik, I. Composition and function of chicken gut microbiota. Animals 2020, 10, 103. [Google Scholar] [CrossRef]
- Onrust, L.; Ducatelle, R.; Van Driessche, K.; De Maesschalck, C.; Vermeulen, K.; Haesebrouck, F.; Eeckhaut, V.; Van Im-merseel, F. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Front. Vet. Sci. 2015, 2, 75. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, G.; Shao, D.; Wang, Q.; Hu, Y.; Wu, T.; Ji, C.; Shi, S. Dietary supplementation with Bacillus subtilis promotesgrowth performance of broilers by altering the dominant microbial community. Poult. Sci. 2021, 100, 100935. [Google Scholar] [CrossRef]
- Kogut, M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim. Feed Sci. Technol. 2019, 250, 32–40. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- Latimer, K.S.; Tang, K.N.; Goodwin, M.A.; Steffens, W.L.; Brown, J. Leukocyte changes associated with acute inflammation in chickens. Avian. Dis. 1988, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, F.; Scott, T. Bacterial and viral induction of chicken thrombocyte inflammatory responses. Dev. Comp. Immunol. 2015, 49, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Biondo, C.; Beninati, C.; Gambuzza, M.; Macrì, D.; Bellantoni, A.; Weintraub, A.; Espevik, T.; Teti, G. Bacteroides fragilis-derived lipopolysaccharide produces cell activation and lethal toxicity via toll-like receptor 4. Infect. Immun. 2005, 73, 5620–5627. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.E.; Crawford, M.; Jasbi, P.; Fessler, S.; Sweazea, K.L. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett. 2022, 596, 849–875. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Guo, W.; Liu, B.; Hu, G.; Kan, X.; Li, Y.; Gong, Q.; Xu, D.; Ma, H.; Cao, Y.; Huang, B.; et al. Vanillin protects the blood-milk barrier and inhibits the inflammatory response in LPS-induced mastitis in mice. Toxicol. Appl. Pharmacol. 2019, 15, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef]
- Rossi, B.; Toschi, A.; Piva, A.; Grilli, E. Single components of botanicals and nature-identical compounds as a non- antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr. Res. Rev. 2020, 33, 218–234. [Google Scholar] [CrossRef]
Phylum | Class | Order | Family | Genus | Diet Supplementation Groups | ||||
---|---|---|---|---|---|---|---|---|---|
BD | QC | QC + UF | VN | VN + UF | |||||
Bacillota | Bacilli | Lactobacillales | Lactobacillaceae | Lactobacillus | 0.09 | 0.62 * | 2.73 * | 0.31 * | 0.93 * |
Ligilactobacillus | 0.12 | 0.53 * | 2.29 * | 2.78 * | 1.02 * | ||||
Limosilactobacillus | 0.03 | 0.33 * | 1.30 * | 0.22 * | 1.73 * | ||||
Streptococcus | 0.03 | 0.02 | 0.10 | 0.63 * | 1.28 * | ||||
Clostridia | Eubacteriales | Christensenellaceae | Christensenella | 0.76 | 6.83 * | 1.70 | 5.75 * | 4.99 * | |
Lachnospiraceae | Agathobacter | 0.17 | 0.19 | 0.07 | 2.39 * | 0.22 | |||
Anaerotignum | 1.74 | 6.89 * | 1.59 | 0.53 | 0.16 * | ||||
Eisenbergiella | 2.68 | 2.74 | 2.03 | 2.61 | 0.45 * | ||||
Mediterraneibacter | 0.43 | 1.63 * | 1.55 * | 0.96 | 2.81 * | ||||
Oscillospiraceae | Agathobaculum | 2.62 | 0.95 | 0.29 * | 0.76 | 0.10 * | |||
Butyricicoccus | 0.59 | 1.10 | 0.68 | 1.36 | 1.00 | ||||
Dysosmobacter | 0.95 | 0.59 | 1.87 | 1.64 | 0.97 | ||||
Faecalibacterium | 1.87 | 1.65 | 5.25 * | 2.57 | 31.60 * | ||||
Oscillibacter | 0.44 | 0.34 | 0.64 | 1.07 | 0.13 | ||||
Ruthenibacterium | 0.85 | 0.26 | 1.12 | 0.30 | 0.07 * | ||||
Subdoligranulum | 0.90 | 0.19 | 0.46 | 1.13 | 6.60 * | ||||
Peptostreptococcaceae | Romboutsia | 1.10 | 1.05 | 0.39 | 0.63 | 0.07 * | |||
Erysipelotrichia | Erysipelotrichales | Erysipelotrichaceae | Turicibacter | 1.71 | 0.31 | 1.04 | 1.18 | 0.17 * | |
Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidaceae | Bacteroides | 44.95 | 38.04 * | 19.20 * | 23.76 * | 8.44 * |
Candidatus Melainabacteria | Melainabacteria | Vampirovibrionales | Vampirovibrio | 1.05 | 0.15 * | 1.12 | 0.75 | 0.75 |
Indexes | Diet Supplementation Groups | ||||
---|---|---|---|---|---|
BD | QC | QC + UF | VN | VN + UF | |
Chao-1 | 55 | 64 | 65 | 65 | 64 |
Margalef (Dmg) | 5.334 | 6.124 | 6.403 | 6.404 | 6.263 |
Dominance D | 0.2629 | 0.2001 | 0.1264 | 0.1271 | 0.1559 |
Simpson D’ = 1 − D | 0.7371 | 0.7999 | 0.8736 | 0.8729 | 0.8441 |
Shannon H′ | 2.079 | 2.323 | 2.658 | 2.733 | 2.501 |
Evenness eH/S | 0.1453 | 0.1594 | 0.2195 | 0.2365 | 0.1906 |
Parameters | Diet Supplementation Groups | ||||
---|---|---|---|---|---|
BD | QC | QC + UF | VN | VN + UF | |
WBC, 109 cell/L | 49.60 ± 8.94 | 29.68 ± 2.10 * | 35.73 ± 5.89 * | 29.58 ± 0.47 * | 27.23 ± 1.51 * |
LYMP, % | 53.63 ± 3.24 | 51.33 ± 5.19 | 56.23 ± 2.34 | 56.93 ± 2.16 | 51.33 ± 4.14 |
MONO, % | 7.53 ± 0.41 | 7.83 ± 0.69 | 7.63 ± 0.68 | 7.40 ± 0.47 | 7.73 ± 0.90 |
GRAN, % | 38.85 ± 3.10 | 40.85 ± 4.60 | 36.15 ± 1.87 | 35.68 ± 1.70 | 40.95 ± 3.72 |
RBC, 1012 cell/L | 3.68 ± 0.09 | 3.79 ± 0.08 | 3.72 ± 0.17 | 3.32 ± 0.16 | 3.57 ± 0.21 |
HGB, g/L | 113.25 ± 13.76 | 105.25 ± 1.65 | 103.50 ± 9.54 | 108.75 ± 7.82 | 109.00 ± 4.24 |
HCT, % | 21.75 ± 3.19 | 19.38 ± 0.23 | 18.93 ± 1.85 | 19.83 ± 1.43 | 20.23 ± 1.04 |
MCV, fl | 111.88 ± 3.11 | 109.35 ± 3.81 | 111.38 ± 2.49 | 109.40 ± 1.58 | 111.28 ± 1.78 |
MCH, pg | 58.50 ± 0.65 | 59.18 ± 2.17 | 60.80 ± 0.74 | 59.30 ± 1.22 | 59.95 ± 1.55 |
MCHC, g/L | 525.25 ± 11.50 | 542.75 ± 4.57 | 547.75 ± 8.85 | 552.50 ± 6.99 | 539.50 ± 8.70 |
RDW_CV, % | 10.78 ± 0.47 | 10.95 ± 0.16 | 11.75 ± 1.32 | 10.88 ± 0.18 | 10.58 ± 0.31 |
RDW_SD, fl | 37.38 ± 2.83 | 35.75 ± 0.65 | 40.63 ± 5.16 | 36.08 ± 0.62 | 36.08 ± 1.11 |
PLT, 109 cell/L | 91.00 ± 19.85 | 62.00 ± 5.28 * | 61.75 ± 4.61 * | 65.00 ± 5.58 * | 74.00 ± 9.05 |
MPV, fl | 19.03 ± 0.83 | 19.93 ± 0.73 | 20.68 ± 0.08 | 20.25 ± 0.26 | 19.75 ± 0.80 |
PCT, % | 0.16 ± 0.03 | 0.12 ± 0.01 * | 0.12 ± 0.01 * | 0.13 ± 0.01 * | 0.14 ± 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deryabin, D.G.; Kosyan, D.B.; Inchagova, K.S.; Duskaev, G.K. Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens. Microorganisms 2023, 11, 1326. https://doi.org/10.3390/microorganisms11051326
Deryabin DG, Kosyan DB, Inchagova KS, Duskaev GK. Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens. Microorganisms. 2023; 11(5):1326. https://doi.org/10.3390/microorganisms11051326
Chicago/Turabian StyleDeryabin, Dmitry G., Dianna B. Kosyan, Ksenia S. Inchagova, and Galimzhan K. Duskaev. 2023. "Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens" Microorganisms 11, no. 5: 1326. https://doi.org/10.3390/microorganisms11051326
APA StyleDeryabin, D. G., Kosyan, D. B., Inchagova, K. S., & Duskaev, G. K. (2023). Plant-Derived Quorum Sensing Inhibitors (Quercetin, Vanillin and Umbelliferon) Modulate Cecal Microbiome, Reduces Inflammation and Affect Production Efficiency in Broiler Chickens. Microorganisms, 11(5), 1326. https://doi.org/10.3390/microorganisms11051326