Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production
Abstract
:1. Introduction
2. Solid-State Fermentation: Process and Applications
3. Solid-State Fermentation Bioreactors
4. Solid-State Fermentation for Biostimulants Production
5. Solid-State Fermentation for Biopesticides Production
Species | Tg | Growth Substrates | T (°C) | D | Maximum Biomass Yield | Tested Against | Ref. |
---|---|---|---|---|---|---|---|
Bacillus amyloliquefaciens BS20 | B | feed-grade soybean meal, corn flour, and wheat bran | 37 °C | 2 | 7.24 × 10 10 CFU/g | - | [179] |
Bacillus amyloliquefaciens B-1895 | B | corncobs | 37 and 32 °C | 4 | 47 × 10 10 spores g−1 biomass | - | [180] |
Bacillus amyloliquefaciens HM618 | M | food waste “mainly included rice, vegetables, and small amounts of soup” | - | - | [181] | ||
Bacillus sphaericus NRC69 | Q | wheat bran, rice hull, wheat straw, corn stover, corn cobs, cotton stakes, olive meal, date stone, pea peels, potato peels | 30 °C | 6 | 116 × 10 9 CFU/g | Culex pipiens | [182] |
Bacillus sphaericus 14N1 Lysinibacillus sphaericus | Q | wheat germ meal, linen meal (4.5% each), and 0.2% yeast extract with fine sand as the carrying material | 30 °C | 5 | - | Culex pipiens | [183] |
Bacillus subtilis RB14-CS | M | soybean curd residue (okara) + some other nutrients | 25 °C | 5–10 | 2.75 × 10 9 CFU/g dry soil | Rhizoctonia solani | [184] |
Bacillus subtilis RB14-CS | M | soybean curd residue (okara). | 25 °C | 4 | 10 10 to 10 11 | Rhizoctonia solani | [185] |
Bacillus subtilis RB14-CS | M | soybean curd residue (okara). | 25 °C | 6 | - | - | [186] |
Bacillus subtilis SPB1 | B | dried and grinded seeds of Aleppo pine | 37 °C | 2 | 27.59 ± 1.63 mg/g | Agrobacterium tumefaciens C58 | [187] |
Bacillus thuringiensis var israelensis CECT 5904 | I | bulking agent was mixed with digestate and biowaste | 30, 37, and 45 °C | 3 | 4 × 10 8 spores g−1 DM | - | [188] |
Bacillus thuringiensis var kurstaki NRRL HD-73 (CECT 4497) | I | organic fraction of municipal solid waste | 27 °C | 4 | 10 9 CFU g DM−1 | - | [189] |
Bacillus thuringiensis var kurstaki HD-73 (ATCC-35866) | I | polyurethane foam | 30 °C | 21–36 h | 8 × 109 mL−1 | - | [190] |
Bacillus thuringiensis var israelensis CECT 5904 | I | OFMSW, three cosubstrates | 30 °C | 3 | 1.1 × 109 spores g−1 | - | [191] |
Bacillus thuringiensis var israelensis CECT 5904 | I | digested sewage sludge and digested OFMSW cosubstrates on the solid residue after enzymatic hydrolysis of OFMSW | 39/42 | 4 | 108–1011 spores g DM−1 | - | [192] |
Pseudomonas aeruginosa LYT-4 | M | tung tree (Vernicia fordii) | 30 °C | 6 | - | Colletotrichum lini, Rhizoctonia solani and Fusarium oxysporum | [193] |
Streptomyces sp. K61 | M | silica, cornsteep solids, dolomite lime, lactose | 22–28 °C | 5 + 5 | 4.5 × 10 9 CFU g −1 | - | [169] |
Streptomyces gilvosporeus Z28 | M | blend of rapeseed cake, rice hull, wheat bran and crude glycerol | 28 °C | 10 | - | - | [194] |
Streptomyces griseorubens JSD-1 | B | peat soil with 2% w/w rice husk | 32 °C | 7 | 1.69 × 10 9 CFU g−1 | - | [195] |
Streptomyces hygroscopicus B04 | M | various combinations of rapeseed meal, wheat bran, and vermicompost | 28 °C | 5–7 | 1.34 × 10 9 | Fusarium oxysporum | [196] |
Streptomyces similanensis 9X166 | M | rice bran, cassava chips, and coconut husks | 33 ± 2 °C | 7 | 151 × 10 7 CFU/g−1 | Phytophthora palmivora | [197] |
6. SSF for Sustainable Agriculture: Advantages and Limitations
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swilling, M. Introduction: Change in the Age of Sustainabilit. In The Age of Sustainability; Routledge: London, UK, 2019; pp. 1–34. ISBN 9780429057823. [Google Scholar]
- Nicholls, C.I.; Altieri, M.A.; Vazquez, L. Agroecological Principles for the Conversion of Farming Systems. In Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition; World Scientific: Singapore, 2017; pp. 1–18. [Google Scholar]
- Jägermeyr, J. Agriculture’s Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All. Front. Sustain. Food Syst. 2020, 4, 36. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Toward a Sustainable Agriculture Through Plant Biostimulants: From Experimental Data to Practical Applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Hijri, M. Microbial-Based Plant Biostimulants. Microorganisms 2023, 11, 686. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too Much of a Good Thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of Plant Defense against Insect Herbivores. Plant. Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Walling, L.L. The Myriad Plant Responses to Herbivores. J. Plant. Growth Regul. 2000, 19, 195–216. [Google Scholar] [CrossRef]
- Lucas, P. Mechanical Defences to Herbivory. Ann. Bot. 2000, 86, 913–920. [Google Scholar] [CrossRef]
- Hanley, M.E.; Lamont, B.B.; Fairbanks, M.M.; Rafferty, C.M. Plant Structural Traits and Their Role in Anti-Herbivore Defence. Perspect. Plant. Ecol. Evol. Syst. 2007, 8, 157–178. [Google Scholar] [CrossRef]
- Yactayo-Chang, J.P.; Tang, H.V.; Mendoza, J.; Christensen, S.A.; Block, A.K. Plant Defense Chemicals against Insect Pests. Agronomy 2020, 10, 1156. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Kautz, S.; Heil, M.; Hegeman, A.D. Analyzing Plant Defenses in Nature. Plant. Signal. Behav. 2009, 4, 743–745. [Google Scholar] [CrossRef]
- Wittstock, U.; Gershenzon, J. Constitutive Plant Toxins and Their Role in Defense against Herbivores and Pathogens. Curr. Opin. Plant Biol. 2002, 5, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Peñaflor, M.F.G.V.; Bento, J.M.S. Herbivore-Induced Plant Volatiles to Enhance Biological Control in Agriculture. Neotrop. Entomol. 2013, 42, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How Do Plants Defend Themselves against Pathogens-Biochemical Mechanisms and Genetic Interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef]
- Bednarek, P.; Osbourn, A. Plant-Microbe Interactions: Chemical Diversity in Plant Defense. Science 2009, 324, 746–748. [Google Scholar] [CrossRef]
- Conrath, U. Systemic Acquired Resistance. Plant Signal. Behav. 2006, 1, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Purugganan, M.D.; Fuller, D.Q. The Nature of Selection during Plant Domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Denison, R.F.; Kiers, E.T.; West, S.A. Darwinian Agriculture: When Can Humans Find Solutions Beyond The Reach of Natural Selection? Q. Rev. Biol. 2003, 78, 145–168. [Google Scholar] [CrossRef]
- Milla, R.; Osborne, C.P.; Turcotte, M.M.; Violle, C. Plant Domestication through an Ecological Lens. Trends Ecol. Evol. 2015, 30, 463–469. [Google Scholar] [CrossRef]
- Chaudhary, B. Plant Domestication and Resistance to Herbivory. Int. J. Plant. Genomics 2013, 2013, 572784. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop Domestication and Its Impact on Naturally Selected Trophic Interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef]
- Turcotte, M.M.; Lochab, A.K.; Turley, N.E.; Johnson, M.T.J. Plant Domestication Slows Pest Evolution. Ecol. Lett. 2015, 18, 907–915. [Google Scholar] [CrossRef]
- Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and Processes in Crop Domestication: An Historical Review and Quantitative Analysis of 203 Global Food Crops. New Phytol. 2012, 196, 29–48. [Google Scholar] [CrossRef]
- Bebber, D.P.; Gurr, S.J. Crop-Destroying Fungal and Oomycete Pathogens Challenge Food Security. Fungal Genet. Biol. 2015, 74, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Oerke, E.-C. Crop Losses to Pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Soliman, T.; Mourits, M.C.M.; Oude Lansink, A.G.J.M.; van der Werf, W. Economic Impact Assessment in Pest Risk Analysis. Crop. Prot. 2010, 29, 517–524. [Google Scholar] [CrossRef]
- El-Sayed, R.A.; Jebur, A.B.; Kang, W.; El-Demerdash, F.M. An Overview on the Major Mycotoxins in Food Products: Characteristics, Toxicity, and Analysis. J. Future Foods 2022, 2, 91–102. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in Crop Losses to Insect Pests in a Warming Climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; Pertot, I. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop. Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Cooper, J.; Dobson, H. The Benefits of Pesticides to Mankind and the Environment. Crop. Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, H.M.G. Assessing the Impact of Pesticides on the Environment. Agric. Ecosyst. Environ. 1996, 60, 81–96. [Google Scholar] [CrossRef]
- Pimentel, D. Green Revolution Agriculture and Chemical Hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Serrão, J.E.; Plata-Rueda, A.; Martínez, L.C.; Zanuncio, J.C. Side-Effects of Pesticides on Non-Target Insects in Agriculture: A Mini-Review. Sci. Nat. 2022, 109, 17. [Google Scholar] [CrossRef]
- Heap, I. Global Perspective of Herbicide-Resistant Weeds. Pest. Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef]
- Araújo, M.F.; Castanheira, E.M.S.; Sousa, S.F. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023, 28, 3641. [Google Scholar] [CrossRef]
- Miller, S.A.; Ferreira, J.P.; LeJeune, J.T. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture 2022, 12, 289. [Google Scholar] [CrossRef]
- Bourguet, D.; Guillemaud, T. The Hidden and External Costs of Pesticide Use. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2016; pp. 35–120. [Google Scholar]
- Wilson, C.; Tisdell, C. Why Farmers Continue to Use Pesticides despite Environmental, Health and Sustainability Costs. Ecol. Econ. 2001, 39, 449–462. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature Review: Impact of Climate Change on Pesticide Use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Lenné, J. Pests and Poverty: The Continuing Need for Crop Protection Research. Outlook Agric. 2000, 29, 235–250. [Google Scholar] [CrossRef]
- Forget, G. Pesticides and the Third World. J. Toxicol. Environ. Health 1991, 32, 11–31. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.; Mattoo, A. Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses. Agriculture 2018, 8, 8. [Google Scholar] [CrossRef]
- Zilberman, D.; Schmitz, A.; Casterline, G.; Lichtenberg, E.; Siebert, J.B. The Economics of Pesticide Use and Regulation. Science 1991, 253, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do Pesticides Promote or Hinder Sustainability in Agriculture? The Challenge of Sustainable Use of Pesticides in Modern Agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of Pesticides to Reduce Human and Environmental Health Risks: A Global Guideline and Minimum Pesticides List. Lancet Planet Health 2020, 4, e56–e63. [Google Scholar] [CrossRef]
- Ulrich, E.M.; Morrison, C.N.; Goldsmith, M.R.; Foreman, W.T. Chiral Pesticides: Identification, Description, and Environmental Implications. In Reviews of Environmental Contamination and Toxicology; Whitacre, D., Ed.; Springer: Boston, MA, USA, 2012; pp. 1–74. [Google Scholar]
- Jeschke, P. Propesticides and Their Use as Agrochemicals. Pest. Manag. Sci. 2016, 72, 210–225. [Google Scholar] [CrossRef]
- Tooker, J.F.; O’Neal, M.E.; Rodriguez-Saona, C. Balancing Disturbance and Conservation in Agroecosystems to Improve Biological Control. Annu. Rev. Entomol. 2020, 65, 81–100. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-Mediated Induction of Systemic Resistance and Physiochemical Alterations in Plants against the Pathogens: Current Perspectives. J. Basic. Microbiol. 2020, 60, 828–861. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Lopes, M.J.d.S.; Dias-Filho, M.B.; Gurgel, E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021, 5, 606454. [Google Scholar] [CrossRef]
- Bashan, Y.; De-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Keshani; Nagpal, S.; Sharma, P. Present Scenario of Bio-Fertilizer Production and Marketing around the Globe. In Biofertilizers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 389–413. [Google Scholar]
- Parnell, J.J.; Berka, R.; Young, H.A.; Sturino, J.M.; Kang, Y.; Barnhart, D.M.; DiLeo, M.V. From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Front. Plant Sci. 2016, 7, 1110. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.R. Optimization and Scale up of Industrial Fermentation Processes. Appl. Microbiol. Biotechnol. 2005, 68, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Berestetskiy, A. Development of Mycoherbicides. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 629–640. [Google Scholar]
- Singhania, R.R.; Sukumaran, R.K.; Patel, A.K.; Larroche, C.; Pandey, A. Advancement and Comparative Profiles in the Production Technologies Using Solid-State and Submerged Fermentation for Microbial Cellulases. Enzyme Microb. Technol. 2010, 46, 541–549. [Google Scholar] [CrossRef]
- Lizardi-Jiménez, M.A.; Hernández-Martínez, R. Solid State Fermentation (SSF): Diversity of Applications to Valorize Waste and Biomass. 3 Biotech 2017, 7, 44. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Rodríguez Couto, S. Exploitation of Biological Wastes for the Production of Value-added Products under Solid-state Fermentation Conditions. Biotechnol. J. 2008, 3, 859–870. [Google Scholar] [CrossRef]
- Yafetto, L. Application of Solid-State Fermentation by Microbial Biotechnology for Bioprocessing of Agro-Industrial Wastes from 1970 to 2020: A Review and Bibliometric Analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef]
- Wang, E.-Q.; Li, S.-Z.; Tao, L.; Geng, X.; Li, T.-C. Modeling of Rotating Drum Bioreactor for Anaerobic Solid-State Fermentation. Appl. Energy 2010, 87, 2839–2845. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.A.; Berovič, M.; Krieger, N. Solid-State Fermentation Bioreactors; Mitchell, D.A., Berovič, M., Krieger, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-31285-7. [Google Scholar]
- Vandenberghe, L.P.S.; Pandey, A.; Carvalho, J.C.; Letti, L.A.J.; Woiciechowski, A.L.; Karp, S.G.; Thomaz-Soccol, V.; Martínez-Burgos, W.J.; Penha, R.O.; Herrmann, L.W.; et al. Solid-State Fermentation Technology and Innovation for the Production of Agricultural and Animal Feed Bioproducts. Syst. Microbiol. Biomanufacturing 2021, 1, 142–165. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, T.; Raza, W.; Liu, D.; Shen, Q. The Growth Promotion of Peppers (Capsicum annuum L.) by Trichoderma Guizhouense NJAU4742-Based Biological Organic Fertilizer: Possible Role of Increasing Nutrient Availabilities. Microorganisms 2020, 8, 1296. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Ambrosino, P.; Testa, A.; Chouyia, F.E.; Pepe, O. Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Front. Microbiol. 2020, 11, 2044. [Google Scholar] [CrossRef] [PubMed]
- Alias, C.; Bulgari, D.; Gobbi, E. It Works! Organic-Waste-Assisted Trichoderma Spp. Solid-State Fermentation on Agricultural Digestate. Microorganisms 2022, 10, 164. [Google Scholar] [CrossRef]
- Bulgari, D.; Alias, C.; Peron, G.; Ribaudo, G.; Gianoncelli, A.; Savino, S.; Boureghda, H.; Bouznad, Z.; Monti, E.; Gobbi, E. Solid-State Fermentation of trichoderma spp.: A New Way to Valorize the Agricultural Digestate and Produce Value-Added Bioproducts. J. Agric. Food Chem. 2023, 71, 3994–4004. [Google Scholar] [CrossRef]
- Cavello, I.A.; Crespo, J.M.; García, S.S.; Zapiola, J.M.; Luna, M.F.; Cavalitto, S.F. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”. Biotechnol. Res. Int. 2015, 2015, 952921. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Di Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-Inoculation of Glomus intraradices and Trichoderma atroviride Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. J. Sci. Food Agric. 2015, 95, 1706–1715. [Google Scholar] [CrossRef]
- Zanoni do Prado, D.; Oliveira, S.L.; Okino-Delgado, C.H.; Auer, S.; Ludwig-Müller, J.; Ribeiro da Silva, M.; Júnior da Costa Fernandes, C.; Carbonari, C.A.; Zambuzzi, W.F.; Fleuri, L.F. Aspergillus flavipes as a Novel Biostimulant for Rooting-Enhancement of Eucalyptus. J. Clean. Prod. 2019, 234, 681–689. [Google Scholar] [CrossRef]
- Mastan, A.; Rane, D.; Dastager, S.G.; Vivek Babu, C.S. Development of Low-Cost Plant Probiotic Formulations of Functional Endophytes for Sustainable Cultivation of Coleus Forskohlii. Microbiol. Res. 2019, 227, 126310. [Google Scholar] [CrossRef] [PubMed]
- Shengping, X.; Liantian, M.; Yujie, M.; Yan, D.; Hongbo, Y. Optimizing Bacillus circulans Xue-113168 for Biofertilizer Production and Its Effects on Crops. Afr. J. Biotechnol. 2016, 15, 2795–2803. [Google Scholar] [CrossRef]
- Morán-Diez, M.E.; Glare, T.R. What Are Microbial-Based Biopesticides? In Methods in Molecular Biology; Glare, T., Moran-Diez, M., Eds.; Humana Press: Clifton, NJ, USA, 2016; pp. 1–10. [Google Scholar]
- FAO. WHO Guidelines for the Registration of Microbial, Botanical and Semiochemical Pest Control Agents for Plant Protection and Public Health Uses; FAO: Rome, Italy, 2017; ISBN 978-92-5-130015-2. [Google Scholar]
- Bourguignon, D. EU Policy and Legislation on Pesticides: Plant Protection Products and Biocides; European Union: Strasbourg, France, 2017. [Google Scholar]
- Seenivasagan, R.; Babalola, O.O. Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. Biology 2021, 10, 1111. [Google Scholar] [CrossRef] [PubMed]
- Sun, X. History and Current Status of Development and Use of Viral Insecticides in China. Viruses 2015, 7, 306–319. [Google Scholar] [CrossRef]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo de Souza, M. Baculoviruses—Re-Emerging Biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Pandey, A.K. Microbial Metabolites as Eco-Friendly Agrochemicals for the next Millennium. Appl. Microbiol. Biotechnol. 2001, 55, 395–403. [Google Scholar] [CrossRef]
- Essiedu, J.A.; Adepoju, F.O.; Ivantsova, M.N. Benefits and Limitations in Using Biopesticides: A Review. In Proceedings of the VII International Young Researchers’ Conference—Physics, Technology, Innovations (PTI-2020) AIP Con-ference Proceedings 2313, Ekaterinburg, Russia, 18–22 May 2022; Vladimir, A., Volkovich, I.V., Kashin, A.A., Smirnov, E.D.N., Eds.; AIP Publishing: Ekaterinburg, Russia, 2020; pp. 080002-1–080002-6. [Google Scholar]
- Glare, T.R.; Gwynn, R.L.; Moran-Diez, M.E. Development of Biopesticides and Future Opportunities. Methods Mol. Biol. 2016, 1477, 211–221. [Google Scholar] [CrossRef]
- Rodgers, P.B. Potential of Biopesticides in Agriculture. Pestic. Sci. 1993, 39, 117–129. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; Allori, E.; Sanz, J.M.; Gonda, M.; Alconada, T.; Cavello, I.; Dib, J.R.; Diaz, M.A.; Nally, C.; et al. Microbial Biopesticides: Diversity, Scope, and Mechanisms Involved in Plant Disease Control. Diversity 2023, 15, 457. [Google Scholar] [CrossRef]
- Kumar, S. Biopesticides: A Need for Food and Environmental Safety. J. Biofertil. Biopestic. 2012, 3, 4. [Google Scholar] [CrossRef]
- EPA What Are Biopesticides? Available online: https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides (accessed on 1 April 2023).
- Méndez-González, F.; Figueroa-Montero, A.; Saucedo-Castañeda, G.; Loera, O.; Favela-Torres, E. Addition of Spherical-style Packing Improves the Production of Conidia by Metarhizium robertsii in Packed Column Bioreactors. J. Chem. Technol. Biotechnol. 2022, 97, 1517–1525. [Google Scholar] [CrossRef]
- De Vrije, T.; Antoine, N.; Buitelaar, R.M.; Bruckner, S.; Dissevelt, M.; Durand, A.; Gerlagh, M.; Jones, E.E.; Lüth, P.; Oostra, J.; et al. The Fungal Biocontrol Agent Coniothyrium minitans: Production by Solid-State Fermentation, Application and Marketing. Appl. Microbiol. Biotechnol. 2001, 56, 58–68. [Google Scholar] [CrossRef]
- Devi, V. Mass Production of Bacillus Thuringiensis and Nomuraea Rileyi. In Handbook of Integrated Pest Management; Chattopadhyay, C., Tanwar, R.K., Sehgal, M., Birah, A., Bhagat, S., Ahmad, N., Mehta, N., Eds.; ICAR- DKMA Publication: New Delhi, India, 2018; pp. 353–357. [Google Scholar]
- Devi, P.S.V.; Chowdary, A.; Prasad, Y.G. Cost-Effective Multiplication of the Entomopathogenic Fungus Nomuraea rileyi (F) Samson *. Mycopathologia 2000, 151, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.M.; Pinto, S.M.N.; Soares, F.E.F. Metarhizium robertsii Protease and Conidia Production, Response to Heat Stress and Virulence against Aedes Aegypti Larvae. AMB Express 2021, 11, 166. [Google Scholar] [CrossRef]
- Xie, L.; Han, J.H.; Kim, J.J.; Lee, S.Y. Effects of Culture Conditions on Conidial Production of the Sweet Potato Whitefly Pathogenic Fungus Isaria javanica. Mycoscience 2016, 57, 64–70. [Google Scholar] [CrossRef]
- Ye, S.; Shang, L.; Xie, X.; Cao, Y.; Chen, C. Optimization of In Vitro Culture Conditions for Production of Cordyceps bassiana Spores (Ascomycetes) and the Effect of Spore Extracts on the Health of Caenorhabditis elegans. Int. J. Med. Mushrooms 2021, 23, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Velozo, S.G.M.; Velozo, M.R.; Domingues, M.M.; Becchi, L.K.; de Carvalho, V.R.; de Souza Passos, J.R.; Zanuncio, J.C.; Serrão, J.E.; Stephan, D.; Wilcken, C.F. From the Dual Cyclone Harvest Performance of Single Conidium Powder to the Effect of Metarhizium anisopliae on the Management of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). PLoS ONE 2023, 18, e0283543. [Google Scholar] [CrossRef]
- Thakre, M.; Thakur, M.; Malik, N.; Ganger, S. Mass Scale Cultivation of Entomopathogenic Fungus Nomuraea rileyi Using Agricultural Products and Agro Wastes. J. Biopestic. 2011, 4, 176–179. [Google Scholar]
- Weber, F.J.; Tramper, J.; Rinzema, A. A Simplified Material and Energy Balance Approach for Process Development and Scale-Up of Coniothyrium minitans Conidia Production by Solid-State Cultivation in a Packed-Bed Reactor. Biotechnol. Bioeng. 1999, 65, 447–458. [Google Scholar] [CrossRef]
- Vogelgsang, S.; Watson, A.K.; Ditommaso, A. Effect of Moisture, Inoculum Production, and Planting Substrate on Disease Reaction of Field Bindweed (Convolvulus arvensis L.) to the Fungal Pathogen, Phomopsis convolvulus. Eur. J. Plant. Pathol. 1998, 104, 253. [Google Scholar] [CrossRef]
- Sala, A.; Barrena, R.; Meyling, N.V.; Artola, A. Conidia Production of the Entomopathogenic Fungus Beauveria bassiana Using Packed-Bed Bioreactor: Effect of Substrate Biodegradability on Conidia Virulence. J. Environ. Manag. 2023, 341, 118059. [Google Scholar] [CrossRef] [PubMed]
- Ingle, Y.V. Effect of Different Growing Media on Mass Production of Nomuraea rileyi. Int. J. Environ. Sci. 2014, 4, 1006–1014. [Google Scholar]
- Sala, A.; Barrena, R.; Sánchez, A.; Artola, A. Fungal Biopesticide Production: Process Scale-up and Sequential Batch Mode Operation with Trichoderma harzianum Using Agro-Industrial Solid Wastes of Different Biodegradability. Chem. Eng. J. 2021, 425, 131620. [Google Scholar] [CrossRef]
- Gandarilla-Pacheco, F.L.; Morales-Ramos, L.H.; Pereyra-Alférez, B.; Elías-Santos, M.; Quintero-Zapata, I. Production of Infectious Units of Isaria fumosorosea (Hypocreales: Cordycipitaceae) from Different Indigenous Isolates of Northeastern Mexico Using 3 Propagation Strategies. Rev. Argent. Microbiol. 2018, 50, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Oostra, J.; Tramper, J.; Rinzema, A. Model-Based Bioreactor Selection for Large-Scale Solid-State Cultivation of Coniothyrium minitans Spores on Oats. Enzyme Microb. Technol. 2000, 27, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, S.; Khosravi, V.; Varga, A.; Vágvölgyi, C.; Kredics, L. Screening of Organic Substrates for Solid-State Fermentation, Viability and Bioefficacy of Trichoderma harzianum As12-2, a Biocontrol Strain against Rice Sheath Blight Disease. Agronomy 2020, 10, 1258. [Google Scholar] [CrossRef]
- Leão, R.; De Oliveira, S.; Da, A.C.; Santos, S.; Félix, A.; Costa, D.A.; Tiago, P.V. Substrates for the Production of Entomopathogenic Isolates of Dusarium caatingaense to Control Dactylopius opuntiae. Anais Acad. Pernambucana Ciência Agronômica 2023, 19, 1–11. [Google Scholar]
- Rayhane, H.; Josiane, M.; Gregoria, M.; Yiannis, K.; Nathalie, D.; Ahmed, M.; Sevastianos, R. From Flasks to Single Used Bioreactor: Scale-up of Solid State Fermentation Process for Metabolites and Conidia Production by Trichoderma asperellum. J. Environ. Manag. 2019, 252, 109496. [Google Scholar] [CrossRef]
- Singh, J.; Pandey, A.; Pandey, A.K. Solid Substrate Fermentation of Mycoherbicidal Agent Alternaria alternata Fgcc#25. Recent Res. Sci. Technol. 2010, 2, 2076–5061. [Google Scholar]
- Zhang, Y.; Liu, J.; Zhou, Y.; Ge, Y. Spore Production of Clonostachys Rosea in a New Solid-State Fermentation Reactor. Appl. Biochem. Biotechnol. 2014, 174, 2951–2959. [Google Scholar] [CrossRef]
- Viccini, G.; Mannich, M.; Capalbo, D.M.F.; Valdebenito-Sanhueza, R.; Mitchell, D.A. Spore Production in Solid-State Fermentation of Rice by Clonostachys Rosea, a Biopesticide for Gray Mold of Strawberries. Process. Biochem. 2007, 42, 275–278. [Google Scholar] [CrossRef]
- Hamrouni, R.; Claeys-Bruno, M.; Molinet, J.; Masmoudi, A.; Roussos, S.; Dupuy, N. Challenges of Enzymes, Conidia and 6-Pentyl-Alpha-Pyrone Production from Solid-State-Fermentation of Agroindustrial Wastes Using Experimental Design and T. asperellum Strains. Waste Biomass Valorization 2020, 11, 5699–5710. [Google Scholar] [CrossRef]
- Cando-Narvaez, A.; Méndez-Hernández, J.E. Rice Recycling: A Simple Strategy to Improve Conidia Production in Solid-State Cultures. Lett. Appl. Microbiol. 2021, 74, 385–394. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, X.; Zhu, Y. Optimization of Verticillium lecanii Spore Production in Solid-State Fermentation on Sugarcane Bagasse. Appl. Microbiol. Biotechnol. 2009, 82, 921–927. [Google Scholar] [CrossRef]
- De la Cruz-Quiroz, R.; Roussos, S.; Hernandez-Castillo, D.; Rodríguez-Herrera, R.; López-López, L.I.; Castillo, F.; Aguilar, C.N. Solid-State Fermentation in a Bag Bioreactor: Effect of Corn Cob Mixed with Phytopathogen Biomass on Spore and Cellulase Production by Trichoderma asperellum. In Fermentation Processes; IntechOpen: London, UK, 2017. [Google Scholar]
- de Lima, I.J.; Leão, M.P.C.; da Silva Santos, A.C.; da Costa, A.F.; Tiago, P.V. Production of Conidia by Entomopathogenic Isolates of Fusarium caatingaense on Different Vegetable Substrates. Biocontrol Sci. Technol. 2021, 31, 206–218. [Google Scholar] [CrossRef]
- Awan, U.A.; Meng, L.; Xia, S.; Raza, M.F.; Zhang, Z.; Zhang, H. Isolation, Fermentation, and Formulation of Entomopathogenic Fungi Virulent against Adults of Diaphorina citri. Pest. Manag. Sci. 2021, 77, 4040–4053. [Google Scholar] [CrossRef]
- Cuadrado-Osorio, P.D.; Castillo-Saldarriaga, C.R.; Cubides-Cárdenas, J.A.; Álvarez, M.I.G.; Bautista, E.J. Chlamydospores Production Enhancement of Duddingtonia flagrans in a Solid-State Fermentation System. Dyna 2021, 88, 152–159. [Google Scholar] [CrossRef]
- Klaic, R.; Sallet, D.; Foletto, E.L.; Jacques, R.J.S.; Guedes, J.V.C.; Kuhn, R.C.; Mazutti, M.A. Optimization of Solid-State Fermentation for Bioherbicide Production by Phoma sp. Braz. J. Chem. Eng. 2017, 34, 377–384. [Google Scholar] [CrossRef]
- Sargin, S.; Gezgin, Y.; Eltem, R.; Vardar, F. Micropropagule Production from Trichoderma harzianum EGE-K38 Using Solid-State Fermentation and a Comparative Study for Drying Methods. Turk. J. Biol. 2013, 37, 139–146. [Google Scholar] [CrossRef]
- Masangkay, R.F.; Paulitz, T.C.; Hallett, S.G.; Watson, A.K. Solid Substrate Production of Alternaria alternata f. sp. Sphenocleae conidia. Biocontrol Sci. Technol. 2000, 10, 399–409. [Google Scholar] [CrossRef]
- Aita, B.C.; Spannemberg, S.S.; Schmaltz, S.; Zabot, G.L.; Tres, M.V.; Kuhn, R.C.; Mazutti, M.A. Production of Cell-Wall Degrading Enzymes by Solid-State Fermentation Using Agroindustrial Residues as Substrates. J. Environ. Chem. Eng. 2019, 7, 103193. [Google Scholar] [CrossRef]
- Rustiguel, C.B.; Jorge, J.A.; Guimarães, L.H.S. Optimization of the Chitinase Production by Different Metarhizium anisopliae Strains under Solid-State Fermentation with Silkworm Chrysalis as Substrate Using CCRD. Adv. Microbiol. 2012, 2, 268–276. [Google Scholar] [CrossRef]
- Nalini, S.; Parthasarathi, R. Production and Characterization of Rhamnolipids Produced by Serratia rubidaea SNAU02 under Solid-State Fermentation and Its Application as Biocontrol Agent. Bioresour. Technol. 2014, 173, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.G.E.; Sahotra, S. Multiplication of Entomopathogenic Fungus (Lecanicillium lecanii) on Apple Pomace and Its Toxicity against Aphid (Aphis craccivora). Toxin Rev. 2020, 39, 252–257. [Google Scholar] [CrossRef]
- Türkölmez, Ş.; Özer, G.; Derviş, S. Clonostachys Rosea Strain ST1140: An Endophytic Plant-Growth-Promoting Fungus, and Its Potential Use in Seedbeds with Wheat-Grain Substrate. Curr. Microbiol. 2023, 80, 36. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Oloke, J.K. Effect of Wild and Mutant Strain of Lasiodiplodia pseudotheobromae Mass Produced on Rice Bran as a Potential Bioherbicide Agents for Weeds under Solid State Fermentation. J. Appl. Biol. Biotechnol. 2013, 1, 18–23. [Google Scholar]
- Loera-Corral, O.; Porcayo-Loza, J.; Montesinos-Matias, R.; Favela-Torres, E. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation. Methods Mol. Biol. 2016, 1477, 61–69. [Google Scholar]
- Camargo, A.F.; Dalastra, C.; Ulrich, A.; Scapini, T.; Bonatto, C.; Klanovicz, N.; Michelon, W.; Lerin, L.; Júnior, S.L.A.; Mossi, A.J.; et al. The Bioherbicidal Potential of Isolated Fungi Cultivated in Microalgal Biomass. Bioprocess. Biosyst. Eng. 2023, 46, 665–679. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Adejumo, I.O.; Oloke, J.K.; Akpor, O.B. Production of Phytotoxic Metabolites with Bioherbicidal Activities from Lasiodiplodia pseudotheobromae Produced on Different Agricultural Wastes Using Solid-State Fermentation. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 1163–1175. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Pereira-Junior, R.A.; Fernandes, É.K.K.; Quintela, E.D.; Dunlap, C.A.; Arthurs, S.P. Phenotype Responses to Abiotic Stresses, Asexual Reproduction and Virulence among Isolates of the Entomopathogenic Fungus Cordyceps javanica (Hypocreales: Cordycipitaceae). Microbiol. Res. 2018, 216, 12–22. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Kobori, N.N.; Quintela, E.D.; Delalibera, I. The Virulence of Entomopathogenic Fungi against Bemisia tabaci Biotype B (Hemiptera: Aleyrodidae) and Their Conidial Production Using Solid Substrate Fermentation. Biol. Control. 2013, 66, 209–218. [Google Scholar] [CrossRef]
- Baldoni, D.B.; Antoniolli, Z.I.; Mazutti, M.A.; Jacques, R.J.S.; Dotto, A.C.; de Oliveira Silveira, A.; Ferraz, R.C.; Soares, V.B.; de Souza, A.R.C. Chitinase Production by Trichoderma koningiopsis UFSMQ40 Using Solid State Fermentation. Braz. J. Microbiol. 2020, 51, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.Y.; Cheng, L.; Zhu, H.X.; Li, W.; Wei, Y.H.; Chen, H.Y.; Guo, L.Z.; Weng, H.; Wang, J. Herbicidal Activity of Aureobasidium pullulans PA-2 on Weeds and Optimization of Its Solid-State Fermentation Conditions. J. Integr. Agric. 2020, 19, 173–182. [Google Scholar] [CrossRef]
- Nagy, V.; Toke, E.R.; Keong, L.C.; Szatzker, G.; Ibrahim, D.; Omar, I.C.; Szakács, G.; Poppe, L. Kinetic Resolutions with Novel, Highly Enantioselective Fungal Lipases Produced by Solid State Fermentation. J. Mol. Catal. B Enzym. 2006, 39, 141–148. [Google Scholar] [CrossRef]
- Ghaffari, S.; Karimi, J.; Kamali, S.; Moghadam, E.M. Biocontrol of Planococcus citri (Hemiptera: Pseudococcidae) by Lecanicillium longisporum and Lecanicillium lecanii under Laboratory and Greenhouse Conditions. J. Asia Pac. Entomol. 2017, 20, 605–612. [Google Scholar] [CrossRef]
- Brand, D.; Roussos, S.; Prochmann, F.A.; Pohl, J.; Soccol, C.R. Production of a Biocompost by Solid State Fermentation Against the Coffee Nematodes. In New. Horizons in Biotechnology; Springer: Dordrecht, The Netherlands, 2003; pp. 403–412. [Google Scholar]
- Corrêa, B.; da Silveira Duarte, V.; Silva, D.M.; Mascarin, G.M.; Júnior, I.D. Comparative Analysis of Blastospore Production and Virulence of Beauveria bassiana and Cordyceps fumosorosea against Soybean Pests. BioControl 2020, 65, 323–337. [Google Scholar] [CrossRef]
- Adetunji, C.O.; Oloke, J.K.; Osemwegie, O.O.; Ehis-Eriakha, C.B. Use of Agro-Wastes for Lasiodiplodia pseudotheobromae (C1136) Production with Sustainable Bioefficacy. Environ. Dev. Sustain. 2022, 24, 7794–7809. [Google Scholar] [CrossRef]
- Dos Reis, C.B.L.; Sobucki, L.; Mazutti, M.A.; Guedes, J.V.C.; Jacques, R.J.S. Production of Chitinase from Metarhizium anisopliae by Solid-State Fermentation Using Sugarcane Bagasse as Substrate. Ind. Biotechnol. 2018, 14, 230–234. [Google Scholar] [CrossRef]
- Ganassi, S.; Di Domenico, C.; Altomare, C.; Samuels, G.J.; Grazioso, P.; Di Cillo, P.; Pietrantonio, L.; Cristofaro, A. De Potential of Fungi of the Genus Trichoderma for Biocontrol of Philaenus spumarius, the Insect Vector for the Quarantine Bacterium Xylella Fastidosa. Pest. Manag. Sci. 2023, 79, 719–728. [Google Scholar] [CrossRef]
- Teshler, M.P.; Ash, G.J.; Zolotarov, Y.; Watson, A.K. Increased Shelf Life of a Bioherbicide through Combining Modified Atmosphere Packaging and Low Temperatures. Biocontrol Sci. Technol. 2007, 17, 387–400. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Tran, T.V.A.; Nguyen, Q.L.; Nguyen, N.N.; Nguyen, M.K.; Nguyen, N.T.T.; Su, C.H.; Lin, K.H. Newly Isolated Paecilomyces lilacinus and Paecilomyces javanicus as Novel Biocontrol Agents for Plutella xylostella and Spodoptera litura. Not. Bot. Horti Agrobot. Cluj Napoca 2017, 45, 280–286. [Google Scholar] [CrossRef]
- Medina, J.D.; Granada, D.; Bedoya, J.C.; Cardona, N. Production of Akanthomyces lecanii by Submerged Fermentation to Control Tetranychus urticae (Acari: Tetranychidae) in Gerbera jamesonii Crops. Biocontrol Sci. Technol. 2021, 31, 1377–1387. [Google Scholar] [CrossRef]
- Das, M.M.; Haridas, M.; Sabu, A. Process Development for the Enhanced Production of Bio-Nematicide Purpureocillium lilacinum KU8 under Solid-State Fermentation. Bioresour. Technol. 2020, 308, 123328. [Google Scholar] [CrossRef]
- Mcquilken, M.P.; Whipps, J.M. Production, Survival and Evaluation of Solid-Substrate Inocula of Coniothyrium minitans against Sclerotinia Sclerotiorum. Eur. J. Plant. Pathol. 1995, 101, 101–110. [Google Scholar] [CrossRef]
- Méndez-González, F.; Loera, O.; Saucedo-Castañeda, G.; Favela-Torres, E. Forced Aeration Promotes High Production and Productivity of Infective Conidia from Metarhizium robertsii in Solid-State Fermentation. Biochem. Eng. J. 2020, 156, 107492. [Google Scholar] [CrossRef]
- do Nascimento Silva, J.; Mascarin, G.M.; dos Santos Gomes, I.C.; Tinôco, R.S.; Quintela, E.D.; dos Reis Castilho, L.; Freire, D.M.G. New Cost-Effective Bioconversion Process of Palm Kernel Cake into Bioinsecticides Based on Beauveria bassiana and Isaria javanica. Appl. Microbiol. Biotechnol. 2018, 102, 2595–2606. [Google Scholar] [CrossRef]
- Babu, R.; Sajeena, A.; Seetharaman, K. Solid Substrate for Production of Alternaria Alternata Conidia: A Potential Mycoherbicide for the Control of Eichhornia Crassipes (Water Hyacinth). Weed Res. 2004, 44, 298–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Liu, J.; Ge, Y. Pilot Production of Clonostachys Rosea Conidia in a Solid-State Fermentor Optimized Using Response Surface Methodology. Eng. Life Sci. 2015, 15, 772–778. [Google Scholar] [CrossRef]
- Qiu, L.; Li, J.J.; Li, Z.; Wang, J.J. Production and Characterization of Biocontrol Fertilizer from Brewer’s Spent Grain via Solid-State Fermentation. Sci. Rep. 2019, 9, 480. [Google Scholar] [CrossRef]
- Suminto, S.; Takatsuji, E.; Iguchi, A.; Kanzaki, H.; Okuda, T.; Nitoda, T. A New Asteltoxin analog with Insecticidal Activity from Pochonia suchlasporia TAMA 87. J. Pestic. Sci. 2020, 45, 81–85. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; El-Mahdy, O.M.; Mohamed, H.I.; El-Ansary, A.E. Antioxidants, Antimicrobial, and Anticancer Activities of Purified Chitinase of Talaromyces funiculosus Strain CBS 129594 Biosynthesized Using Crustacean Bio-Wastes. Agronomy 2022, 12, 2818. [Google Scholar] [CrossRef]
- Song, X.Y.; Xie, S.T.; Chen, X.L.; Sun, C.Y.; Shi, M.; zhong Zhang, Y. Solid-State Fermentation for Trichokonins Production from Trichoderma koningii SMF2 and Preparative Purification of Trichokonin VI by a Simple Protocol. J. Biotechnol. 2007, 131, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, N.; Ingle, D.Y.V.; Goramnagar, H.B. Influence of Different Growing Media on Mass Production of Aschersonia aleyrodis, a Fungal Pathogen of Citrus Black Fly. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1583–1591. [Google Scholar] [CrossRef]
- Mar, T.T.; Lumyong, S. Conidial Production of Entomopathogenic Fungi in Solid State Fermentation. KKU Res. J. 2012, 17, 762–768. [Google Scholar]
- Das, M.M.; Aguilar, C.N.; Haridas, M.; Sabu, A. Production of Bio-Fungicide, Trichoderma harzianum CH1 under Solid-State Fermentation Using Coffee Husk. Bioresour. Technol. Rep. 2021, 15, 100708. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Sabir, N.; El-Sheikh, M.A.; Alyemeni, M. Impact Assessment of Karanja Deoiled Cake and Sundried Biogas Slurry as a Mixed Substrate on the Nematicidal Potential of Purpureocillium lilacinum. J. King Saud. Univ. Sci. 2021, 33, 101399. [Google Scholar] [CrossRef]
- May, B.A.; Vandergheynst, J.S. A Predictor Variable for Efficacy of Lagenidium giganteum Produced in Solid-State Cultivation. J. Ind. Microbiol. Biotechnol. 2001, 27, 203–207. [Google Scholar] [CrossRef]
- Prakash, G.V.S.B.; Padmaja, V.; Kiran, R.R.S. Statistical Optimization of Process Variables for the Large-Scale Production of Metarhizium anisopliae Conidiospores in Solid-State Fermentation. Bioresour. Technol. 2008, 99, 1530–1537. [Google Scholar] [CrossRef]
- Barra, P.; Barros, G.; Etcheverry, M.; Nesci, A. Mass Production Studies in Solid Substrates with the Entomopathogenic Fungus, Purpureocillium lilacinum. Int. J. Adv. Agric. Res. 2018, 6, 78–84. [Google Scholar]
- Brand, D.; Roussos, S.; Pandey, A.; Zilioli, P.C.; Pohl, J.; Soccol, C.R. Development of a Bionematicide With Paecilomyces lilacinus to Control Meloidogyne Incognita. Appl. Biochem. Biotechnol. 2004, 118, 81–88. [Google Scholar] [CrossRef]
- Mathulwe, L.L.; Malan, A.P.; Stokwe, N.F. Mass Production of Entomopathogenic Fungi, Metarhizium robertsii and Metarhizium pinghaense, for Commercial Application against Insect Pests. J. Vis. Exp. 2022, 2022, e63246. [Google Scholar] [CrossRef]
- Tenkegna, T.A.; Belay, Y.C. Use of Solid-State Fermentation on Selected Agricultural Wastes for Mass Production of Beauveria bassiana. Pest. Manag. J. Ethiop. 2017, 20, 25–39. [Google Scholar]
- Hamrouni, R.; Molinet, J.; Dupuy, N.; Taieb, N.; Carboue, Q.; Masmoudi, A.; Roussos, S. The Effect of Aeration for 6-Pentyl-Alpha-Pyrone, Conidia and Lytic Enzymes Production by Trichoderma asperellum Strains Grown in Solid-State Fermentation. Waste Biomass Valorization 2020, 11, 5711–5720. [Google Scholar] [CrossRef]
- Virtanen, V.; Nyyssölä, A.; Leisola, M.; Seiskari, P. An Aseptically Operatable Static Solid State Bioreactor Consisting of Two Units. Biochem. Eng. J. 2008, 39, 594–597. [Google Scholar] [CrossRef]
- Ghoreishi, G.; Barrena, R.; Font, X. Using Green Waste as Substrate to Produce Biostimulant and Biopesticide Products through Solid-State Fermentation. Waste Manag. 2023, 159, 84–92. [Google Scholar] [CrossRef]
- Melo, A.L.d.A.; Soccol, V.T.; Soccol, C.R. Bacillus thuringiensis: Mechanism of Action, Resistance, and New Applications: A Review. Crit. Rev. Biotechnol. 2016, 36, 317–326. [Google Scholar] [CrossRef]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberón, M. Bacillus thuringiensis: A Story of a Successful Bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A Century of Research, Development and Commercial Applications. Plant. Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef]
- Sanchis, V.; Bourguet, D. Bacillus thuringiensis: Applications in Agriculture and Insect Resistance Management. A Review. Agron. Sustain. Dev. 2008, 28, 11–20. [Google Scholar] [CrossRef]
- Biggel, M.; Jessberger, N.; Kovac, J.; Johler, S. Recent Paradigm Shifts in the Perception of the Role of Bacillus thuringiensis in Foodborne Disease. Food Microbiol. 2022, 105, 104025. [Google Scholar] [CrossRef]
- Wronkowska, M.; Christa, K.; Ciska, E.; Soral-Śmietana, M. Chemical Characteristics and Sensory Evaluation of Raw and Roasted Buckwheat Groats Fermented by R Hizopus oligosporus. J. Food Qual. 2015, 38, 130–138. [Google Scholar] [CrossRef]
- Terakawa, T.; Takaya, N.; Horiuchi, H.; Koike, M.; Takagi, M. A Fungal Chitinase Gene From Rhizopus oligosporus Confers Antifungal Activity to Transgenic Tobacco. Plant Cell. Rep. 1997, 16, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Widyastuti, W.; Setiawan, F.; Al Afandy, C.; Irawan, A.; Laila, A.; Juliasih, N.L.G.R.; Setiawan, W.A.; Arai, M.; Hendri, J.; Setiawan, A. Antifungal Agent Chitooligosaccharides Derived from Solid-State Fermentation of Shrimp Shell Waste by Pseudonocardia antitumoralis 18D36-A1. Fermentation 2022, 8, 353. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Long, Z.; Ren, H.; Guo, X. Improved Production of Spores and Bioactive Metabolites from Bacillus amyloliquefaciens in Solid-State Fermentation by a Rapid Optimization Process. Probiotics Antimicrob. Proteins 2019, 11, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Berikashvili, V.; Sokhadze, K.; Kachlishvili, E.; Elisashvili, V.; Chikindas, M.L. Bacillus amyloliquefaciens Spore Production Under Solid-State Fermentation of Lignocellulosic Residues. Probiotics Antimicrob. Proteins 2018, 10, 755–761. [Google Scholar] [CrossRef]
- Miao, C.-H.; Wang, X.-F.; Qiao, B.; Xu, Q.-M.; Cao, C.-Y.; Cheng, J.-S. Artificial Consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for Utilizing Food Waste to Synthetize Iturin A. Environ. Sci. Pollut. Res. 2022, 29, 72628–72638. [Google Scholar] [CrossRef] [PubMed]
- El-Bendary, M.A. Production of Mosquitocidal bacillus sphaericus by Solid State Fermentation Using Agricultural Wastes. World J. Microbiol. Biotechnol. 2010, 26, 153–159. [Google Scholar] [CrossRef]
- El-Bendary, M.A.; Moharam, M.E. Formulation of Spore Toxin Complex of Bacillus thuringiensis and Lysinibacillus sphaericus Grown under Solid State Fermentation. Biol. Control 2019, 131, 54–61. [Google Scholar] [CrossRef]
- Mizumoto, S.; Shoda, M. Medium Optimization of Antifungal lipopeptide, Iturin A, Production by Bacillus subtilis in Solid-State Fermentation by Response Surface Methodology. Appl. Microbiol. Biotechnol. 2007, 76, 101–108. [Google Scholar] [CrossRef]
- Mizumoto, S.; Hirai, M.; Shoda, M. Production of Lipopeptide antibiotic Iturin A Using Soybean Curd Residue Cultivated with Bacillus subtilis in Solid-State Fermentation. Appl. Microbiol. Biotechnol. 2006, 72, 869–875. [Google Scholar] [CrossRef]
- Khan, A.W.; Zohora, U.S.; Rahman, M.S.; Okanami, M.; Ano, T. Production of Iturin A through Glass Column Reactor (GCR) from Soybean Curd Residue (Okara) by Bacillus subtilis RB14-CS under Solid State Fermentation (SSF). Adv. Biosci. Biotechnol. 2012, 3, 143–148. [Google Scholar] [CrossRef]
- Bouassida, M.; Mnif, I.; Hammami, I.; Triki, M.-A.; Ghribi, D. Bacillus subtilis SPB1 Lipopeptide Biosurfactant: Antibacterial Efficiency against the Phytopathogenic Bacteria Agrobacterium tumefaciens and Compared Production in Submerged and Solid State Fermentation Systems. Food Sci. Biotechnol. 2023. [Google Scholar] [CrossRef]
- Mejias, L.; Estrada, M.; Barrena, R.; Gea, T. A Novel Two-Stage Aeration Strategy for Bacillus thuringiensis Biopesticide Production from Biowaste Digestate through Solid-State Fermentation. Biochem. Eng. J. 2020, 161, 107644. [Google Scholar] [CrossRef]
- Rodríguez, P.; Cerda, A.; Font, X.; Sánchez, A.; Artola, A. Valorisation of Biowaste Digestate through Solid State Fermentation to Produce Biopesticides from Bacillus thuringiensis. Waste Manag. 2019, 93, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Lima-Pérez, J.; López-Pérez, M.; Viniegra-González, G.; Loera, O. Solid-State Fermentation of Bacillus thuringiensis Var Kurstaki HD-73 Maintains Higher Biomass and Spore Yields as Compared to Submerged Fermentation Using the Same Media. Bioprocess. Biosyst. Eng. 2019, 42, 1527–1535. [Google Scholar] [CrossRef]
- Molina-Peñate, E.; Sánchez, A.; Artola, A. Enzymatic Hydrolysis of the Organic Fraction of Municipal Solid Waste: Optimization and Valorization of the Solid Fraction for Bacillus thuringiensis Biopesticide Production through Solid-State Fermentation. Waste Manag. 2022, 137, 304–311. [Google Scholar] [CrossRef]
- Molina-Peñate, E.; del Carmen Vargas-García, M.; Artola, A.; Sánchez, A. Filling in the Gaps in Biowaste Biorefineries: The Use of the Solid Residue after Enzymatic hydrolysis for the Production of Biopesticides through Solid-State Fermentation. Waste Manag. 2023, 161, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jiang, H.; Li, P.; Li, C.; Liu, R.; Li, J.; Xiao, Z.; Pi, B.; Zhao, M.; Hu, W.; et al. Production of Free Amino Acid Fertilizer from Tung Meal by the Newly Isolated Pseudomonas aeruginosa LYT-4 Strain with Simultaneous Potential Biocontrol Capacity. Renew. Energy 2020, 166, 245–252. [Google Scholar] [CrossRef]
- Zeng, X.; Miao, W.; Zeng, H.; Zhao, K.; Zhou, Y.; Zhang, J.; Zhao, Q.; Tursun, D.; Xu, D.; Li, F. Production of Natamycin by Streptomyces gilvosporeus Z28 through Solid-State Fermentation Using Agro-Industrial Residues. Bioresour. Technol. 2019, 273, 377–385. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, D.; Zhang, X.; Zhou, C.; Zhou, P.; Zhi, Y. Medium Optimization for Spore Production of a Straw-Cellulose Degrading Actinomyces Strain under Solid-State Fermentation Using Response Surface Method. Sustainability 2020, 12, 8893. [Google Scholar] [CrossRef]
- Shen, T.; Wang, C.; Yang, H.; Deng, Z.; Wang, S.; Shen, B.; Shen, Q. Identification, Solid-State Fermentation and Biocontrol Effects of Streptomyces hygroscopicus B04 on Strawberry Root Rot. Appl. Soil. Ecology 2016, 103, 36–43. [Google Scholar] [CrossRef]
- Sakdapetsiri, C.; Fukuta, Y.; Aramsirirujiwet, Y.; Shirasaka, N.; Tokuyama, S.; Kitpreechavanich, V. Solid State Fermentation, Storage and Viability of Streptomyces similanensis 9X166 Using Agro-Industrial Substrates against Phytophthora Palmivora -Induced Black Rot Disease in Orchids. Biocontrol Sci. Technol. 2019, 29, 276–292. [Google Scholar] [CrossRef]
- Mangan, R.; Bussière, L.F.; Polanczyk, R.A.; Tinsley, M.C. Increasing Ecological Heterogeneity Can Constrain Biopesticide Resistance Evolution. Trends Ecol. Evol. 2023. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Zarfl, C.; Rehse, S.; Kloas, W. Low-Dose Effects: Nonmonotonic Responses for the Toxicity of a Bacillus thuringiensis Biocide to Daphnia magna. Environ. Sci. Technol. 2017, 51, 1679–1686. [Google Scholar] [CrossRef]
- De Bock, T.; Zhao, X.; Jacxsens, L.; Devlieghere, F.; Rajkovic, A.; Spanoghe, P.; Höfte, M.; Uyttendaele, M. Evaluation of B. Thuringiensis-Based Biopesticides in the Primary Production of Fresh Produce as a Food Safety Hazard and Risk. Food Control 2021, 130, 108390. [Google Scholar] [CrossRef]
- Rousidou, C.; Papadopoulou, E.S.; Kortsinidou, M.; Giannakou, I.O.; Singh, B.K.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G. Bio-Pesticides: Harmful or Harmless to Ammonia Oxidizing Microorganisms? The Case of a Paecilomyces lilacinus-Based Nematicide. Soil. Biol. Biochem. 2013, 67, 98–105. [Google Scholar] [CrossRef]
- Kaze, M.; Brooks, L.; Sistrom, M. Antimicrobial Resistance in Bacillus-Based Biopesticide Products. Microbiology 2021, 167. [Google Scholar] [CrossRef]
- Coulibaly, O.; Cherry, A.J.; Nouhoheflin, T.; Aitchedji, C.C.; Al-Hassan, R. Vegetable Producer Perceptions and Willingness to Pay for Biopesticides. J. Veg. Sci. 2007, 12, 27–42. [Google Scholar] [CrossRef]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial Biopesticides for Insect Pest Management in India: Current Status and Future Prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in Sustainable Agriculture: Current Status and Future Prospects. In New and Future Development in Biopesticide Research: Biotechnological Exploration; Springer Nature: Singapore, 2022; pp. 1–53. [Google Scholar]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as Promising Alternatives to Chemical Pesticides: A Review of Their Current and Future Status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Front. Sustain. Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and Implementation of Biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Guzmán, K.N.R.; Mohapatra, B.; Talukdar, D.; Chávez-González, M.L.; Kumar, V.; Srivastava, S.; Singh, V.; Yulianto, R.; Malar, S.E.; et al. Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security. In Recent. Developments in Microbial Technologies. Environmental and Microbial Biotechnology; Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P., Eds.; Springer: Singapore, 2021; pp. 1–37. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The Development, Regulation and Use of Biopesticides for Integrated Pest Management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Glare, T.; Caradus, J.; Gelernter, W.; Jackson, T.; Keyhani, N.; Köhl, J.; Marrone, P.; Morin, L.; Stewart, A. Have Biopesticides Come of Age? Trends Biotechnol. 2012, 30, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Bharti, V.; Ibrahim, S. Biopesticides: Production, Formulation and Application Systems. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3931–3946. [Google Scholar] [CrossRef]
- Lovett, B.; St. Leger, R.J. Genetically Engineering Better Fungal Biopesticides. Pest. Manag. Sci. 2018, 74, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent Developments on Solid-State Fermentation for Production of Microbial Secondary Metabolites: Challenges and Solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Mimi Sakinah, A.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in Solid-State Fermentation for Bioconversion of Agricultural Wastes to Value-Added Products: Opportunities and Challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef]
- Oiza, N.; Moral-Vico, J.; Sánchez, A.; Oviedo, E.R.; Gea, T. Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes 2022, 10, 2675. [Google Scholar] [CrossRef]
- Figueroa-Montero, A.; Esparza-Isunza, T.; Saucedo-Castañeda, G.; Huerta-Ochoa, S.; Gutiérrez-Rojas, M.; Favela-Torres, E. Improvement of Heat Removal in Solid-State Fermentation Tray Bioreactors by Forced Air Convection. J. Chem. Technol. Biotechnol. 2011, 86, 1321–1331. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Chen, H.-Z. Advances in Porous Characteristics of the Solid Matrix in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 19–29. [Google Scholar]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive Phenolic Compounds: Production and Extraction by Solid-State Fermentation. A Review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Barrena, R.; Artola, A.; Sánchez, A. Current Developments in the Production of Fungal Biological Control Agents by Solid-State Fermentation Using Organic Solid Waste. Crit. Rev. Environ. Sci. Technol. 2019, 49, 655–694. [Google Scholar] [CrossRef]
- Hölker, U.; Höfer, M.; Lenz, J. Biotechnological Advantages of Laboratory-Scale Solid-State Fermentation with Fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175–186. [Google Scholar] [CrossRef] [PubMed]
- De la Cruz Quiroz, R.; Roussos, S.; Hernández, D.; Rodríguez, R.; Castillo, F.; Aguilar, C.N. Challenges and Opportunities of the Bio-Pesticides Production by Solid-State Fermentation: Filamentous Fungi as a Model. Crit. Rev. Biotechnol. 2015, 35, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, N.S.; Pietilä, M.K.; Oksanen, H.M. Diverse Antimicrobial Interactions of Halophilic Archaea and Bacteria Extend over Geographical Distances and Cross the Domain Barrier. Microbiol. Open 2013, 2, 811–825. [Google Scholar] [CrossRef]
- Martin del Campo, M.; Camacho, R.M.; Mateos-Díaz, J.C.; Müller-Santos, M.; Córdova, J.; Rodríguez, J.A. Solid-State Fermentation as a Potential Technique for Esterase/Lipase Production by Halophilic Archaea. Extremophiles 2015, 19, 1121–1132. [Google Scholar] [CrossRef]
- Hensley, S.A.; Moreira, E.; Holden, J.F. Hydrogen Production and Enzyme Activities in the Hyperthermophile Thermococcus Paralvinellae Grown on Maltose, Tryptone, and Agricultural Waste. Front. Microbiol. 2016, 7, 174. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, B.; van Belkum, M.J.; Diep, D.B.; Chikindas, M.L.; Ermakov, A.M.; Tiwari, S.K. Halocins, Natural Antimicrobials of Archaea: Exotic or Special or Both? Biotechnol. Adv. 2021, 53, 107834. [Google Scholar] [CrossRef]
- O’Connor, E.; Shand, R. Halocins and Sulfolobicins: The Emerging Story of Archaeal Protein and Peptide Antibiotics. J. Ind. Microbiol. Biotechnol. 2002, 28, 23–31. [Google Scholar] [CrossRef]
- Ellen, A.F.; Rohulya, O.V.; Fusetti, F.; Wagner, M.; Albers, S.-V.; Driessen, A.J.M. The Sulfolobicin Genes of Sulfolobus scidocaldarius Encode Novel Antimicrobial Proteins. J. Bacteriol. 2011, 193, 4380–4387. [Google Scholar] [CrossRef]
Species | Substrate | T (°C) | Days | Maximum Biomass Yield | Plants Promoted | Ref. |
---|---|---|---|---|---|---|
Trichoderma spp. | agricultural digestate | 26 °C | 6 | 689.80 ± 80.53 mg mycelium/g substrate | cress | [73] |
Trichoderma spp. | apple, banana, and grapefruits wastes | 26 °C | 6 | 689.8 ± 80.5 mg/g substrate | cress and tomato | [74] |
Purpureocillium lilacinum | hair waste | 28 °C | 8 | - | tomato | [75] |
Trichoderma atroviride strain MUCL45632 | wheat bran | - | - | - | melon, pepper, tomato, and zucchini | [76] |
Aspergillus flavipes | soybean (most suitable) | - | - | - | Eucalyptus clone IPB2 | [77] |
Trichoderma guizhouense NJAU4742 | rice straw + amino acids | 28 °C | 7 | 4.62 × 10 10 conidia | pepper | [71] |
Fusarium redolens KY992586 (RF1), Phialemoniopsis cornearis MK408657 (SF1), and Macrophomina pseudophaseolina MF351729 (SF2) | wheat bran | 28 °C | 10 | 38 × 10 12 (RF1), 14 × 10 11 (SF1), and 21 × 10 12 (SF2) CFU g−1 | Coleus forskohlii | [78] |
Kosakonia pseudosacchari TL13 | vermiculite, exausted yeasts and vinasse | 15 °C | 30 | 7–6.9 log CFU g−1 or mL−1 | maize | [72] |
Trichoderma asperellum | silica-rich spent mushroom | 28 °C | 31 | 12.37 × 1013 cfu/g bioformulation | tomato | [61] |
Bacillus circulans Xue-113168 | food waste and feldspar | 30 °C | 7 | 8–10 CFU g−1 | rapeseed | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattedi, A.; Sabbi, E.; Farda, B.; Djebaili, R.; Mitra, D.; Ercole, C.; Cacchio, P.; Del Gallo, M.; Pellegrini, M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023, 11, 1408. https://doi.org/10.3390/microorganisms11061408
Mattedi A, Sabbi E, Farda B, Djebaili R, Mitra D, Ercole C, Cacchio P, Del Gallo M, Pellegrini M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms. 2023; 11(6):1408. https://doi.org/10.3390/microorganisms11061408
Chicago/Turabian StyleMattedi, Alessandro, Enrico Sabbi, Beatrice Farda, Rihab Djebaili, Debasis Mitra, Claudia Ercole, Paola Cacchio, Maddalena Del Gallo, and Marika Pellegrini. 2023. "Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production" Microorganisms 11, no. 6: 1408. https://doi.org/10.3390/microorganisms11061408
APA StyleMattedi, A., Sabbi, E., Farda, B., Djebaili, R., Mitra, D., Ercole, C., Cacchio, P., Del Gallo, M., & Pellegrini, M. (2023). Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms, 11(6), 1408. https://doi.org/10.3390/microorganisms11061408