COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Mortality
3.3. ICU Admission
3.4. Progression to ARDS
3.5. Acute Kidney Injury (AKI)
3.6. Acute Cardiac Injury (ACI)
3.7. Thromboembolic Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Zhong, W.; Tian, Y.; Xie, C.; Fu, X.; Zhou, H. The effect of diabetes on mortality of COVID-19: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e20913. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Khunti, K. COVID-19 and Diabetes. Annu. Rev. Med. 2022, 73, 129–147. [Google Scholar] [CrossRef]
- Roncon, L.; Zuin, M.; Rigatelli, G.; Zuliani, G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J. Clin. Virol. 2020, 127, 104354. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Gupta, M.; KAtoch, N.; Garg, K.; Garg, B. A Systematic Review and Meta-analysis of Diabetes Associated Mortality in Patients with COVID-19. Int. J. Endocrinol. Metab. 2021, 19, e113220. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shen, M.; Yang, Q.; Fairley, C.K.; Chai, Z.; McIntyre, R.; Ong, J.J.; Liu, H.; Lu, P.; Hu, W.; et al. Global Diabetes Prevalence in COVID-19 Patients and Contribution to COVID-19-Related Severity and Mortality: A Systematic Review and Meta-analysis. Diabetes Care 2023, 46, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Wu, Z.-h.; Tang, Y.; Cheng, Q. Diabetes increases the mortality of patients with COVID-19: A meta-analysis. Acta Diabetol. 2021, 58, 139–144. [Google Scholar] [CrossRef]
- Gupta, R.; Ghosh, A.; Singh, A.K.; Misra, A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab. Syndr. 2020, 14, 211–212. [Google Scholar] [CrossRef]
- Abdi, A.; Jalilian, M.; Sarbarzeh, P.A.; Vlaisavljevic, Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res. Clin. Pract. 2020, 166, 108347. [Google Scholar] [CrossRef]
- Stoian, A.P.; Banerjee, Y.; Rizvi, A.A.; Rizzo, M. Diabetes and the COVID-19 Pandemic: How Insights from Recent Experience Might Guide Future Management. Metab. Syndr. Relat. Disord. 2020, 18, 173–175. [Google Scholar] [CrossRef]
- Dallavalasa, S.; Tulimilli, S.V.; Prakash, J.; Ramachandra, R.; Madhunapantula, S.V.; Veeranna, R.P. COVID-19: Diabetes Perspective-Pathophysiology and Management. Pathogens 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Faruqi, J.; Balasubramanyam, A. COVID-19 and diabetes mellitus: A review of the incidence, pathophysiology and management of diabetes during the pandemic. Expert. Rev. Endocrinol. Metab. 2023, 18, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1alpha/Glycolysis-Dependent Axis. Cell. Metab. 2020, 32, 498–499. [Google Scholar] [CrossRef]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Sheetz, M.J.; King, G.L.J.J. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002, 288, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Jafar, N.; Edriss, H.; Nugent, K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am. J. Med. Sci. 2016, 351, 201–211. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z.; Zhang, J.J.B.R. Hyperglycemia at admission is a strong predictor of mortality and severe/critical complications in COVID-19 patients: A meta-analysis. Biosci. Rep. 2021, 41, BSR20203584. [Google Scholar] [CrossRef]
- Matias, A.A.; Manique, I.; Sabino, T.; Rego, T.; Mihon, C.; Panarra, A.; Rizzo, M.; Silva-Nunes, J. Absolute Hyperglycemia versus Stress Hyperglycemia Ratio for the Prognosis of Hospitalized Patients with COVID-19 in the First Months of the Pandemic: A Retrospective Study. Diabetes Ther. 2023, 14, 335–346. [Google Scholar] [CrossRef]
- Khunti, K.K.; Del Prato, S.; Mathieu, C.; Kahn, S.E.; Gabbay, R.A.; Buse, J.B. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care 2021, 44, 2645–2655. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 2008, 14, 222–231. [Google Scholar] [CrossRef]
- Nowotny, K.; Jung, T.; Hohn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015, 5, 194–222. [Google Scholar] [CrossRef] [PubMed]
- Tomas, E.; Lin, Y.S.; Dagher, Z.; Saha, A.; Luo, Z.; Ido, Y.; Ruderman, N.B. Hyperglycemia and insulin resistance: Possible mechanisms. Ann. N. Y. Acad. Sci. 2002, 967, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Bhowmik, B.; do Vale Moreira, N.C. COVID-19 and diabetes: Knowledge in progress. Diabetes Res. Clin. Pract. 2020, 162, 108142. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, L.C.; Zhang, R.T.; Ling, Y.P.; Ge, Q.G. Risks factors for death among COVID-19 patients combined with hypertension, coronary heart disease or diabetes. Beijing Da Xue Xue Bao Yi Xue Ban 2020, 52, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Akinosoglou, K.; Kapsokosta, G.; Mouktaroudi, M.; Rovina, N.; Kaldis, V.; Stefos, A.; Kontogiorgi, M.; Giamarellos-Bourboulis, E.; Gogos, C.; Hellenic Sepsis Study, G. Diabetes on sepsis outcomes in non-ICU patients: A cohort study and review of the literature. J. Diabetes Complicat. 2021, 35, 107765. [Google Scholar] [CrossRef]
- Sardu, C.; D’Onofrio, N.; Balestrieri, M.L.; Barbieri, M.; Rizzo, M.R.; Messina, V.; Maggi, P.; Coppola, N.; Paolisso, G.; Marfella, R.J.D.C. Outcomes in Patients With Hyperglycemia Affected by COVID-19: Can We Do More on Glycemic Control? Diabetes Care 2020, 43, 1408–1415. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Misra, A.J.N. Diabetes and COVID19: A bidirectional relationship. Nutr. Diabetes 2021, 11, 21. [Google Scholar] [CrossRef]
- van Niekerk, G.; Christowitz, C.; Conradie, D.; Engelbrecht, A.M. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev. 2020, 52, 34–44. [Google Scholar] [CrossRef]
- Deng, L.; Yang, Y.; Xu, G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota. Biochim. Biophys. Acta BBA-Mol. Cell. Biol. Lipids 2022, 1867, 159234. [Google Scholar] [CrossRef]
- Gregory, J.M.; Slaughter, J.C.; Duffus, S.H.; Smith, T.J.; LeStourgeon, L.M.; Jaser, S.S.; McCoy, A.B.; Luther, J.M.; Giovannetti, E.R.; Boeder, S.; et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care 2021, 44, 526–532. [Google Scholar] [CrossRef]
- Mahamat-Saleh, Y.; Fiolet, T.; Rebeaud, M.E.; Mulot, M.; Guihur, A.; El Fatouhi, D.; Laouali, N.; Peiffer-Smadja, N.; Aune, D.; Severi, G. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: A systematic review and meta-analysis of observational studies. BMJ Open 2021, 11, e052777. [Google Scholar] [CrossRef]
- Shenoy, A.; Ismaily, M.; Bajaj, M. Diabetes and COVID-19: A global health challenge. BMJ Open. Diabetes Res. Care 2020, 8, e001450. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N.; et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol. 2020, 8, 813–822. [Google Scholar] [CrossRef]
- Gangopadhyay, K.K. Does having diabetes increase chances of contracting COVID-19 infection? Diabetes Metab. Syndr. 2020, 14, 765–766. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Halvatsiotis, P.; Kotanidou, A.; Tzannis, K.; Jahaj, E.; Magira, E.; Theodorakopoulou, M.; Konstandopoulou, G.; Gkeka, E.; Pourzitaki, C.; Kapravelos, N.; et al. Demographic and clinical features of critically ill patients with COVID-19 in Greece: The burden of diabetes and obesity. Diabetes Res. Clin. Pract. 2020, 166, 108331. [Google Scholar] [CrossRef]
- Corona, G.; Pizzocaro, A.; Vena, W.; Rastrelli, G.; Semeraro, F.; Isidori, A.M.; Pivonello, R.; Salonia, A.; Sforza, A.; Maggi, M. Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2021, 22, 275–296. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Pirbonyeh, N.; Akbari, A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Arch. Acad. Emerg. Med. 2020, 8, e35. [Google Scholar]
- Etoom, M.; Alwardat, S.; Alwardat, M. Issues for conducting meta-analyses in COVID-19. Commentary on “Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis”. J. Clin. Virol. 2020, 128, 104389. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, J.; Dai, Z.; Deng, H.; Li, X.; Huang, Q.; Wu, Y.; Sun, L.; Xu, Y. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. Virol. 2020, 127, 104371. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef]
- Huang, I.; Lim, M.A.; Pranata, R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia—A systematic review, meta-analysis, and meta-regression. Diabetes Metab. Syndr. 2020, 14, 395–403. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Holman, N.; Wild, S.H.; Gregg, E.W.; Valabhji, J.; Sattar, N.; Khunti, K.; National Diabetes Audit Research, G. Comparison of mortality in people with type 1 and type 2 diabetes by age of diagnosis: An incident population-based study in England and Wales. Lancet Diabetes Endocrinol. 2022, 10, 95–97. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, X.; Jiang, F.; Zhang, X.; Hu, N.; Bimu, C.; Feng, J.; Yan, S.; Guan, Y.; Xu, D.; et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. Diabetes Care 2020, 43, 1382–1391. [Google Scholar] [CrossRef]
- Holman, N.; Knighton, P.; Kar, P.; O’Keefe, J.; Curley, M.; Weaver, A.; Barron, E.; Bakhai, C.; Khunti, K.; Wareham, N.J.; et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2020, 8, 823–833. [Google Scholar] [CrossRef]
- Agarwal, S.; Schechter, C.; Southern, W.; Crandall, J.P.; Tomer, Y. Preadmission Diabetes-Specific Risk Factors for Mortality in Hospitalized Patients With Diabetes and Coronavirus Disease 2019. Diabetes Care 2020, 43, 2339–2344. [Google Scholar] [CrossRef]
- Chao, W.C.; Tseng, C.H.; Wu, C.L.; Shih, S.J.; Yi, C.Y.; Chan, M.C. Higher glycemic variability within the first day of ICU admission is associated with increased 30-day mortality in ICU patients with sepsis. Ann. Intensive Care 2020, 10, 17. [Google Scholar] [CrossRef]
- Hsieh, M.S.; Hu, S.Y.; How, C.K.; Seak, C.J.; Hsieh, V.C.; Lin, J.W.; Chen, P.C. Hospital outcomes and cumulative burden from complications in type 2 diabetic sepsis patients: A cohort study using administrative and hospital-based databases. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819875406. [Google Scholar] [CrossRef]
- Scheen, A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes Metab. 2021, 47, 101213. [Google Scholar] [CrossRef] [PubMed]
- Krejner-Bienias, A.; Grzela, K.; Grzela, T. DPP4 Inhibitors and COVID-19-Holy Grail or Another Dead End? Arch. Immunol. Ther. Exp. 2021, 69, 1. [Google Scholar] [CrossRef] [PubMed]
- Vankadari, N.; Wilce, J.A. Emerging WuHan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020, 9, 601–604. [Google Scholar] [CrossRef]
- Trzaskalski, N.A.; Fadzeyeva, E.; Mulvihill, E.E. Dipeptidyl Peptidase-4 at the Interface Between Inflammation and Metabolism. Clin. Med. Insights Endocrinol. Diabetes 2020, 13, 1179551420912972. [Google Scholar] [CrossRef] [PubMed]
- Tomovic, K.; Lazarevic, J.; Kocic, G.; Deljanin-Ilic, M.; Anderluh, M.; Smelcerovic, A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med. Res. Rev. 2019, 39, 404–422. [Google Scholar] [CrossRef]
- Matsubara, J.; Sugiyama, S.; Akiyama, E.; Iwashita, S.; Kurokawa, H.; Ohba, K.; Maeda, H.; Fujisue, K.; Yamamoto, E.; Kaikita, K.; et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ. J. 2013, 77, 1337–1344. [Google Scholar] [CrossRef]
- Satoh-Asahara, N.; Sasaki, Y.; Wada, H.; Tochiya, M.; Iguchi, A.; Nakagawachi, R.; Odori, S.; Kono, S.; Hasegawa, K.; Shimatsu, A. A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients. Metabolism 2013, 62, 347–351. [Google Scholar] [CrossRef]
- Montastruc, F.; Romano, C.; Montastruc, J.L.; Silva, S.; Seguin, T.; Minville, V.; Georges, B.; Riu-Poulenc, B.; Fourcade, O. Pharmacological characteristics of patients infected with SARS-Cov-2 admitted to Intensive Care Unit in South of France. Therapie 2020, 75, 381–384. [Google Scholar] [CrossRef]
- Rhee, S.Y. Effects of a DPP-4 Inhibitor and RAS Blockade on Clinical Outcomes of Patients with Diabetes and COVID-19. Diabetes Metab. J. 2021, 45, 619–620. [Google Scholar] [CrossRef]
- Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; et al. Sitagliptin Treatment at the Time of Hospitalization Was Associated With Reduced Mortality in Patients With Type 2 Diabetes and COVID-19: A Multicenter, Case-Control, Retrospective, Observational Study. Diabetes Care 2020, 43, 2999–3006. [Google Scholar] [CrossRef] [PubMed]
- Wargny, M.; Potier, L.; Gourdy, P.; Pichelin, M.; Amadou, C.; Benhamou, P.Y.; Bonnet, J.B.; Bordier, L.; Bourron, O.; Chaumeil, C.; et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: Updated results from the nationwide CORONADO study. Diabetologia 2021, 64, 778–794. [Google Scholar] [CrossRef] [PubMed]
- Rakhmat, I.I.; Kusmala, Y.Y.; Handayani, D.R.; Juliastuti, H.; Nawangsih, E.N.; Wibowo, A.; Lim, M.A.; Pranata, R. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)—A systematic review, meta-analysis, and meta-regression. Diabetes Metab. Syndr. 2021, 15, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Reinhold, D.; Brocke, S. DPP4-directed therapeutic strategies for MERS-CoV. Lancet Infect. Dis. 2014, 14, 100–101. [Google Scholar] [CrossRef]
- Iacobellis, G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res. Clin. Pract. 2020, 162, 108125. [Google Scholar] [CrossRef]
- Dalan, R.; Ang, L.W.; Tan, W.Y.T.; Fong, S.W.; Tay, W.C.; Chan, Y.H.; Renia, L.; Ng, L.F.P.; Lye, D.C.; Chew, D.E.K.; et al. The association of hypertension and diabetes pharmacotherapy with COVID-19 severity and immune signatures: An observational study. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, e48–e51. [Google Scholar] [CrossRef]
- Khunti, K.; Knighton, P.; Zaccardi, F.; Bakhai, C.; Barron, E.; Holman, N.; Kar, P.; Meace, C.; Sattar, N.; Sharp, S.; et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: A nationwide observational study in England. Lancet Diabetes Endocrinol. 2021, 9, 293–303. [Google Scholar] [CrossRef]
- Nassar, M.; Abosheaishaa, H.; Singh, A.K.; Misra, A.; Bloomgarden, Z. Noninsulin-based antihyperglycemic medications in patients with diabetes and COVID-19: A systematic review and meta-analysis. J. Diabetes 2023, 15, 86–96. [Google Scholar] [CrossRef]
- Bonora, B.M.; Avogaro, A.; Fadini, G.P. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: Narrative review and meta-analysis. J. Endocrinol. Invest 2021, 44, 1379–1386. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Kurniawan, A. Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: A systematic review, meta-analysis, and meta-regression. J. Diabetes Metab. Disord. 2021, 20, 543–550. [Google Scholar] [CrossRef]
- Lima-Martinez, M.M.; Carrera Boada, C.; Madera-Silva, M.D.; Marin, W.; Contreras, M. COVID-19 and diabetes: A bidirectional relationship. Clin. Investig. Arterioscler. 2021, 33, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, A.R.; Martins, D.C.; Rizzo, M.; Silva-Nunes, J. Metformin in SARS-CoV-2 infection: A hidden path-from altered inflammation to reduced mortality. A review from the literature. J. Diabetes Complicat. 2023, 37, 108391. [Google Scholar] [CrossRef]
- Corrao, S.; Pinelli, K.; Vacca, M.; Raspanti, M.; Argano, C. Type 2 Diabetes Mellitus and COVID-19: A Narrative Review. Front. Endocrinol. 2021, 12, 609470. [Google Scholar] [CrossRef] [PubMed]
- French, G.; Hulse, M.; Nguyen, D.; Sobotka, K.; Webster, K.; Corman, J.; Aboagye-Nyame, B.; Dion, M.; Johnson, M.; Zalinger, B.; et al. Impact of Hospital Strain on Excess Deaths During the COVID-19 Pandemic-United States, July 2020–July 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1613–1616. [Google Scholar] [CrossRef]
- Aubert, C.E.; Henderson, J.B.; Kerr, E.A.; Holleman, R.; Klamerus, M.L.; Hofer, T.P. Type 2 Diabetes Management, Control and Outcomes During the COVID-19 Pandemic in Older US Veterans: An Observational Study. J. Gen. Intern. Med. 2022, 37, 870–877. [Google Scholar] [CrossRef]
- Patel, S.Y.; McCoy, R.G.; Barnett, M.L.; Shah, N.D.; Mehrotra, A. Diabetes Care and Glycemic Control During the COVID-19 Pandemic in the United States. JAMA Intern. Med. 2021, 181, 1412–1414. [Google Scholar] [CrossRef]
- Ceconi, V.; Barbi, E.; Tornese, G. Glycemic control in type 1 diabetes mellitus and COVID-19 lockdown: What comes after a “quarantine”? J. Diabetes 2020, 12, 946–948. [Google Scholar] [CrossRef] [PubMed]
- Al Mahmeed, W.; Al-Rasadi, K.; Banerjee, Y.; Ceriello, A.; Cosentino, F.; Galia, M.; Goh, S.Y.; Kempler, P.; Lessan, N.; Papanas, N.; et al. Promoting a Syndemic Approach for Cardiometabolic Disease Management During COVID-19: The CAPISCO International Expert Panel. Front. Cardiovasc. Med. 2021, 8, 787761. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.A.; Kathuria, A.; Al Mahmeed, W.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; Cesur, M.; Cosentino, F.; et al. Post-COVID syndrome, inflammation, and diabetes. J. Diabetes Complicat. 2022, 36, 108336. [Google Scholar] [CrossRef]
- Popovic, D.S.; Papanas, N.; Koufakis, T.; Kotsa, K.; Mahmeed, W.A.; Al-Rasadi, K.; Al-Alawi, K.; Banach, M.; Banerjee, Y.; Ceriello, A.; et al. Glucometabolic Perturbations in Type 2 Diabetes Mellitus and Coronavirus Disease 2019: Causes, Consequences, and How to Counter Them Using Novel Antidiabetic Drugs-The CAPISCO International Expert Panel. Exp. Clin. Endocrinol. Diabetes 2023, 131, 260–267. [Google Scholar] [CrossRef]
All (n = 354) | |
---|---|
Male sex, n (%) | 188 (53.1) |
Age (y) (IQR) | 70 (62–79) |
Greek nationality (%) | 326 (92.1) |
BMI (kg/m2) (IQR) | 28.3 (26.22–31.55) |
Tobacco use (categories) | |
Never (%) | 156 (44.1) |
Former (%) | 120 (33.9) |
Current (%) | 48 (13.6) |
Type 2 DM information | |
Age at time of DM diagnosis (years) (IQR) | 60 (51–67) |
Diabetes duration (y) (IQR) | 10 (5–16) |
Insulin use in the last 2 years (%) | 23 (6.6) |
HbAc (%) (IQR) | 7 (6.4–7.8) |
Micro-/macrovascular DM complications (n) (%) | |
Ischemic heart disease (IHD) | 80 (22.9) |
Cerebrovascular accident (CVA) | 28 (8.1) |
CKD/end-stage renal disease (ESRD) | 56 (16) |
Revascularization of any artery | 29 (8.3) |
Comorbidities (n) (%) | |
Hypertension (HTN) | 254 (72.6) |
Congestive heart failure (CHF) | 51 (14.6) |
Malignancy | 26 (7.4) |
Liver disease | 7 (2) |
Chronic obstructive pulmonary disease (COPD) | 43 (12.4) |
Chronic cognitive deficit | 23 (6.6) |
Regular medication (n) (%) | |
ACE-inhibitors/ARBS | 192 (55) |
Statins | 198 (56.6) |
Immunosuppressive drugs | 21 (6) |
In-hospital outcomes | |
ICU admission n (%) | 58 (16.4) |
In-hospital death n (%) | 63 (18.6) |
Hospital LOS, median (IQR) | 11 (7–17) |
ICU LOS, median (IQR) | 13 (10–20) |
COVID-19 Complications n (%) | |
Acute respiratory distress syndrome (ARDS) | 86 (24.3) |
Acute kidney injury (AKI) | 43 (12.1) |
Acute cardiac injury (ACI) | 31 (8.8) |
Acute liver injury | 28 (8) |
Shock | 28 (8) |
Bacterial superinfection | 84 (23.9) |
Thrombotic event | 34 (9.6) |
Hemodialysis | 5 (1.4) |
Diabetic ketoacidosis (DKA) | 4 (1.1) |
COVID-19 Treatment modalities (%) | |
Remdesivir | 194 (55.1) |
Corticosteroids | 303 (85.6) |
Antibiotics | 298 (84.4) |
Tocilizumab | 63 (18) |
Anakinra | 11 (3.1) |
Oxygen therapy | 321 (90.9) |
High flow nasal cannula (HFNC) | 31 (8.9) |
Non-invasive ventilation (NIV) | 93 (26.5) |
Type 2 DM chronic treatment regimen (%) | |
Antidiabetic tablets | 301 (86.2) |
Metformin | 147 (42.4) |
Sulfonylureas | 35 (10) |
Dipeptidyl peptidase 4 (DPP4) inhibitors | 134 (37.9) |
Glucagon-like peptide-1 receptor agonists (GLP1-RA) | 38 (11) |
Insulin | 73 (20.8) |
Insulin plus GLP1-RA | 14 (4) |
Sodium-glucose co-transporter-2 inhibitors (SGLT2i) | 52 (14.7) |
Population Characteristics | In-Hospital Death | ICU Admission | ARDS | ||||||
---|---|---|---|---|---|---|---|---|---|
No (n = 276) | Yes (n = 63) | p Value | No (n = 296) | Yes (n = 58) | p Value | No (n = 268) | Yes (n = 86) | p Value | |
Male sex, n (%) | 142 (51.4) | 35 (55.6) | 0.556 | 148 (50) | 40 (69) | 0.008 | 137 (51.1) | 51 (59.3) | 0.186 |
Age (y) | 69 (59–76) | 80 (70–84) | <0.001 | 71 (62–81) | 69 (59–77) | 0.193 | 69 (61–78) | 73 (62–82) | 0.15 |
Greek nationality (%) | 254 (92) | 62 (98.4) | 0.093 | 270 (91.2) | 56 (96.6) | 0.283 | 243 (90.7) | 83 (96.5) | 0.08 |
BMI (kg/m2) | 28.3 (26.5–32.3) | 27.7 (24–29.74) | <0.001 | 28.1 (26–31.8) | 29.3 (27.3–31.2) | 0.18 | 28.2 (16.2–31.9) | 28.55 (26.3–30.8) | 0.704 |
Tobacco use (categories) (%) | 0.021 | 0.046 | 0.219 | ||||||
Never | 132 (47.8) | 23 (36.5) | 137 (46.3) | 19 (32.8) | 121 (45.1) | 35 (40.7) | |||
Former | 88 (31.9) | 30 (47.6) | 94 (31.8) | 26 (44.8) | 84 (31.3) | 36 (41.9) | |||
Current | 42 (15.2) | 4 (6.3) | 37 (12.5) | 11 (19) | 37 (13.8) | 11 (12.8) | |||
Type 2 DM information | |||||||||
Age at time of DM diagnosis (y) | 58 (50–66) | 64 (58–75) | <0.001 | 60 (51–67) | 59 (51–70) | 0.786 | 59 (50–66) | 61 (54–70) | 0.3 |
Diabetes duration (y) | 9 (5–16) | 10 (6–19) | 0.276 | 10 (6–16) | 8 (5–11) | 0.022 | 10 (5–16) | 9 (6–15) | 0.256 |
Insulin w/in 2 years | 16 (5.9) | 7 (11.5) | 0.158 | 19 (6.6) | 4 (6.9) | 1 | 17 (6.5) | 6 (7.1) | 0.854 |
HbA1c (%) | 7 (6.4–7.8) | 7 (6.5–8.4) | 0.345 | 7 (6.4–7.8) | 7 (6.5–8) | 0.408 | 7 (6.4–7.8) | 7 (6.5–8) | 0.559 |
Micro/Macrovascular DM complications (%) | |||||||||
Ischemic heart disease (IHD) | 55 (20.3) | 24 (38.1) | 0.003 | 66 (22.7) | 14 (24.1) | 0.809 | 55 (20.9) | 25 (29.1) | 0.118 |
Cerebrovascular accident (CVA) | 14 (5.2) | 13 (21.7) | <0.001 | 26 (9) | 2 (3.6) | 0.280 | 19 (7.1) | 9 (10.5) | 0.277 |
CKD/end-stage renal disease (ESRD) | 35 (12.7) | 20 (32.8) | <0.001 | 48 (16.3) | 8 (14) | 0.665 | 39 (14.6) | 17 (20.2) | 0.219 |
Revascularization of any artery | 21 (7.7) | 6 (9.7) | 0.606 | 24 (8.2) | 5 (8.8) | 0.797 | 21 (7.9) | 8 (9.3) | 0.658 |
Comorbidities (%) | |||||||||
Hypertension (HTN) | 199 (72.9) | 46 (74.2) | 0.835 | 221 (75.4) | 33 (57.9) | 0.007 | 198 (74.7) | 56 (65.9) | 0.112 |
Congestive heart failure (CHF) | 35 (12.9) | 15 (24.2) | 0.024 | 46 (15.8) | 5 (8.8) | 0.172 | 38 (14.2) | 13 (15.3) | 0.838 |
Malignancy | 16 (5.9) | 9 (14.8) | 0.028 | 21 (7.2) | 5 (8.8) | 0.678 | 16 (6) | 10 (11.9) | 0.074 |
Liver disease | 6 (2.2) | 1 (1.6) | 1 | 5 (1.7) | 2 (3.6) | 0.317 | 5 (1.9) | 2 (2.3) | 0.774 |
Chronic obstructive pulmonary disease (COPD) | 33 (12.1) | 9 (15.3) | 0.519 | 35 (12) | 8 (14.3) | 0.639 | 30 (11.3) | 13 (15.1) | 0.276 |
Chronic cognitive deficit | 15 (5.5) | 8 (13.1) | 0.046 | 22 (7.5) | 1 (1.8) | 0.146 | 17 (6.4) | 6 (7) | 0.802 |
Regular medication (%) | |||||||||
ACEi/ARBs | 155 (56.8) | 32 (52.5) | 0.539 | 168 (57.5) | 24 (42.1) | 0.032 | 151 (57.2) | 41 (48.2) | 0.149 |
Statins | 158 (57.9) | 33 (53.2) | 0.504 | 169 (57.7) | 29 (50.9) | 0.343 | 152 (56.7) | 46 (54.1) | 0.6 |
Immunosuppressive drugs | 15 (5.5) | 6 (9.7) | 0.220 | 19 (6.5) | 2 (3.5) | 0.548 | 15 (5.7) | 6 (7.1) | 0.642 |
In-hospital outcomes (%) | |||||||||
ICU admission | 28 (10.1) | 27 (42.9) | <0.001 | 2 (0.7) | 56 (65.1) | <0.001 | |||
In-hospital death | 30 (10.1) | 27 (46.6) | <0.001 | 14 (5.5) | 49 (58.3) | <0.001 | |||
Hospital LOS, median (IQR) | 11 (7–17) | 13 (7–22) | 0.246 | 10 (6–15) | 23 (15–32) | <0.001 | 10 (6–15) | 17 (9–26) | <0.001 |
ICU LOS, median (IQR) | 14 (12–22) | 11 (8–18) | 0.031 | 0 | 13 (10–20) | 1 | 11 | 13 (10–21) | 0.544 |
COVID-19 Complications (%) | |||||||||
Acute respiratory distress syndrome (ARDS) | 35 (12.7) | 49 (77.8) | <0.001 | 30 (10.1) | 56 (96.6) | <0.001 | |||
Acute kidney injury (AKI) | 18 (6.5) | 21 (33.3) | <0.001 | 33 (11.1) | 10 (17.2) | 0.194 | 23 (8.6) | 20 (23.3) | <0.001 |
Acute cardiac injury (ACI) | 9 (3.3) | 22 (34.9) | <0.001 | 23 (7.8) | 8 (13.8) | 0.140 | 11 (4.1) | 20 (23.3) | <0.001 |
Acute liver injury | 17 (6.2) | 10 (16.1) | 0.017 | 15 (5.1) | 13 (22.4) | <0.001 | 12 (4.5) | 16 (18.8) | <0.001 |
Shock | 3 (1.1) | 25 (40.3) | <0.001 | 12 (4.1) | 16 (28.1) | <0.001 | 7 (2.6) | 21 (24.7) | <0.001 |
Bacterial superinfection | 47 (17) | 36 (57.1) | <0.001 | 48 (16.3) | 36 (62.1) | <0.001 | 36 (13.5) | 48 (55.8) | <0.001 |
Thrombotic event | 17 (6.2) | 16 (25.4) | <0.001 | 22 (7.4) | 12 (20.7) | 0.002 | 9 (7.1) | 15 (17.4) | 0.006 |
Hemodialysis | 2 (0.7) | 3 (4.8) | 0.047 | 2 (0.7) | 3 (5.2) | 0.034 | 2 (0.8) | 3 (3.5) | 0.097 |
Diabetic ketoacidosis (DKA) | 3 (1.1) | 1 (1.6) | 0.564 | 3 (1) | 1 (1.7) | 0.514 | 2 (0.7) | 2 (2.3) | 0.250 |
COVID-19 Treatment modalities (%) | |||||||||
Remdesivir | 149 (54.2) | 31 (49.2) | 0.551 | 159 (54.1) | 35 (60.3) | 0.381 | 146 (54.7) | 48 (56.5) | 0.773 |
Corticosteroids | 229 (83) | 60 (95.2) | 0.013 | 245 (82.8) | 58 (100) | <0.001 | 218 (81.3) | 85 (98.8) | <0.001 |
Antibiotics | 231 (84) | 63 (100) | <0.001 | 241 (81.7) | 57 (98.3) | 0.001 | 214 (80.1) | 84 (97.7) | <0.001 |
Tocilizumab | 45 (16.4) | 18 (28.6) | 0.023 | 40 (13.7) | 23 (40.4) | <0.001 | 32 (12) | 31 (36.9) | |
Anakinra | 11 (4) | 0 | 1 | 11 (3.8) | 0 | 1 | 11 (4.1) | 0 | |
Oxygen therapy | 249 (90.5) | 61 (96.8) | 0.103 | 264 (89.5) | 57 (98.3) | 0.033 | 236 (88.4) | 85 (98.8) | 0.003 |
High flow nasal cannula (HFNC) | 14 (5.2) | 15 (24.2) | <0.001 | 15 (5.1) | 16 (29.1) | <0.001 | 8 (3) | 23 (27.7) | <0.001 |
Non-invasive ventilation (NIV) | 73 (26.7) | 19 (30.2) | 0.583 | 80 (27.2) | 13 (22.8) | 0.49 | 66 (24.8) | 27 (31.8) | 0.206 |
Type 2 DM chronic treatment regimen (%) | |||||||||
Antidiabetic tablets | 238 (87.5) | 51 (82.3) | 0.275 | 250 (85.9) | 51 (87.9) | 0.683 | 224 (85.2) | 77 (89.5) | 0.308 |
Metformin | 123 (45.4) | 21 (34.4) | 0.119 | 119 (41) | 28 (49.1) | 0.259 | 111 (42.2) | 36 (42.9) | 0.916 |
Sulfonylureas | 27 (9.9) | 7 (11.3) | 0.749 | 29 (9.9) | 6 (10.5) | 0.891 | 26 (9.8) | 9 (10.6) | 0.843 |
Dipeptidyl peptidase 4 (DPP4) inhibitors | 99 (35.9) | 32 (50.8) | 0.028 | 105 (35.5) | 29 (50) | 0.037 | 91 (34) | 43 (50) | 0.008 |
Glucagon-like peptide-1 receptor agonists (GLP1-RA) | 34 (12.6) | 4 (6.5) | 0.171 | 33 (11.3) | 5 (8.9) | 0.597 | 31 (11.8) | 7 (8.3) | 0.378 |
Insulin | 58 (21.2) | 14 (22.2) | 0.865 | 63 (22.2) | 8 (13.8) | 0.150 | 59 (22.3) | 6 (7.1) | 0.235 |
Insulin plus GLP1-RA | 11 (4) | 2 (3.2) | 1 | 13 (4.4) | 1 (1.8) | 0.482 | 11 (4.2) | 3 (3.5) | 1 |
Sodium-glucose cotransporter-2 inhibitors (SGLT2i) | 46 (16.7) | 6 (9.7) | 0.168 | 45 (15.2) | 7 (12.3) | 0.569 | 40 (14.9) | 12 (14.1) | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinosoglou, K.; Schinas, G.; Bletsa, E.; Bristianou, M.; Lanaras, L.; Michailides, C.; Katsikas, T.; Barkas, F.; Liberopoulos, E.; Kotsis, V.; et al. COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study. Microorganisms 2023, 11, 1416. https://doi.org/10.3390/microorganisms11061416
Akinosoglou K, Schinas G, Bletsa E, Bristianou M, Lanaras L, Michailides C, Katsikas T, Barkas F, Liberopoulos E, Kotsis V, et al. COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study. Microorganisms. 2023; 11(6):1416. https://doi.org/10.3390/microorganisms11061416
Chicago/Turabian StyleAkinosoglou, Karolina, Georgios Schinas, Evanthia Bletsa, Magdaline Bristianou, Leonidas Lanaras, Charalambos Michailides, Theodoros Katsikas, Fotios Barkas, Evangelos Liberopoulos, Vasileios Kotsis, and et al. 2023. "COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study" Microorganisms 11, no. 6: 1416. https://doi.org/10.3390/microorganisms11061416
APA StyleAkinosoglou, K., Schinas, G., Bletsa, E., Bristianou, M., Lanaras, L., Michailides, C., Katsikas, T., Barkas, F., Liberopoulos, E., Kotsis, V., Tentolouris, K., Grigoropoulou, P., Frangou, A., Basoulis, D., Alexiou, Z., Daganou, M., Bostantzoglou, C., Dimakopoulou, V., Koutsoukou, A., ... Tentolouris, N. (2023). COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study. Microorganisms, 11(6), 1416. https://doi.org/10.3390/microorganisms11061416