Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Groups of Propolis and Sample Collection
2.3. Preparation of Propolis Extracts
2.4. Characterization of Propolis Samples
2.5. Determination of Total Polyphenols Content
2.6. Determination of Total Flavonoids, Flavone, and Flavolnol Content
2.7. Antibacterial Activity
2.7.1. Bacterial Strains
2.7.2. Antimicrobial Disc Susceptibility Test
2.7.3. Minimum Inhibitory Concentration (MICs) and Minimum Bactericidal Concentration (MBCs) Determination Assay
2.8. Data Analysis
3. Results
3.1. Physicochemical Characterization
3.2. Bioactive Compounds
3.3. Antibacterial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- Halagarda, M.; Wójciak, K.M. Health and safety aspects of traditional European meat products. A review. Meat Sci. 2022, 184, 108623. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Popova, M.; Trusheva, B. New emerging fields of application of propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Methods of analysis of honey. J. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Kaushal, N.; Singh, M.; Sangwan, R.S. Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res. Int. 2022, 157, 111442. [Google Scholar] [CrossRef]
- Grange, J.M.; Davey, R.W. Antibacterial Properties of Propolis (Bee Glue). J. R. Soc. Med. 1990, 83, 159–160. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Osés, S.M.; Pascual-Maté, A.; Fernández-Muiño, M.A.; López-Díaz, T.M.; Sancho, M. Bioactive properties of honey with propolis. Food Chem. 2016, 196, 1215–1223. [Google Scholar] [CrossRef]
- Menéndez, R.; Rendueles, E.; Sanz, J.J.; Capita, R.; García-Fernández, C. Behavior of Listeria monocytogenes in Sliced Ready-to-Eat Meat Products Packaged under Vacuum or Modified Atmosphere Conditions. J. Food Prot. 2015, 78, 1891–1895. [Google Scholar] [CrossRef]
- Özer, E.D. The effects of propolis and nisin on Listeria monocytogenes in contaminated ice cream. J. Food Process. Preserv. 2021, 45, e14598. [Google Scholar] [CrossRef]
- Miyague, L.; Macedo, R.E.; Meca, G.; Holley, R.A.; Luciano, F.B. Combination of phenolic acids and essential oils against Listeria monocytogenes. LWT-Food Sci. Technol. 2015, 64, 333–336. [Google Scholar] [CrossRef]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; Fernández-Muiño, M.A.; Sancho, M.T. Design of a food product composed of honey and propolis. J. Apic. Res. 2015, 54, 461–467. [Google Scholar] [CrossRef]
- Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021, 115, 297–306. [Google Scholar] [CrossRef]
- Wen, A.; Delaquis, P.; Stanich, K.; Toivonen, P. Antilisterial activity of selected phenolic acids. Food Microbiol. 2003, 20, 305–311. [Google Scholar] [CrossRef]
- Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial Activity of Some Plant Essential Oils Against Listeria monocytogenes. J. Food Prot. 1992, 55, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis extraction methods: A review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar-type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Alves, E.G.; Vinholis, A.H.C.; Casemiro, L.A.; Furtado, N.A.J.C.; Silva, M.L.A.E.; Cunha, W.R.; Martins, C.H.G. Estudo comparativo de técnicas de screening para avaliação da atividade anti-bacteriana de extratos brutos de espécies vegetais e de substâncias puras. Quím. Nova 2008, 31, 1224–1229. [Google Scholar] [CrossRef]
- de Juan, D.J.; Jorge, F.A.; Gómez, J.J.; Fernández, M.D.; González, R.C.; Calleja, C.A. Efecto Antimicrobiano de Extractos de Propóleos Sobre Listeria Spp. In Impulsando la Investigación y la Innovación: X Congreso Nacional CyTA/CESIA; Universidad de León: León, Spain, 2019. [Google Scholar]
- Falcão, S.I.; Tomás, A.; Vale, N.; Gomes, P.; Freire, C.; Vilas-Boas, M. Phenolic quantification and botanical origin of Portuguese propolis. Ind. Crops Prod. 2013, 49, 805–812. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Gutiérrez, A.L. Antioxidant Activity and Total Phenolics of Propolis from the Basque Country (Northeastern Spain). J. Am. Oil Chem. Soc. 2011, 88, 1387–1395. [Google Scholar] [CrossRef]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Garzoli, S.; Maggio, F.; Vinciguerra, V.; Rossi, C.; Donadu, M.G.; Serio, A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023, 28, 1380. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.S.; Cunha, A.; Cardoso, S.M.; Oliveira, R.; Almeida-Aguiar, C. Constancy of the bioactivities of propolis samples collected on the same apiary over four years. Food Res. Int. 2019, 119, 622–633. [Google Scholar] [CrossRef]
- Peixoto, M.; Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Antioxidant and antimicrobial activity of blends of propolis samples collected in different years. LWT 2021, 145, 111311. [Google Scholar] [CrossRef]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Gajger, I.T.; Vlainić, J. Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Cuesta-Rubio, O.; Hernández, I.M.; Fernández, M.C.; Rodríguez-Delgado, I.; De Oca Porto, R.M.; Piccinelli, A.L.; Celano, R.; Rastrelli, L. Chemical characterization and antioxidant potential of ecuadorian propolis. Phytochemistry 2022, 203, 113415. [Google Scholar] [CrossRef]
- Pereira, L.; Cunha, A.; Almeida-Aguiar, C. Portuguese propolis from Caramulo as a biocontrol agent of the apple blue mold. Food Control. 2022, 139, 109071. [Google Scholar] [CrossRef]
- Osés, S.M.; Pascual-Maté, A.; de la Fuente, D.; de Pablo, A.; Fernández-Muiño, M.A.; Sancho, M.T. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. NJAS Wagening. J. Life Sci. 2016, 78, 29–33. [Google Scholar] [CrossRef]
- Palomino, G.L.R.; García, P.C.M.; Gil, G.J.H.; Rojano, B.A.; Durango, R.D.L. Determination of phenolic content and evaluation of antioxidant activity of propolis from Antioquia (Colombia). Vitae 2009, 16, 388–395. [Google Scholar] [CrossRef]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical diversity and challenges in quality control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef]
- Trusheva, B.; Petkov, H.; Popova, M.; Dimitrova, L.; Zaharieva, M.; Tsvetkova, I.; Najdenski, H.; Bankova, V. “Green” Approach to Propolis Extraction: Natural Deep Eutectic Solvents. C. R. L’Acad. Bulg. Des Sci. 2019, 72. [Google Scholar] [CrossRef]
- Wu, B.; Liu, X.; Nakamoto, S.T.; Wall, M.; Li, Y. Antimicrobial Activity of Ohelo Berry (Vaccinium calycinum) Juice against Listeria monocytogenes and Its Potential for Milk Preservation. Microorganisms 2022, 10, 548. [Google Scholar] [CrossRef]
- Teixeira, É.W.; Message, D.; Negri, G.; Salatino, A.; Stringheta, P.C. Seasonal Variation, Chemical Composition and Antioxidant Activity of Brazilian Propolis Samples. Evid.-Based Complement. Altern. Med. 2010, 7, 307–315. [Google Scholar] [CrossRef]
- Ibrahim, M.E.E.-D.; Alqurashi, R.M. Anti-fungal and antioxidant properties of propolis (bee glue) extracts. Int. J. Food Microbiol. 2022, 361, 109463. [Google Scholar] [CrossRef]
- Afata, T.N.; Nemo, R.; Ishete, N.; Tucho, G.T.; Dekebo, A. Phytochemical investigation, physicochemical characterization, and antimicrobial activities of Ethiopian propolis. Arab. J. Chem. 2022, 15, 103931. [Google Scholar] [CrossRef]
- Hendi, N.; Naher, H.; Al-Charrakh, A. In Vitro Antibacterial and Antifungal Activity of Iraqi Propolis. J. Med. Plants Res. 2011, 5, 5058–5066. [Google Scholar]
- Vică, M.L.; Glevitzky, M.; Heghedűş-Mîndru, R.C.; Glevitzky, I.; Matei, H.V.; Balici, S.; Popa, M.; Teodoru, C.A. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. Int. J. Environ. Res. Public Health 2022, 19, 2640. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [Google Scholar] [CrossRef] [PubMed]
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Temiz, A.; Şener, A.; Tüylü, A.Ö.; Sorkun, K.; Salih, B. Antibacterial activity of bee propolis samples from different geographical regions of Turkey against two foodborne pathogens, Salmonella Enteritidis and Listeria monocytogenes. Turk. J. Biol. 2011, 35, 503–511. [Google Scholar] [CrossRef]
- Viera, V.; Piovesan, N.; Moro, K.I.; Rodrigues, A.S.; Scapin, G.; Da Rosa, C.S.; Kubota, E.H. Preparation and microbiological analysis of Tuscan sausage with added propolis extract. Food Sci. Technol. 2016, 36, 37–41. [Google Scholar] [CrossRef]
- Pedonese, F.; Verani, G.; Torracca, B.; Turchi, B.; Felicioli, A.; Nuvoloni, R. Effect of an Italian propolis on the growth of Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus in milk and whey cheese. Ital. J. Food Saf. 2019, 8, 8036. [Google Scholar] [CrossRef]
- Michailidis, G.F.; Thamnopoulos, I.-A.I.; Fletouris, D.J.; Angelidis, A.S. Synergistic, bacteriostatic effect of propolis and glycerol against Listeria monocytogenes in chocolate milk under refrigerated storage. Food Sci. Technol. Int. 2021, 27, 46–55. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Jácome, S.; Teixeira, P. Antimicrobial activity of ethanolic extract of propolis in “Alheira”, a fermented meat sausage. Cogent Food Agric. 2016, 2, 1125773. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
Zone Code | Geographical Origin | Propolis | RC | TPC (%PGE) | TFC (%QE) | TFFC (%GE) |
---|---|---|---|---|---|---|
I | Castilla y León and adjacent | 1 | 60.52 ± 2.66 | 55.60 ± 1.20 | 4.15 ± 0.43 | 4.98 ± 0.25 |
2 | 65.20 ± 2.89 | 60.72 ± 0.96 | 4.88 ± 0.09 | 5.26 ± 0.13 | ||
3 | 55.05 ± 1.89 | 50.04 ± 0.96 | 3.55 ± 0.14 | 5.53 ± 0.28 | ||
6 | 50.73 ± 6.20 | 29.66 ± 1.83 | 2.04 ± 0.05 | 4.55 ± 0.82 | ||
13 | 66.91 ± 5.25 | 33.70 ± 2.86 | 4.69 ± 0.14 | 4.39 ± 0.15 | ||
14 | 61.08 ± 3.78 | 29.50 ± 1.02 | 3.50 ± 0.04 | 3.70 ± 0.76 | ||
15 | 56.90 ± 1.33 | 33.09 ± 0.21 | 3.00 ± 0.03 | 3.35 ± 1.18 | ||
18 | 66.82 ± 1.69 | 34.60 ± 0.72 | 3.84 ± 0.08 | 3.52 ± 0.26 | ||
19 | 47.66 ± 1.46 | 42.13 ± 0.33 | 3.84 ± 0.55 | 4.34 ± 0.24 | ||
21 | 76.26 ± 1.80 | 56.94 ± 0.00 | 4.66 ± 0.45 | 4.17 ± 0.31 | ||
22 | 74.70 ± 0.86 | 71.64 ± 0.42 | 4.68 ± 0.02 | 4.10 ± 0.03 | ||
23 | 73.88 ± 1.05 | 39.31 ± 1.51 | 4.13 ± 0.63 | 4.20 ± 0.23 | ||
24 | 72.62 ± 1.73 | 37.31 ± 1.93 | 4.95 ± 0.36 | 4.33 ± 0.30 | ||
25 | 72.61 ± 5.08 | 45.14 ± 0.11 | 4.46 ± 0.27 | 4.36 ± 0.03 | ||
26 | 72.51 ± 1.56 | 36.85 ± 0.64 | 4.32 ± 0.26 | 4.18 ± 0.12 | ||
27 | 68.73 ± 1.22 | 46.74 ± 1.51 | 4.39 ± 0.37 | 4.03 ± 0.31 | ||
28 | 64.99 ± 2.44 | 38.63 ± 0.30 | 3.31 ± 0.01 | 3.78 ± 0.28 | ||
29 | 65.19 ± 5.10 | 31.66 ± 0.20 | 3.45 ± 0.36 | 3.79 ± 0.13 | ||
30 | 72.09 ± 5.55 | 29.40 ± 1.07 | 3.11 ± 0.25 | 3.90 ± 0.56 | ||
31 | 67.87 ± 1.70 | 31.31 ± 0.10 | 3.84 ± 0.08 | 4.13 ± 0.56 | ||
Mean And DS | 65.62 ± 8.11 | 41.80 ± 13.22 | 3.94 ± 0.74 | 4.23 ± 5.43 | ||
II | Cataluña | 11 | 73.79 ± 3.72 | 45.65 ± 1.10 | 3.83 ± 0.14 | 5.09 ± 0.76 |
20 | 66.86 ± 2.63 | 37.55 ± 0.96 | 3.59 ± 0.07 | 4.22 ± 0.18 | ||
Mean And DS | 70.33 ± 4.90 | 41.60 ± 5.73 | 3.71 ± 0.17 | 4.66 ± 0.62 | ||
III | Comunidad Foral Navarra | 4 | 82.52 ± 0.85 | 78.54 ± 0.80 | 4.94 ± 0.05 | 5.71 ± 1.07 |
12 | 65.73 ± 1.60 | 40.02 ± 0.82 | 4.85 ± 0.09 | 4.68 ± 1.34 | ||
Mean And DS | 74.13 ± 11.87 | 59.28 ± 27.24 | 4.90 ± 0.06 | 5.20 ± 0.73 | ||
IV | Galicia | 5 | 67.46 ± 3.05 | 39.32 ± 1.52 | 4.06 ± 0.05 | 5.20 ± 1.02 |
7 | 71.56 ± 4.41 | 42.91 ± 1.18 | 4.11 ± 0.02 | 4.00 ± 0.14 | ||
8 | 62.20 ± 3.22 | 41.94 ± 0.93 | 3.68 ± 0.02 | 4.46 ± 0.16 | ||
9 | 73.22 ± 1.54 | 69.50 ± 0.96 | 4.06 ± 0.04 | 5.06 ± 0.82 | ||
10 | 71.63 ± 9.17 | 39.88 ± 2.21 | 3.81 ± 0.14 | 5.48 ± 0.61 | ||
16 | 48.20 ± 0.99 | 26.65 ± 0.72 | 1.64 ± 0.04 | 2.54 ± 1.28 | ||
17 | 48.50 ± 4.51 | 29.00 ± 1.93 | 1.94 ± 0.31 | 3.30 ± 1.19 | ||
Mean And DS | 63.25 ± 2.00 | 41.31 ± 2.28 | 3.33 ± 0.19 | 4.29 ± 0.37 | ||
GLOBAL VALUES | 65.74 ± 8.89 | 42.72 ± 13.19 | 3.86 ± 0.81 | 4.36 ± 0.68 |
Strain | L. grayii | L. innocua | L. monocytogenes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diameter Inhibition | L931 | L30 | L910 | L10 | L51 | L52 | L74 | L75 | L934 | L935 | L4032 |
maximum (mm) | 28 | 25 | 27 | 38 | 26 | 28 | 26 | 28 | 25 | 24 | 30 |
minimum (mm) | 14 | 10 | 5 | 10 | 11 | 12 | 12 | 12 | 14 | 11 | 12 |
Zone Code | L. grayii | L. innocua | L. monocytogenes | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L931 | L30 | L910 | L10 | L51 | L52 | L74 | L75 | L934 | L935 | L4032 | ||||||||||||||
pH | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC a,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC b,c | MBC | MIC Means | |
I | 7.04 | 269.53 | 252.52 | 197.27 | 428.24 | 263.67 | 413.77 | 250.00 | 532.41 | 189.45 | 259.69 | 185.55 | 384.84 | 220.70 | 321.44 | 197.27 | 335.76 | 210.94 | 308.16 | 250.00 | 312.5 | 234.38 | 410.88 | 270.46 |
6.01 | 183.67 | 225.13 | 188.48 | 221.35 | 175.63 | 193.92 | 194.34 | 421.01 | 222.66 | 227.74 | 195.31 | 303.31 | 222.66 | 295.14 | 207.03 | 208.21 | 161.28 | 215.57 | 154.97 | 209.78 | 189.98 | 257.52 | 209.15 | |
5.01 | 119.14 | 154.30 | 121.09 | 127.97 | 143.03 | 190.25 | 130.86 | 224.25 | 161.13 | 211.95 | 154.30 | 186.69 | 160.16 | 184.70 | 167.97 | 168.95 | 152.57 | 161.06 | 115.23 | 137.35 | 125.00 | 147.16 | 144.53 | |
II | 7.04 | 425.00 | 468.75 | 468.75 | 937.50 | 468.75 | 937.50 | 468.75 | 781.25 | 312.50 | 468.75 | 468.75 | 625.00 | 468.75 | 625.00 | 625.00 | 625.00 | 390.63 | 468.75 | 468.75 | 625.00 | 468.75 | 468.75 | 476.56 |
6.01 | 321.50 | 395.31 | 234.38 | 312.50 | 321.50 | 395.31 | 234.38 | 312.50 | 273.44 | 332.03 | 312.50 | 468.75 | 390.63 | 434.38 | 390.63 | 412.50 | 223.88 | 234.38 | 238.88 | 390.63 | 280.19 | 234.38 | 300.25 | |
5.01 | 238.88 | 390.63 | 156.25 | 312.50 | 197.56 | 234.38 | 195.31 | 312.50 | 234.38 | 234.38 | 234.38 | 312.50 | 234.38 | 468.75 | 234.38 | 368.75 | 197.56 | 234.38 | 197.56 | 390.63 | 234.38 | 234.38 | 216.42 | |
III | 7.04 | 156.25 | 217.19 | 234.38 | 312.50 | 97.66 | 195.31 | 234.38 | 312.50 | 312.50 | 312.50 | 312.50 | 312.50 | 195.31 | 234.38 | 234.38 | 312.50 | 117.19 | 234.38 | 156.25 | 156.25 | 156.25 | 234.38 | 197.27 |
6.01 | 138.88 | 197.66 | 156.25 | 234.38 | 238.88 | 275.78 | 195.31 | 234.38 | 156.25 | 468.75 | 156.25 | 390.63 | 156.25 | 195.31 | 156.25 | 390.63 | 197.56 | 198.31 | 219.34 | 234.38 | 138.88 | 234.38 | 191.48 | |
5.01 | 78.13 | 117.19 | 117.19 | 117.19 | 58.59 | 117.19 | 156.25 | 156.25 | 78.13 | 78.13 | 78.13 | 78.13 | 117.19 | 117.19 | 117.19 | 156.25 | 58.59 | 117.19 | 58.59 | 78.13 | 58.59 | 178.13 | 97.66 | |
IV | 7.04 | 128.35 | 245.54 | 239.96 | 379.46 | 122.77 | 357.14 | 206.47 | 234.38 | 345.98 | 368.30 | 167.41 | 412.95 | 167.41 | 245.54 | 212.05 | 334.82 | 122.77 | 290.18 | 156.25 | 223.21 | 172.99 | 267.86 | 183.59 |
6.01 | 156.89 | 491.07 | 103.24 | 167.41 | 146.38 | 161.83 | 103.24 | 156.25 | 178.57 | 222.77 | 117.19 | 290.18 | 161.83 | 178.57 | 200.89 | 223.21 | 140.15 | 234.38 | 145.73 | 223.21 | 192.30 | 233.93 | 154.32 | |
5.01 | 122.77 | 200.45 | 106.03 | 172.99 | 167.41 | 167.41 | 103.24 | 122.77 | 128.35 | 156.03 | 117.19 | 200.89 | 133.93 | 136.03 | 111.61 | 189.73 | 100.45 | 183.71 | 106.03 | 118.13 | 119.98 | 194.87 | 123.11 | |
total | 7.04 | 274.67 | 292.09 | 294.22 | 241.97 | 289.02 | 289.67 | 297.43 | 296.28 | 232.47 | 266.26 | 253.23 | 267.16 | 253.49 | 274.89 | 289.02 | 296.28 | 192.34 | 266.26 | 276.04 | 288.89 | 250.19 | 274.89 | n/a |
6.01 | 229.78 | 166.41 | 165.31 | 212.09 | 212.92 | 212.51 | 173.29 | 174.00 | 190.57 | 183.02 | 233.14 | 182.29 | 233.35 | 178.55 | 212.92 | 174.00 | 175.06 | 183.02 | 178.57 | 212.16 | 229.85 | 178.55 | n/a | |
5.01 | 132.21 | 134.12 | 102.96 | 132.25 | 156.67 | 158.13 | 133.42 | 133.85 | 142.65 | 137.08 | 141.32 | 142.90 | 153.18 | 112.45 | 156.67 | 133.85 | 123.92 | 137.08 | 112.12 | 139.05 | 129.47 | 112.45 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendueles, E.; Mauriz, E.; Sanz-Gómez, J.; Adanero-Jorge, F.; García-Fernandez, C. Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains. Microorganisms 2023, 11, 1429. https://doi.org/10.3390/microorganisms11061429
Rendueles E, Mauriz E, Sanz-Gómez J, Adanero-Jorge F, García-Fernandez C. Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains. Microorganisms. 2023; 11(6):1429. https://doi.org/10.3390/microorganisms11061429
Chicago/Turabian StyleRendueles, Eugenia, Elba Mauriz, Javier Sanz-Gómez, Félix Adanero-Jorge, and Camino García-Fernandez. 2023. "Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains" Microorganisms 11, no. 6: 1429. https://doi.org/10.3390/microorganisms11061429
APA StyleRendueles, E., Mauriz, E., Sanz-Gómez, J., Adanero-Jorge, F., & García-Fernandez, C. (2023). Antimicrobial Activity of Spanish Propolis against Listeria monocytogenes and Other Listeria Strains. Microorganisms, 11(6), 1429. https://doi.org/10.3390/microorganisms11061429