Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity
Abstract
:1. The Adaptive Immune Response and the Maintenance of Tolerance to Self
2. Molecular Mimicry and Its Implication as a Mechanism of Parasite Escape from the Host Immune Response
3. Protein Identity Screening by Computational Analysis
4. Antigen Sharing and Host–Parasite Co-Evolution
5. Antigen Sharing and Its Relationship with Pathogenicity and Virulence
6. The Risk of Antigen Sharing to the Development of Autoimmunity
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease tolerance as a defense strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Restrepo-Jimenez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramirez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, W.; Mellins, E.D. TCR-like antibodies targeting autoantigen-mhc complexes: A mini-review. Front. Immunol. 2022, 13, 968432. [Google Scholar] [CrossRef]
- Cunha-Neto, E.; Teixeira, P.C.; Nogueira, L.G.; Kalil, J. Autoimmunity. Adv. Parasitol. 2011, 76, 129–152. [Google Scholar] [CrossRef]
- Miller, F.W. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 2023, 80, 102266. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Mondino, S.; Schmidt, S.; Buchrieser, C. Molecular Mimicry: A Paradigm of Host-Microbe Coevolution Illustrated by Legionella. mBio 2020, 11, e01201-20. [Google Scholar] [CrossRef]
- Kaplan, M.H.; Svec, K.H. Immunologic Relation of Streptococcal and Tissue Antigens. Iii. Presence in Human Sera of Streptococcal Antibody Cross-Reactive with Heart Tissue. Association with Streptococcal Infection, Rheumatic Fever, and Glomerulonephritis. J. Exp. Med. 1964, 119, 651–666. [Google Scholar] [CrossRef]
- Schwimmbeck, P.L.; Yu, D.T.; Oldstone, M.B. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter’s syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J. Exp. Med. 1987, 166, 173–181. [Google Scholar] [CrossRef]
- Iwai, L.K.; Juliano, M.A.; Juliano, L.; Kalil, J.; Cunha-Neto, E. T-cell molecular mimicry in Chagas disease: Identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J. Autoimmun. 2005, 24, 111–117. [Google Scholar] [CrossRef]
- Judkowski, V.A.; Allicotti, G.M.; Sarvetnick, N.; Pinilla, C. Peptides from common viral and bacterial pathogens can efficiently activate diabetogenic T-cells. Diabetes 2004, 53, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Wucherpfennig, K.W.; Strominger, J.L. Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein. Cell 1995, 80, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Yuki, N. Pathogenesis of Guillain-Barre and Miller Fisher syndromes subsequent to Campylobacter jejuni enteritis. Jpn. J. Infect. Dis. 1999, 52, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, A.; Previtali, S.C.; Kieseier, B.C.; Kiefer, R.; Comi, G.; Hartung, H.P. Autoimmunity in the peripheral nervous system. Crit. Rev. Neurobiol. 2003, 15, 1–39. [Google Scholar] [CrossRef]
- Gross, D.M.; Forsthuber, T.; Tary-Lehmann, M.; Etling, C.; Ito, K.; Nagy, Z.A.; Field, J.A.; Steere, A.C.; Huber, B.T. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 1998, 281, 703–706. [Google Scholar] [CrossRef]
- Acharya, S.; Shukla, S.; Mahajan, S.N.; Diwan, S.K. Molecular mimicry in human diseases—phenomena or epiphenomena? J. Assoc. Physicians India 2010, 58, 163–168. [Google Scholar]
- Kumagi, T.; Abe, M.; Ikeda, Y.; Hiasa, Y. Infection as a risk factor in the pathogenesis of primary biliary cirrhosis: Pros and cons. Dis. Markers 2010, 29, 313–321. [Google Scholar] [CrossRef]
- Levin, M.C.; Lee, S.M.; Kalume, F.; Morcos, Y.; Dohan, F.C., Jr.; Hasty, K.A.; Callaway, J.C.; Zunt, J.; Desiderio, D.; Stuart, J.M. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 2002, 8, 509–513. [Google Scholar] [CrossRef]
- Pedersen, N.S.; Orum, O.; Mouritsen, S. Enzyme-linked immunosorbent assay for detection of antibodies to the venereal disease research laboratory (VDRL) antigen in syphilis. J. Clin. Microbiol. 1987, 25, 1711–1716. [Google Scholar] [CrossRef]
- Daniel-Ribeiro, C.T.; Zanini, G. Autoimmunity and malaria: What are they doing together? Acta Trop. 2000, 76, 205–221. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef]
- Bretscher, P.A.; Al-Yassin, G.; Anderson, C.C. On T cell development, T cell signals, T cell specificity and sensitivity, and the autoimmunity facilitated by lymphopenia. Scand. J. Immunol. 2020, 91, e12888. [Google Scholar] [CrossRef] [PubMed]
- Damian, R.T. Molecular Mimicry: Antigen Sharing by Parasite and Host and Its Consequences. Am. Nat. 1964, 98, 129–149. [Google Scholar] [CrossRef]
- Elde, N.C.; Malik, H.S. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 2009, 7, 787–797. [Google Scholar] [CrossRef]
- Bates, H.W. The Naturalist on the River Amazons: A Record of Adventures, Habits of Animals, Sketches of Brazilian and Indian Life and Aspects of Nature under the Equator during Eleven Years of Travel; J. Murray: London, UK, 1863. [Google Scholar]
- Ben-Ismail, R.; Carme, B.; Niel, G.; Gentilini, M. Non-specific serological reactions with Echinococcus granulosus antigens: Role of anti-P1 antibodies. Am. J. Trop. Med. Hyg. 1980, 29, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ismail, R.; Carme, B.; Rouger, P.; Gentilini, M.; Salmon, C. Lewis blood group activity in Fasciola hepatica. Comptes Rendus Des Seances De L’academie Des Sci. Ser. D Sci. Nat. 1979, 289, 1323–1324. [Google Scholar]
- Capron, A.; Biguet, J.; Vernes, A.; Afchain, D. Antigenic structure of helminthes. Immunological aspects of the host-parasite relationship. Pathol. Biol. 1968, 16, 121–138. [Google Scholar]
- Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 2003, 3, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Champion, M.D. Host-pathogen o-methyltransferase similarity and its specific presence in highly virulent strains of Francisella tularensis suggests molecular mimicry. PLoS ONE 2011, 6, e20295. [Google Scholar] [CrossRef]
- Daniel Ribeiro, C.; Kalil, J.; Monjour, L.; Alfred, C.; Ploton, I.; Gentilini, M. Cross reactions between Plasmodium falciparum and mammalian tissue antigens detected by monoclonal antibodies. Ann. Trop. Med. Parasitol. 1984, 78, 75–76. [Google Scholar] [CrossRef]
- Daniel-Ribeiro, C.; Deslandes, D.C.; Ferreira-Da-Cruz Mde, F. Cross-reactions between idiotypes, Plasmodium falciparum derived peptides, dinitrophenyl and beta(2-->6) polyfructosan. J. Clin. Lab. Immunol. 1991, 36, 23–26. [Google Scholar] [PubMed]
- Duvaux-Miret, O.; Stefano, G.B.; Smith, E.M.; Dissous, C.; Capron, A. Immunosuppression in the definitive and intermediate hosts of the human parasite Schistosoma mansoni by release of immunoactive neuropeptides. Proc. Natl. Acad. Sci. USA 1992, 89, 778–781. [Google Scholar] [CrossRef]
- Finne, J.; Leinonen, M.; Makela, P.H. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 1983, 2, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, R.S.; Oldstone, M.B.; Wroblewska, Z.; Frankel, M.E.; Koprowski, H. Molecular mimicry in virus infection: Crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc. Natl. Acad. Sci. USA 1983, 80, 2346–2350. [Google Scholar] [CrossRef]
- Garg, A.; Kumari, B.; Kumar, R.; Kumar, M. miPepBase: A Database of Experimentally Verified Peptides Involved in Molecular Mimicry. Front. Microbiol. 2017, 8, 2053. [Google Scholar] [CrossRef] [PubMed]
- Hide, G.; Gray, A.; Harrison, C.M.; Tait, A. Identification of an epidermal growth factor receptor homologue in trypanosomes. Mol. Biochem. Parasitol. 1989, 36, 51–59. [Google Scholar] [CrossRef]
- Lasso, G.; Honig, B.; Shapira, S.D. A Sweep of Earth’s Virome Reveals Host-Guided Viral Protein Structural Mimicry and Points to Determinants of Human Disease. Cell Syst. 2021, 12, 82–91. [Google Scholar] [CrossRef]
- Robson, K.J.; Hall, J.R.; Jennings, M.W.; Harris, T.J.; Marsh, K.; Newbold, C.I.; Tate, V.E.; Weatherall, D.J. A highly conserved amino-acid sequence in thrombospondin, properdin and in proteins from sporozoites and blood stages of a human malaria parasite. Nature 1988, 335, 79–82. [Google Scholar] [CrossRef]
- Spiliotis, M.; Kroner, A.; Brehm, K. Identification, molecular characterization and expression of the gene encoding the epidermal growth factor receptor orthologue from the fox-tapeworm Echinococcus multilocularis. Gene 2003, 323, 57–65. [Google Scholar] [CrossRef]
- Arnaud, F.; Caporale, M.; Varela, M.; Biek, R.; Chessa, B.; Alberti, A.; Golder, M.; Mura, M.; Zhang, Y.P.; Yu, L.; et al. A paradigm for virus-host coevolution: Sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 2007, 3, e170. [Google Scholar] [CrossRef]
- Van Valen, L. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Carroll, L. Through the Looking-Glass, and What Alice Found There; First Avenue Editions: Minneapolis, MI, USA, 2014; 106p. [Google Scholar]
- Fitch, W.M.; Margoliash, E. Construction of phylogenetic trees. Science 1967, 155, 279–284. [Google Scholar] [CrossRef]
- Pearson, W.R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 2013, 42, 3.1.1–3.1.8. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, S.H. Whole-proteome tree of life suggests a deep burst of organism diversity. Proc. Natl. Acad. Sci. USA 2020, 117, 3678–3686. [Google Scholar] [CrossRef]
- Kanduc, D.; Shoenfeld, Y. On the molecular determinants of the SARS-CoV-2 attack. Clin. Immunol. 2020, 215, 108426. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D.; Stufano, A.; Lucchese, G.; Kusalik, A. Massive peptide sharing between viral and human proteomes. Peptides 2008, 29, 1755–1766. [Google Scholar] [CrossRef]
- Kusalik, A.; Bickis, M.; Lewis, C.; Li, Y.; Lucchese, G.; Marincola, F.M.; Kanduc, D. Widespread and ample peptide overlapping between HCV and Homo sapiens proteomes. Peptides 2007, 28, 1260–1267. [Google Scholar] [CrossRef]
- Ludin, P.; Nilsson, D.; Maser, P. Genome-wide identification of molecular mimicry candidates in parasites. PLoS ONE 2011, 6, e17546. [Google Scholar] [CrossRef]
- Maverakis, E.; van den Elzen, P.; Sercarz, E.E. Self-reactive T cells and degeneracy of T cell recognition: Evolving concepts-from sequence homology to shape mimicry and TCR flexibility. J. Autoimmun. 2001, 16, 201–209. [Google Scholar] [CrossRef]
- Trost, B.; Lucchese, G.; Stufano, A.; Bickis, M.; Kusalik, A.; Kanduc, D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010, 1, 328–334. [Google Scholar] [CrossRef]
- Wucherpfennig, K.W. Structural basis of molecular mimicry. J. Autoimmun. 2001, 16, 293–302. [Google Scholar] [CrossRef]
- Garabatos, N.; Santamaria, P. Gut Microbial Antigenic Mimicry in Autoimmunity. Front. Immunol. 2022, 13, 873607. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [PubMed]
- Wattam, A.R.; Abraham, D.; Dalay, O.; Disz, T.L.; Driscoll, T.; Gabbard, J.L.; Gillespie, J.J.; Gough, R.; Hix, D.; Kenyon, R.; et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014, 42, D581–D591. [Google Scholar] [CrossRef]
- Doxey, A.C.; McConkey, B.J. Prediction of molecular mimicry candidates in human pathogenic bacteria. Virulence 2013, 4, 453–466. [Google Scholar] [CrossRef]
- Drach, G.W.; Reed, W.P.; Williams, R.C., Jr. Antigens common to human and bacterial cells. II. E. coli 014, the common Enterobacteriaceae antigen, blood groups A and B, and E. coli 086. J. Lab. Clin. Med. 1972, 79, 38–46. [Google Scholar] [PubMed]
- Nyame, A.K.; Debose-Boyd, R.; Long, T.D.; Tsang, V.C.; Cummings, R.D. Expression of Lex antigen in Schistosoma japonicum and S.haematobium and immune responses to Lex in infected animals: Lack of Lex expression in other trematodes and nematodes. Glycobiology 1998, 8, 615–624. [Google Scholar] [CrossRef]
- Springer, G.F.; Horton, R.E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Investig. 1969, 48, 1280–1291. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef]
- Lucchese, G.; Stufano, A.; Trost, B.; Kusalik, A.; Kanduc, D. Peptidology: Short amino acid modules in cell biology and immunology. Amino Acids 2007, 33, 703–707. [Google Scholar] [CrossRef]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting flexible length linear B-cell epitopes. Comput. Syst. Bioinform. Conf. 2008, 7, 121–132. [Google Scholar]
- Sollner, J.; Grohmann, R.; Rapberger, R.; Perco, P.; Lukas, A.; Mayer, B. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res. 2008, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Bremel, R.D.; Homan, E.J. Extensive T-Cell Epitope Repertoire Sharing among Human Proteome, Gastrointestinal Microbiome, and Pathogenic Bacteria: Implications for the Definition of Self. Front. Immunol. 2015, 6, 538. [Google Scholar] [CrossRef]
- Tuller, T.; Chor, B.; Nelson, N. Forbidden penta-peptides. Protein Sci. 2007, 16, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.R.; Elkinton, J.S. Pathogenicity and virulence. J. Invertebr. Pathol. 2004, 85, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Ilan, D.I.; Fuxa, J.R.; Lacey, L.A.; Onstad, D.W.; Kaya, H.K. Definitions of pathogenicity and virulence in invertebrate pathology. J. Invertebr. Pathol. 2005, 88, 1–7. [Google Scholar] [CrossRef]
- Casadevall, A. The Pathogenic Potential of a Microbe. mSphere 2017, 2, e00015-17. [Google Scholar] [CrossRef]
- Delves, P.J.; Martin, S.J.; Burton, D.R.; Roitt, I.M. Roitt’s Essential Immunology; Wiley: New York, NY, USA, 2017. [Google Scholar]
- Hayter, S.M.; Cook, M.C. Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun. Rev. 2012, 11, 754–765. [Google Scholar] [CrossRef]
- Plotz, P.H. The autoantibody repertoire: Searching for order. Nat. Rev. Immunol. 2003, 3, 73–78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, Y.C.; Jurberg, A.D.; Daniel-Ribeiro, C.T. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms 2023, 11, 1472. https://doi.org/10.3390/microorganisms11061472
Martins YC, Jurberg AD, Daniel-Ribeiro CT. Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms. 2023; 11(6):1472. https://doi.org/10.3390/microorganisms11061472
Chicago/Turabian StyleMartins, Yuri Chaves, Arnon Dias Jurberg, and Cláudio Tadeu Daniel-Ribeiro. 2023. "Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity" Microorganisms 11, no. 6: 1472. https://doi.org/10.3390/microorganisms11061472
APA StyleMartins, Y. C., Jurberg, A. D., & Daniel-Ribeiro, C. T. (2023). Visiting Molecular Mimicry Once More: Pathogenicity, Virulence, and Autoimmunity. Microorganisms, 11(6), 1472. https://doi.org/10.3390/microorganisms11061472