Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities
Interventions, Soil Functions, and Microbial Community Assemblage
Conflicts of Interest
References
- Delgado-Baquerizo, M.; Trivedi, P.; Trivedi, C.; Eldridge, D.J.; Reich, P.B.; Jeffries, T.C.; Singh, B.K. Microbil richness and composition independently drive soil multifunctionality. Funct. Ecol. 2017, 31, 2330–2343. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Castro, A.F.; Raymundo, M.; Bimler, M.; Mayfield, M.M. Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness. Ecography 2022, e05844. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Gessner, M.O.; Beisner, B.E.; Messier, C.; Panquette, A.; Petermann, J.S.; Soininen, J.; Nock, C.A. Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends Ecol. Evol. 2021, 37, 2954. [Google Scholar] [CrossRef] [PubMed]
- Stamou, G.P.; Monokrousos, N.; Papapostolou, A.; Papatheodorou, E.M. Recurring heavy rainfall resulting in degraded-upgraded phases in soil microbial networks that are reflected in soil functioning. Soil Ecol. Lett. 2023, 5, 220161. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Zhang, P.; Xue, K.; Liang, Y.; Van Nostrand, J.D.; Yang, Y.; He, Z.; Wu, L.; Stahl, D.A.; et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl. Acad. Sci. USA 2014, 111, E836–E845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellend, M.; Srivastava, D.S.; Anderson, K.M.; Brown, C.D.; Jankowski, J.E.; Kleynhans, E.J.; Kraft, N.; Letaw, A.D.; Macdonald, A.A.M.; Maclean, J.E.; et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 2014, 123, 1420–1430. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Yang, Y.; Shang, P.; Zhang, W. Tillage Promotes the Migration and Coexistence of Bacteria Communities from an Agro-Pastoral Ecotone of Tibet. Microorganisms 2022, 10, 1206. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Fan, Y.; Babalola, O.O.; Zhang, X.; Yang, W. Legacy Effects of Biochar and Compost Addition on Arbuscular Mycorrhizal Fungal Community and Co-Occurrence Network in Black Soil. Microorganisms 2022, 10, 2137. [Google Scholar] [CrossRef]
- Wu, G.; Yu, F.; Yuan, M.; Wang, J.; Liu, C.; He, W.; Ge, Z.; Sun, Y.; Liu, Y. Responses of Rhizosphere Bacterial and Fungal Communities to the Long-Term Continuous Monoculture of Water Oat. Microorganisms 2022, 10, 2174. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, E.M.; Papakostas, S.; Stamou, G.P. Fire and Rhizosphere Effects on Bacterial Co-Occurrence Patterns. Microorganisms 2023, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Leite, M.F.A.; van den Broek, S.W.E.B.; Kuramae, E.E. Current Challenges and Pitfalls in Soil Metagenomics. Microorganisms 2022, 10, 1900. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; He, Y.; Zheng, Y.; Xu, Y.; Shi, S.; Fan, M.; Gu, S.; Li, G.; Tianli, W.; Wang, J.; et al. Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Front. Microbiol. 2023, 14, 1141720. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, M.; Wang, S.; Liu, P. A comparative study of network robustness measures. Front. Comput. Sci. 2017, 11, 568–584. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. mBio 2010, 1, e00169-10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, G.S.; Tan, S.Y.; Wu, J.; Holme, P. Trade-offs between robustness and small-world effect in complex networks. Sci Rep. 2016, 6, 37317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatheodorou, E.M. Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities. Microorganisms 2023, 11, 1502. https://doi.org/10.3390/microorganisms11061502
Papatheodorou EM. Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities. Microorganisms. 2023; 11(6):1502. https://doi.org/10.3390/microorganisms11061502
Chicago/Turabian StylePapatheodorou, Effimia M. 2023. "Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities" Microorganisms 11, no. 6: 1502. https://doi.org/10.3390/microorganisms11061502
APA StylePapatheodorou, E. M. (2023). Interventions Change Soil Functions and the Mechanisms Controlling the Structure of Soil Microbial Communities. Microorganisms, 11(6), 1502. https://doi.org/10.3390/microorganisms11061502