Microorganisms in Organic Food-Issues to Be Addressed
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Standards for Organic Food
3.2. Microorganisms in Organic Food
Pathogen | Animal Foods | Count [log10 cfu g/mL−1] or Prevalence [%] | Reference |
---|---|---|---|
Campylobacter | Raw chicken meat | 25% | [88] |
Salmonella | Pigs Eggs Dairy farms Poultry farms | 8.3% 2.6% 20% 2.9% | [88,89] |
Shiga toxin-producing Escherichia coli | Beef | 14.8% | [88,89] |
Listeria monocytogenes | Chicken meat Eggs | 25% 1.8% | [88] |
Staphylococcus aureus | Chicken farms Meat Poultry farms Dairy products Milk | 1.3% 16.7% 27.4% 31% 0.28–0.91 | [79,88] [77] |
Coliforms | Milk | 2.72–4,46 | [77] |
Yeasts and moulds | Milk | 2.46–3.70 | [77] |
Pathogen | Plant Foods | ||
Mesophilic bacteria | Organic vegetables | 6.6–7.2 | [80,81] |
Enterobacteriaceae | Lettuce High-protein bar | 2.5 0 2.81–3.32 | [80,81] |
Coliforms | Lettuce | 1.80 | [80,81] |
Escherichia coli | Organic vegetables | 1.00 | [80,81] |
Yeasts and moulds | Organic vegetables | 5.10 | [80,81] |
Beneficial Bacteria | Food Product | ||
Lactic acid bacteria with high potential for food application | Organic Whey | - | [82] |
3.3. Factors Affecting the Microbial Quality of Organic Food
3.4. Strategies for Improving Microbial Quality of Organic Food and Data Gaps
Production Stage/Sources | Strategies for Improving Microbial Quality | Reference |
---|---|---|
Farming | ||
Soil, faeces, irrigation water, reconstituted fungicides and insecticides, dust, insects, inadequately composted manure, wild or domestic animals, and human handling. | Good agricultural and handling practices relating to soil, faeces, manure, pests, and cleaning. Training of workers. Post-harvest microbial control. | [53,92,108,114,115] |
Harvesting | ||
Harvesting equipment, transport containers, insects, dust, and human handling. | Establishing rules of conduct for harvesting. Training of workers and using good agricultural and handling practices. Post-harvest microbial control. | [53,92,108,116] |
Processing | ||
Rinse water, ice, transport vehicles, and human handling. Improper temperature control, cross-contamination with contaminated surfaces or equipment, and lack of proper packaging or sealing. | Implementing effective washing and disinfection program refers to transporting vehicles, equipment, and production utensils to avoid cross-contamination with contaminated surfaces or equipment. Pest control. Applying proper personnel hygiene rules and training of personnel. Establishment of the right conditions for storage of raw materials and final product, daily temperature control, and processing methods. | [108,113,117,118] |
Wholesale storage | ||
Storage temperature, containers, dust, insects, human handling, storage duration etc. | Establishment of proper handling, storage, and transportation practices to maintain appropriate temperature and humidity levels. Regular cleaning and sanitizing of equipment and facilities to avoid cross-contamination between different food products, and implementing strict hygiene protocols for food handlers. | [108,113,117,118] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alotaibi, B.A.; Yoder, E.; Brennan, M.A.; Kassem, H.S. Perception of Organic Farmers towards Organic Agriculture and Role of Extension. Saudi J. Biol. Sci. 2021, 28, 2980–2986. [Google Scholar] [CrossRef] [PubMed]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A Meta-Analysis of the Differences in Environmental Impacts between Organic and Conventional Farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef] [Green Version]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, D.R.; Biklé, A. Soil Health and Nutrient Density: Beyond Organic vs. Conventional Farming. Front. Sustain. Food Syst. 2021, 5, 417. [Google Scholar] [CrossRef]
- Nechaev, V.; Mikhailushkin, P.; Alieva, A. Trends in Demand on the Organic Food Market in the European Countries. MATEC Web Conf. 2018, 212, 07008. [Google Scholar] [CrossRef]
- Giampieri, F.; Mazzoni, L.; Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs Conventional Plant-Based Foods: A Review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations, Organic Agriculture: What Is Organic Agriculture? Available online: https://www.fao.org/organicag/oa-faq/oa-faq1/en/ (accessed on 15 April 2023).
- Forman, J.; Silverstein, J.; Bhatia, J.J.S.; Abrams, S.A.; Corkins, M.R.; de Ferranti, S.D.; Golden, N.H.; Silverstein, J.; Paulson, J.A.; Brock-Utne, A.C.; et al. Organic Foods: Health and Environmental Advantages and Disadvantages. Pediatrics 2012, 130, e1406–e1415. [Google Scholar] [CrossRef] [Green Version]
- Bostan, I.; Onofrei, M.; Gavriluţă (Vatamanu), A.F.; Toderașcu, C.; Lazăr, C.M. An Integrated Approach to Current Trends in Organic Food in the EU. Foods 2019, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Willer, H.; Trávní, J. The World of Organic Agriculture Statistics and Emerging Trends 2021 FiBL & IFOAM—Organics International; Research Institute of Organic Agriculture FiBL and IFOAM – Organics International Ackerstrasse113, 5070 Frick Switzerland 2021. Available online: https://www.organic-world.net/yearbook/yearbook-2021.html (accessed on 20 April 2023).
- Reisch, L.; Eberle, U.; Lorek, S. Sustainable Food Consumption: An Overview of Contemporary Issues and Policies. Sustain. Sci. Pract. Policy 2013, 9, 7–25. [Google Scholar] [CrossRef]
- Soroka, A.; Mazurek-Kusiak, A.K.; Trafialek, J. Organic Food in the Diet of Residents of the Visegrad Group (V4) Countries—Reasons for and Barriers to Its Purchasing. Nutrients 2021, 13, 4351. [Google Scholar] [CrossRef] [PubMed]
- Brantsæter, A.L.; Ydersbond, T.A.; Hoppin, J.A.; Haugen, M.; Meltzer, H.M. Organic Food in the Diet: Exposure and Health Implications. Annu. Rev. Public Health 2017, 38, 295–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statista Europe: Per Capita Spending of Organic Food by Country 2021. Available online: https://www.statista.com/statistics/632792/per-capita-consumption-of-organic-food-european-union-eu/ (accessed on 15 April 2023).
- Organic Food in Asia-Pacific—Market Summary, Competitive Analysis and Forecast to 2025. Available online: https://www.marketresearch.com/MarketLine-v3883/Organic-Food-Asia-Pacific-Summary-14708584/ (accessed on 13 March 2023).
- Bhagavathula, A.S.; Vidyasagar, K.; Khubchandani, J. Organic Food Consumption and Risk of Obesity: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 231. [Google Scholar] [CrossRef]
- Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Organic Food and the Impact on Human Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Glibowski, P. Organic Food and Health. Rocz. Państw. Zakładu Hig. 2020, 71, 131–136. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher Antioxidant and Lower Cadmium Concentrations and Lower Incidence of Pesticide Residues in Organically Grown Crops: A Systematic Literature Review and Meta-Analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and n -3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta- and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas-Agustí, A.; Díaz, I.; Sárraga, C.; García-Regueiro, J.A.; Castellari, M. Nutritional Properties of Organic and Conventional Beef Meat at Retail. J. Sci. Food Agric. 2019, 99, 4218–4225. [Google Scholar] [CrossRef]
- Eyinade, G.A.; Mushunje, A.; Yusuf, S.F.G. The Willingness to Consume Organic Food: A Review. Food Agric. Immunol. 2021, 32, 78–104. [Google Scholar] [CrossRef]
- Aigner, A.; Wilken, R.; Geisendorf, S. The Effectiveness of Promotional Cues for Organic Products in the German Retail Market. Sustainability 2019, 11, 6986. [Google Scholar] [CrossRef] [Green Version]
- Grzybowska-Brzezinska, M.; Grzywinska-Rapca, M.; Zuchowski, I.; Borawski, P. Organic Food Attributes Determing Consumer Choices. Eur. Res. Stud. J. 2017, XX, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Gruszecka-Kosowska, A.; Baran, A. Concentration and Health Risk Assessment of Nitrates in Vegetables from Conventional and Organic Farming. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 727–740. [Google Scholar] [CrossRef]
- Nuñez de González, M.T.; Osburn, W.N.; Hardin, M.D.; Longnecker, M.; Garg, H.K.; Bryan, N.S.; Keeton, J.T. A Survey of Nitrate and Nitrite Concentrations in Conventional and Organic-Labeled Raw Vegetables at Retail. J. Food Sci. 2015, 80, C942–C949. [Google Scholar] [CrossRef] [PubMed]
- Baudry, J.; Assmann, K.E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon, D.; et al. Association of Frequency of Organic Food Consumption With Cancer Risk: Findings From the NutriNet-Santé Prospective Cohort Study. JAMA Intern. Med. 2018, 178, 1597–1606. [Google Scholar] [CrossRef] [Green Version]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on Fermented Foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Küçükgöz, K.; Trząskowska, M. Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients 2022, 14, 753. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chang, G.; Zhang, L. The Prevention Effect of Probiotics against Eczema in Children: An Update Systematic Review and Meta-Analysis. J. Dermatol. Treat. 2022, 33, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Colquitt, A.S.; Miles, E.A.; Calder, P.C. Do Probiotics in Pregnancy Reduce Allergies and Asthma in Infancy and Childhood? A Systematic Review. Nutrients 2022, 14, 1852. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Chapter 3—Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. In Innovative Technologies for Food Preservation; Barba, F.J., Sant’Ana, A.S., Orlien, V., Koubaa, M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 53–107. ISBN 978-0-12-811031-7. [Google Scholar]
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Teixeira, P. Organic versus Conventional Food: A Comparison Regarding Food Safety. Food Rev. Int. 2017, 33, 424–446. [Google Scholar] [CrossRef]
- USDA Agricultural Marketing Service, Organic Regulations: US Department of Agriculture. Available online: https://www.ams.usda.gov/rules-regulations/organic (accessed on 15 April 2023).
- Code of Federal Regulations—Organic Production and Handling Requirements. Available online: https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205/subpart-C (accessed on 15 April 2023).
- European Parliament, Council of the European Union. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2018; Volume 150. [Google Scholar]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchler, F.; Bowman, M.; Sweitzer, M.; Greene, C. Evidence from Retail Food Markets That Consumers Are Confused by Natural and Organic Food Labels. J. Consum. Policy 2020, 43, 379–395. [Google Scholar] [CrossRef]
- Britwum, K.; Bernard, J.C.; Albrecht, S.E. Does Importance Influence Confidence in Organic Food Attributes? Food Qual. Prefer. 2021, 87, 104056. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2020/464 of 26 March 2020 Laying down Certain Rules for the Application of Regulation (EU) 2018/848 of the European Parliament and of the Council as Regards the Documents Needed for the Retroactive Recognition of Periods for the Purpose of Conversion, the Production of Organic Products and Information to Be Provided by Member States. Available online: https://eur-lex.europa.eu/eli/reg_impl/2020/464/oj (accessed on 25 April 2023).
- Food and Agriculture Organization of the United Nations. Asia Regional Organic Standards (AROS). Available online: https://www.fao.org/family-farming/detail/en/c/282204/ (accessed on 15 April 2023).
- Food and Agriculture Organization of the United Nations; International Federation of Organic Agriculture Movements; United Nations Conference on Trade and Development. Asia Regional Organic Standard. Available online: https://profilpelajar.com/article/Asia_Regional_Organic_Standard (accessed on 15 April 2023).
- Tango, C.N.; Wei, S.; Khan, I.; Hussain, M.S.; Kounkeu, P.-F.N.; Park, J.; Kim, S.; Oh, D.H. Microbiological Quality and Safety of Fresh Fruits and Vegetables at Retail Levels in Korea. J. Food Sci. 2018, 83, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, A. Microbiological Quality of Selected Ready-to-Eat Leaf Vegetables, Sprouts and Non-Pasteurized Fresh Fruit-Vegetable Juices Including the Presence of Cronobacter Spp. Food Microbiol. 2017, 65, 221–230. [Google Scholar] [CrossRef]
- Lücke, F.-K. Microbiological Safety of Organic and Conventional Foods. In Food & Consumer Studies; Department of Nutritional, Fulda University of Applied Sciences: Foodbalt, Germany, 2017. [Google Scholar] [CrossRef]
- CDC Centers for Disease Control and Prevention. Foodborne Illnesses and Germs. Available online: https://www.cdc.gov/foodsafety/foodborne-germs.html (accessed on 15 April 2023).
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.-S.; Menon, S. Food Safety in the 21st Century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2005; Volume 338. [Google Scholar]
- European Parliament, Council of the European Union. Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2007; Volume 322. [Google Scholar]
- Wadamori, Y.; Gooneratne, R.; Hussain, M.A. Outbreaks and Factors Influencing Microbiological Contamination of Fresh Produce: Factors Affecting Microbiological Contamination. J. Sci. Food Agric. 2017, 97, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Nagy-Pércsi, K.; Fogarassy, C. Important Influencing and Decision Factors in Organic Food Purchasing in Hungary. Sustainability 2019, 11, 6075. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Hernández, G.B.; Navarro-Rico, J.; Gómez, P.A.; Otón, M.; Artés, F.; Artés-Hernández, F. Combined Sustainable Sanitising Treatments to Reduce Escherichia coli and Salmonella enteritidis Growth on Fresh-Cut Kailan-Hybrid Broccoli. Food Control 2015, 47, 312–317. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Outbreak of Salmonella Infections Linked to Pre-Cut Melons | Outbreak of Salmonella Infections Linked to Pre-Cut Melon | April 2019 | Salmonella | CDC. Available online: https://www.cdc.gov/salmonella/carrau-04-19/index.html (accessed on 15 April 2023).
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubreuil, J.D. Fruit Extracts to Control Pathogenic Escherichia coli: A Sweet Solution. Heliyon 2020, 6, e03410. [Google Scholar] [CrossRef] [PubMed]
- Luna-Guevara, J.J.; Arenas-Hernandez, M.M.P.; Martínez de la Peña, C.; Silva, J.L.; Luna-Guevara, M.L. The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int. J. Microbiol. 2019, 2019, 2894328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, B.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Biopreservation Approaches to Reduce Listeria Monocytogenes in Fresh Vegetables. Food Microbiol. 2020, 85, 103282. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Niemira, B.A.; Ukanalis, J. Nisin-Based Antimircobial Combination with Cold Plasma Treatment Inactivate Listeria Monocytogenes on Granny Smith Apples. LWT 2019, 104, 120–127. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority; ECDC European Centre for Disease Prevention and Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Heredia, N.; García, S. Animals as Sources of Food-Borne Pathogens: A Review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Park, B.; Seo, Y.; Eady, M.; Yoon, S.-C.; Hinton, A., Jr.; Lawrence, K.C.; Gamble, G. Classification of Salmonella serotypes with hyperspectral microscope imagery. Ann. Clin. Pathol. 2017, 5, 1108. [Google Scholar]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A. A Comprehensive Review of Non-Enterica Subspecies of Salmonella Enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Terajima, J.; Izumiya, H.; Hara-Kudo, Y.; Ohnishi, M. Shiga Toxin (Verotoxin)-Producing Escherichia coli and Foodborne Disease: A Review. Food Saf. 2017, 5, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.H.; Wiedmann, M. Characteristics and Distribution of Listeria Spp., Including Listeria Species Newly Described since 2009. Appl. Microbiol. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria Monocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Gholami-Shabani, M.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Food Microbiology: Application of Microorganisms in Food Industry. In Health Risks of Food Additives—Recent Developments and Trends in Food Sector [Working Title]; IntechOpen: London, UK, 2023. [Google Scholar]
- Fontes, A.L.; Pimentel, L.; Rodríguez-Alcalá, L.M.; Gomes, A. Effect of Pufa Substrates on Fatty Acid Profile of Bifidobacterium Breve Ncimb 702258 and CLA/CLNA Production in Commercial Semi-Skimmed Milk. Sci. Rep. 2018, 8, 15591. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.; Griffin, C.; O’Connor, P.M.; Serrano, L.M.; Meijer, W.C.; Hill, C.; Ross, R.P. A Multibacteriocin Cheese Starter System, Comprising Nisin and Lacticin 3147 in Lactococcus Lactis, in Combination with Plantaricin from Lactobacillus Plantarum. Appl. Environ. Microbiol. 2017, 83, e00799-17. [Google Scholar] [CrossRef] [Green Version]
- Pilevar, Z.; Hosseini, H. Effects of Starter Cultures on the Properties of Meat Products: A Review. Annu. Res. Rev. Biol. 2017, 17, 1–17. [Google Scholar] [CrossRef]
- Ozyurt, V.H.; Ötles, S. Properties of Probiotics and Encapsulated Probiotics in Food. Acta Sci. Pol. Technol. Aliment. 2014, 13, 413–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urkek, B.; Sengul, M.; Erkaya, T.; Aksakal, V. Prevalence and Comparing of Some Microbiological Properties, Somatic Cell Count and Antibiotic Residue of Organic and Conventional Raw Milk Produced in Turkey. Korean J. Food Sci. Anim. Resour. 2017, 37, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malissiova, E.; Papadopoulos, T.; Kyriazi, A.; Mparda, M.; Sakorafa, C.; Katsioulis, A.; Katsiaflaka, A.; Kyritsi, M.; Zdragas, A.; Hadjichristodoulou, C. Differences in Sheep and Goats Milk Microbiological Profile between Conventional and Organic Farming Systems in Greece. J. Dairy Res. 2017, 84, 206–213. [Google Scholar] [CrossRef]
- Saleh, M.M.; de Carvalho, A.M.; Andrade, N.M.d.; Fonseca, A.B.M.; Keller, L.A.M.; Duarte, M.C.K.H.; Franco, R.M. Bacteriological Quality and Antimicrobial Resistance of Staphylococcus Spp. and Escherichia coli Isolated from Organic and Conventional Fresh Cheese. Food Sci. Technol. 2023, 43, e54922. [Google Scholar] [CrossRef]
- Szczech, M.; Kowalska, B.; Smolińska, U.; Maciorowski, R.; Oskiera, M.; Michalska, A. Microbial Quality of Organic and Conventional Vegetables from Polish Farms. Int. J. Food Microbiol. 2018, 286, 155–161. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Rukayadi, Y.; Ahmad, S.H.; Wan Mohamed Radzi, C.W.J.; Thung, T.-Y.; Premarathne, J.M.K.J.K.; Chang, W.-S.; Loo, Y.-Y.; Tan, C.-W.; Ramzi, O.B.; et al. Comparison of the Microbiological Quality and Safety between Conventional and Organic Vegetables Sold in Malaysia. Front. Microbiol. 2017, 8, 1433. [Google Scholar] [CrossRef] [Green Version]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Organic Whey as a Source of Lactobacillus Strains with Selected Technological and Antimicrobial Properties. Int. J. Food Sci. Technol. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Wassermann, B.; Müller, H.; Berg, G. An Apple a Day: Which Bacteria Do We Eat with Organic and Conventional Apples? Front. Microbiol. 2019, 10, 1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Stasiak, M.; Oniszczuk, A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 3715. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.S.; Lee, H.-B.; Kim, Y.; Park, H.-Y. Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms 2020, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in Bioactive Protein and Vitamin Status of Milk from Certified Organic and Conventional Farms. Int. J. Dairy Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Sosnowski, M.; Osek, J. Microbiological Safety of Food of Animal Origin from Organic Farms. J. Vet. Res. 2021, 65, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Nazareth, J.; Shaw, A.; Delate, K.; Turnbull, R. Food Safety Considerations in Integrated Organic Crop–Livestock Systems: Prevalence of Salmonella Spp. and E. coli O157:H7 in Organically Raised Cattle and Organic Feed. Renew. Agric. Food Syst. 2021, 36, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Sagoo, S.K.; Little, C.L.; Mitchell, R.T. The Microbiological Examination of Ready-to-Eat Organic Vegetables from Retail Establishments in the United Kingdom. Lett. Appl. Microbiol. 2001, 33, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, M.P.; Erickson, M.C. Summer Meeting 2007 the Problems with Fresh Produce: An Overview. J. Appl. Microbiol. 2008, 105, 317–330. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors Influencing the Microbial Safety of Fresh Produce: A Review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Begum, J.; Nooruzzaman, M.; Modak, M.; Khanam, D.; Hossain, I.; Hasnat, A.; Kabiraj, C.; Chowdhury, E. Poultry Waste Management Practices in Bangladesh: Farmer’s Perceptions, and Food and Environmental Hazards. J. Adv. Vet. Anim. Res. 2023, 10, 72. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J.; Montanarella, L.; Evanylo, G. The Challenge for the Soil Science Community to Contribute to the Implementation of the UN Sustainable Development Goals. Soil Use Manag. 2019, 35, 538–546. [Google Scholar] [CrossRef]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Allam, M.; Bazok, R.; Bordewick-Dell, U.; Czarniecka-Skubina, E.; Kazimierczak, R.; Laikoja, K.; Luik, A.; Fuka, M.M.; Muleo, R.; Peetsmann, E.; et al. Assistance Needed for Increasing Knowledge of HACCP Food Safety Principles for Organic Sector in Selected EU Countries. Sustainability 2023, 15, 6605. [Google Scholar] [CrossRef]
- Pereira, N.; Franceschini, S.; Priore, S. Food Quality According to the Production System and Its Relationship with Food and Nutritional Security: A Systematic Review. Saúde E Soc. 2020, 29, e200031. [Google Scholar] [CrossRef]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today’s World. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, P.; Torjusen, H.; Wyss, G.S.; Brandt, K. Milk Production Control of Quality and Safety in Organic Production Chains; FiBL: Newcastle upon Tyne, UK, 2015. [Google Scholar] [CrossRef]
- Fadiji, T.; Rashvand, M.; Daramola, M.O.; Iwarere, S.A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 11, 590. [Google Scholar] [CrossRef]
- Kilic, B.; Cubero Dudinskaya, E.; Proi, M.; Naspetti, S.; Zanoli, R. Are They Careful Enough? Testing Consumers’ Perception of Alternative Processing Technologies on the Quality of Organic Food. Nutrients 2021, 13, 2922. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.; Benlloch-Tinoco, M.; Rodrigo, D.; Martínez-Navarrete, N. Impact of Microwave Processing on Nutritional, Sensory, and Other Quality Attributes. In The Microwave Processing of Foods, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 65–99. ISBN 978-0-08-100528-6. [Google Scholar]
- The Importance of Food Naturalness for Consumers: Results of a Systematic Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S092422441730122X (accessed on 28 April 2023).
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Rajauria, G.; O’Donnell, C.P.; Tiwari, B.K. Emerging Food Processing Technologies and Factors Impacting Their Industrial Adoption. Crit. Rev. Food Sci. Nutr. 2019, 59, 3082–3101. [Google Scholar] [CrossRef]
- Trząskowska, M.; Dai, Y.; Delaquis, P.; Wang, S. Pathogen Reduction on Mung Bean Reduction of Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes on Mung Bean Using Combined Thermal and Chemical Treatments with Acetic Acid and Hydrogen Peroxide. Food Microbiol. 2018, 76, 62–68. [Google Scholar] [CrossRef]
- Beuchat, L.R. Ecological Factors Influencing Survival and Growth of Human Pathogens on Raw Fruits and Vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Maffei, D.F.; Batalha, E.Y.; Landgraf, M.; Schaffner, D.W.; Franco, B.D.G.M. Microbiology of Organic and Conventionally Grown Fresh Produce. Braz. J. Microbiol. 2016, 47, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Trząskowska, M.; Neffe-Skocińska, K.; Okoń, A.; Zielińska, D.; Szydłowska, A.; Łepecka, A.; Kołożyn-Krajewska, D. Safety Assessment of Organic High-Protein Bars during Storage at Ambient and Refrigerated Temperatures. Appl. Sci. 2022, 12, 8454. [Google Scholar] [CrossRef]
- Gomiero, T. Food Quality Assessment in Organic vs. Conventional Agricultural Produce: Findings and Issues. Appl. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Szydłowska, A.; Zielińska, D.; Trząskowska, M.; Neffe-Skocińska, K.; Łepecka, A.; Okoń, A.; Kołożyn-Krajewska, D. Development of Ready-to-Eat Organic Protein Snack Bars: Assessment of Selected Changes of Physicochemical Quality Parameters and Antioxidant Activity Changes during Storage. Foods 2022, 11, 3631. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2004; Volume 139. [Google Scholar]
- Qadri, O.S.; Yousuf, B.; Srivastava, A.K. Fresh-Cut Fruits and Vegetables: Critical Factors Influencing Microbiology and Novel Approaches to Prevent Microbial Risks—A Review. Cogent Food Agric. 2015, 1, 1121606. [Google Scholar] [CrossRef]
- Murray, K.; Wu, F.; Shi, J.; Jun Xue, S.; Warriner, K. Challenges in the Microbiological Food Safety of Fresh Produce: Limitations of Post-Harvest Washing and the Need for Alternative Interventions. Food Qual. Saf. 2017, 1, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial Contamination of Fresh Produce: What, Where, and How? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Whitehouse, C.A.; Li, B. Presence and Persistence of Salmonella in Water: The Impact on Microbial Quality of Water and Food Safety. Front. Public Health 2018, 6, 159. [Google Scholar] [CrossRef]
- Yar, D.D.; Jimah Kwenin, W.K.; Kwame Zanu, W.; Iddrisu Balali, G.; Kwame Adepa, E.; Francis, G. Microbial Quality of Frozen Chicken Parts from Three Import Countries into the Kumasi Metropolis of Ghana. Microbiol. Res. J. Int. 2021, 31, 43–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murali, A.P.; Trząskowska, M.; Trafialek, J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms 2023, 11, 1557. https://doi.org/10.3390/microorganisms11061557
Murali AP, Trząskowska M, Trafialek J. Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms. 2023; 11(6):1557. https://doi.org/10.3390/microorganisms11061557
Chicago/Turabian StyleMurali, Aparna P., Monika Trząskowska, and Joanna Trafialek. 2023. "Microorganisms in Organic Food-Issues to Be Addressed" Microorganisms 11, no. 6: 1557. https://doi.org/10.3390/microorganisms11061557
APA StyleMurali, A. P., Trząskowska, M., & Trafialek, J. (2023). Microorganisms in Organic Food-Issues to Be Addressed. Microorganisms, 11(6), 1557. https://doi.org/10.3390/microorganisms11061557