Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Eligibility Criteria
- Viral, fungal, and immunological biomarkers;
- Disease other than CRC;
- Inflammatory bowel disease (IBD)-related CRC or CRC as part of a syndrome;
- In vitro or animal studies;
- No full text available;
- Case report or case series;
- Questionnaire based study; computer simulations;
- Review or meta-analysis;
- Drug impact on the gastrointestinal microbiome;
- No data of interest for the current review;
- Only precancerous lesions: complex adenoma, high-grade dysplasia, and carcinoma in situ (CIS);
- Immunological pathways to cancer progression;
- Biomarkers assessed after surgical treatment.
2.4. Data Extraction
2.5. Comparison with Other Groups
2.6. Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias and Applicability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Cancer Research Fund International. Colorectal Cancer Statistics. 2022. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (accessed on 8 March 2023).
- O’Connell, J.B.; Maggard, M.A.; Ko, C.Y. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J. Natl. Cancer Inst. 2004, 96, 1420–1425. [Google Scholar] [CrossRef]
- Niedermaier, T.; Tikk, K.; Gies, A.; Bieck, S.; Brenner, H. Sensitivity of Fecal Immunochemical Test for Colorectal Cancer Detection Differs according to Stage and Location. Clin. Gastroenterol. Hepatol. 2020, 18, 2920–2928.e6. [Google Scholar] [CrossRef]
- Tinmouth, J.; Lansdorp-Vogelaar, I.; Allison, J.E. Faecal immunochemical tests versus guaiac faecal occult blood tests: What clinicians and colorectal cancer screening programme organisers need to know. Gut 2015, 64, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Zwezerijnen-Jiwa, F.H.; Sivov, H.; Paizs, P.; Zafeiropoulou, K.; Kinross, J. A systematic review of microbiome-derived biomarkers for early colorectal cancer detection. Neoplasia 2023, 36, 100868. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and Bacteria cells in the body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Dzutsev, A.; Goldszmid, R.S.; Viaud, S.; Zitvogel, L.; Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 2015, 45, 17–31. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef] [Green Version]
- Tjalsma, H.; Boleij, A.; Marchesi, J.R.; Dutilh, B.E. A bacterial driver–passenger model for colorectal cancer: Beyond the usual suspects. Nat. Rev. Microbiol. 2012, 10, 575–582. [Google Scholar] [CrossRef]
- Sears, C.L.; Pardoll, D.M. Perspective: Alpha-bugs, their microbial partners, and the link to Colon Cancer. J. Infect. Dis. 2011, 203, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segata, N.; Haake, S.K.; Mannon, P.; Lemon, K.P.; Waldron, L.; Gevers, D.; Huttenhower, C.; Izard, J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012, 13, R42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poutahidis, T.; Erdman, S.E. Commensal bacteria modulate the tumor microenvironment. Cancer Lett. 2016, 380, 356–358. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κb, and up-regulating expression of microRNA-21. Gastroenterology 2017, 152, 85166.e24. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Friesen, L.; Park, J.; Kim, H.M.; Kim, C.H. Microbial metabolites, short-chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice. Eur. J. Immunol. 2018, 48, 1235–1247. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Chan, A.T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 2019, 17, 275–289. [Google Scholar] [CrossRef]
- Anand, S.; Kaur, H.; Mande, S.S. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol. 2016, 7, 1945. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, S.J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, P.; Matamoros, S.; Montassier, E.; Le Vacon, F.; Potel, G.; Soueidan, A.; Jordana, F.; de la Crochetiere, M.-F. The oral cavity microbiota: Between health, oral disease, and cancers of the aerodigestive tract. Can. J. Microbiol. 2017, 63, 475–492. [Google Scholar] [CrossRef] [Green Version]
- Hayes, R.B.; Ahn, J.; Fan, X.; Peters, B.A.; Ma, Y.; Yang, L.; Agalliu, I.; Burk, R.D.; Ganly, I.; Purdue, M.P. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018, 4, 358–365. [Google Scholar] [CrossRef]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, S.; Nagao-Kitamoto, H.; Hein, R.; Schmidt, T.M.; Kamada, N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res. 2020, 99, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Kanno, S.; Nosho, K.; Sukawa, Y.; Mitsuhashi, K.; Kurihara, H.; Igarashi, H.; Takahashi, T.; Tachibana, M.; Takahashi, H. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer 2015, 137, 1258–1268. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; the QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Review Manager (RevMan). Computer Program, Version 5.4; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Loftus, M.; Hassouneh, S.A.; Yooseph, S. Bacterial community structure alterations within the colorectal cancer gut microbiome. BMC Microbiol. 2021, 21, 98. [Google Scholar] [CrossRef]
- Rezasoltani, S.; Aghdaei, H.A.; Jasemi, S.; Gazouli, M.; Dovrolis, N.; Sadeghi, A.; Schlüter, H.; Zali, M.R.; Sechi, L.A.; Feizabadi, M.M. Oral Microbiota as Novel Biomarkers for Colorectal Cancer Screening. Cancers 2022, 15, 192. [Google Scholar] [CrossRef]
- Flemer, B.; Warren, R.D.; Barrett, M.P.; Cisek, K.; Das, A.; Jeffery, I.B.; Hurley, E.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018, 67, 1454–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchino, Y.; Goto, Y.; Konishi, Y.; Tanabe, K.; Toda, H.; Wada, M.; Kita, Y.; Beppu, M.; Mori, S.; Hijioka, H.; et al. Colorectal Cancer Patients Have Four Specific Bacterial Species in Oral and Gut Microbiota in Common-A Metagenomic Comparison with Healthy Subjects. Cancers 2021, 13, 3332. [Google Scholar] [CrossRef]
- Russo, E.; Bacci, G.; Chiellini, C.; Fagorzi, C.; Niccolai, E.; Taddei, A.; Ricci, F.; Ringressi, M.N.; Borrelli, R.; Melli, F.; et al. Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study. Front. Microbiol. 2018, 8, 2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guven, D.C.; Dizdar, O.; Alp, A.; Akdoğan Kittana, F.N.; Karakoc, D.; Hamaloglu, E.; Lacin, S.; Karakas, Y.; Kilickap, S.; Hayran, M.; et al. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark. Med. 2019, 13, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kong, C.; Yang, Y.; Cai, S.; Li, X.; Cai, G.; Ma, Y. Human oral microbiome dysbiosis as a novel non-invasive biomarker in detection of colorectal cancer. Theranostics 2020, 10, 11595–11606. [Google Scholar] [CrossRef]
- Zhang, X.T.; Zhang, Y.; Gui, X.; Zhang, Y.; Zhang, Z.; Zhang, X.; Chen, W.; Zhang, X.; Wang, Y.; Zhang, M.; et al. Salivary Fusobacterium Nucleatum Serves as a Potential Biomarker for the Diagnosis and Prognosis of Colorectal Cancer. Iscience 2022, 25, 104203. [Google Scholar] [CrossRef]
- Tran, H.N.H.; Thu, T.N.H.; Nguyen, P.H.; Vo, C.N.; Doan, K.V.; Ngoc Minh, C.N.; Nguyen, N.T.; Duc Ta, V.N.; Vu, K.A.; Hua, T.D. Tumour microbiomes and Fusobacterium genomics in Vietnamese colorectal cancer patients. NPJ Biofilms Microbiomes 2022, 8, 87. [Google Scholar] [CrossRef]
- Nosho, K.; Sukawa, Y.; Adachi, Y.; Ito, M.; Mitsuhashi, K.; Kurihara, H.; Kanno, S.; Yamamoto, I.; Ishigami, K.; Igarashi, H.; et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J. Gastroenterol. 2016, 22, 557–566. [Google Scholar] [CrossRef]
- Pignatelli, P.; Iezzi, L.; Pennese, M.; Raimondi, P.; Cichella, A.; Bondi, D.; Grande, R.; Cotellese, R.; Di Bartolomeo, N.; Innocenti, P.; et al. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers 2021, 13, 1032. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Qian, Y.; Xie, Y.H.; Jiang, S.S.; Kang, Z.R.; Chen, Y.X.; Chen, Z.F.; Fang, J.Y. Alterations in the oral and gut microbiome of colorectal cancer patients and association with host clinical factors. Int. J. Cancer 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Q.; Shu, X.O.; Steinwandel, M.D.; Blot, W.J.; Zheng, W.; Long, J. Prospective study of oral microbiome and colorectal cancer risk in low-income and African American populations. Int. J. Cancer 2019, 144, 2381–2389. [Google Scholar] [CrossRef]
- Idrissi Janati, A.; Karp, I.; Von Renteln, D.; Bouin, M.; Liu, Y.; Tran, S.D.; Emami, E. Investigation of Fusobacterium Nucleatum in saliva and colorectal mucosa: A pilot study. Sci. Rep. 2022, 12, 5622. [Google Scholar] [CrossRef]
- Pallag, A.; Rosca, E.; Tit, D.M.; Mutiu, G.; Bungau, S.G.; Pop, O.L. Monitoring the effects of treatment in colon cancer cells using immunohistochemical and histoenzymatic techniques. Rom. J. Morphol. Embriol. 2015, 56, 1103–1109. [Google Scholar]
- Ghitea, T.C.; Vlad, S.; Birle, D.; Tit, D.M.; Lazar, L.; Nistor-Cseppento, C.; Behl, T.; Bungau, S. The influence of diet therapeutic intervention on the sarcopenic index of patients with metabolic syndrome. Acta Endocrinol. 2020, XVI, 470–478. [Google Scholar] [CrossRef]
- Negrut, N.; Khan, S.A.; Bungau, S.; Zaha, C.; Corb Aron, R.A.; Bratu, O.; Diaconu, C.C.; Ionita-Radu, F. Diagnostic challenges in gastrointestinal infections. Rom. J. Mil. Med. 2020, 123, 83–90. [Google Scholar] [CrossRef]
- Zaha, D.C.; Bungau, S.; Uivarosan, D.; Tit, D.M.; Maghiar, T.A.; Maghiar, O.; Pantis, C.; Fratila, O.; Rus, M.; Vesa, C.M. Antibiotic consumption and microbiological epidemiology in surgery departments: Results from a single study center. Antibiotics 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaha, D.C.; Bungau, S.; Aleya, S.; Tit, D.M.; Vesa, C.M.; Popa, A.R.; Pantis, C.; Maghiar, O.A.; Bratu, O.G.; Furau, C.; et al. What antibiotics for what pathogens? The sensitivity spectrum of isolated strains in an intensive care unit. Sci. Total Environ. 2019, 687, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Koliarakis, I.; Messaritakis, I.; Nikolouzakis, T.K.; Hamilos, G.; Souglakos, J.; Tsiaoussis, J. Oral bacteria and intestinal dysbiosis in colorectal cancer. Int. J. Mol. Sci. 2019, 20, 4146. [Google Scholar] [CrossRef] [Green Version]
Author | Ref. Nr. | Year | Country | Sample | Participants | Nr. CRC/CRA/HC |
---|---|---|---|---|---|---|
Zhang S. et al. | [37] | 2020 | China | S | 253 | 161/34/58 |
Loftus M. et al. | [31] | 2021 | USA | F | 252 | 74/N/178 |
Rezasoltani S. et al. | [32] | 2022 | Iran | S/F | 40 | Not Specified |
Flemer B. et al. | [33] | 2017 | Ireland | S/CM/F | 234 | 99/32/103 |
Wang Y. et al. | [42] | 2021 | China | S/CM/F | 60 | 30/N/30 |
Yang Y. et al. | [43] | 2019 | USA | S | 692 | 231/N/461 |
Idrissi J. et al. | [44] | 2022 | Canada | S/CM | 43 | 22/N/21 |
Nosho K. et al. | [40] | 2016 | Japan | CM | 511 | 511/0/0 |
Uchino Y. et al. | [34] | 2021 | Japan | S/F | 103 | 52/N/51 |
Russo E. et al. | [35] | 2018 | Italy | S/CM/F | 20 | 10/N/10 |
Pignatelli P. et al. | [41] | 2021 | Italy | S/CM | 36 | 36/N/N |
Tran H. et al. | [39] | 2022 | Vietnam | S/CM | 63 | 42/21/N |
Zhang X. et al. | [38] | 2022 | China | S | 324 | 207/43/41/ HYP 33 |
Guven D. et al. | [36] | 2019 | Turkey | S | 148 | 71/N/77 |
Author | Ref. Nr. | Stage of Disease | Nr./Stage (0/I/II/III/IV) | Age Median CRC/CRA/HC | Gender Male % CRC/CRA/HC | Gender—p Value |
---|---|---|---|---|---|---|
Zhang S. et al. | [37] | I,II,III,IV | 0/24/66/60/11 | 59.2/51.8/50.7 | 67/59/53 | 0.192 |
Loftus M. et al. | [31] | III,IV | 0/0/0/52/22 | 61/N/62 | 58/N/56 | - |
Rezasoltani S. et al. | [32] | 0,I | Not mentioned | age 50 or above | not specified | - |
Flemer B. et al. | [33] | I,II,III,IV | Cannot be calculated on SF | 66/65.3/56.2 | 61/83/66.4 | - |
Wang Y. et al. | [42] | Not mentioned | Not mentioned | 63.9/N/52.17 | 17.56/N/15.5 | 0.605 |
Yang Y. et al. | [43] | Not mentioned | Not mentioned | 50–59 (42%)/N/50–59 (40%) | 40.26/N/40.13 | 1.0 |
Idrissi J. et al. | [44] | Any | Not mentioned | 63.9/N/60.4 | 82/N/48 | - |
Nosho K. et al. | [40] | I,II,III,IV | 0/56/160/235/60 | 67.1/N/N | 56/N/N | 0.075 |
Uchino Y. et al. | [34] | I,II,III,IV | 0/26 (I,II)/26(III,IV) | 88.52/N/54.49 | 63.5/N/51 | 0.2 |
Russo E. et al. | [35] | I,II,III,IV | 0/3/2/4/1 | age 71–95/N/63-86 | 40/N/60 | - |
Pignatelli P. et al. | [41] | Any | 1/10/10/11/3/ unknown 1 | 67.17/N/N | 47.22/N/N | - |
Tran H. et al. | [39] | II,III,IV | 0/0/18/20/4 | 64/60/N | 62/76/N | 0.39 |
Zhang X. et al. | [38] | I,II,III,IV | 78 (I,II)/129 (III,IV) | age < 63 (102 CASES), >63 (105 CASES)/N/N | 53.6%/N/N | 0.56 |
Guven D. et al. | [36] | I,II,III,IV | 0/4/16/24/27 | 59/N/56 | 64.8/N/48.1 | - |
Author | Analytical Method | HC Group | Comparation | Biomarker | p Value | AUC (95% CI) |
---|---|---|---|---|---|---|
Zhang S. et al. [37] | DNA EXTRACION+16S rRNA SEQUENCE | YES | CRC vs. CRA VS HC | 5 OTU, 3 phyla, 2 genera | under 0.05 | 0.8374 |
Loftus M. et al. [31] | WGS | YES | CRC vs. HC | 8 HPS, 10 SES | under 0.05 | 0.87 |
Rezasoltani S. et al. [32] | DNA EXTRACION+16S rRNA SEQUENCE | YES | CRC vs. HC | 1 genera(saliva) 3 genera(stool) | S under 0.05; F over 0.05 | not determined |
Flemer B. et al. [33] | DNA EXTRACION+16S rRNA SEQUENCE | YES | CRC vs. CRA VS HC | 17 OTU | over 0.05 (0.08) S&F | 0.94 |
Wang Y. et al. [42] | DNA EXTRACION+16S rRNA SEQUENCE | YES | CRC vs. HC | 9 taxa (5 oral type II, 4 enterotype III)+ 4OTUS of Fusobacterium (3CM,1S) | over 0.05 | not determined |
Yang Y. et al. [43] | DNA EXTRACION+16S rRNA SEQUENCE | YES | CRC vs. HC | 2 paodontal pathogens, 11 common taxa, 16 rare taxa | under 0.05 | not determined |
Idrissi J. et al. [44] | qPCR | YES | CRC vs. HC | F. nucleatum | over 0.05 | not determined |
Nosho K. et al. [40] | qPCR | NO | no comparation | F. nucleatum | - | not determined |
Uchino Y. et al. [34] | DNA EXTRACION+16S rRNA SEQUENCE | YES | I/II vs. III/IV/ CRC VS HC | 4 oral bacteria species | S under 0.05; F over 0.05 | not determined |
Russo E. et al. [35] | qPCR, NGS 16S RNA SEQUENCE | YES | CRC vs. HC | 4 phyla | F, CM under 0.05, S over 0.05 | not determined |
Pignatelli P. et al. [41] | qPCR | NO | no comparation | F. nucleatum | CM under 0.05, S over 0.05 | not determined |
Tran H. et al. [39] | WGS, anaerobic culture, 16S rRNA profiling | NO | CRC vs. CRA | 3 taxa | under 0.05 | not determined |
Zhang X. et al. [38] | multiplex qPCR | YES | CRC vs. HC,CRA,HYP | F. nucleatum | under 0.05 | 0.84 |
Guven D. et al. [36] | qPCR | YES | CRC vs. HC | F. nucleatum, Streptococcus gallolyticus | under 0.05 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrut, R.L.; Cote, A.; Maghiar, A.M. Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review. Microorganisms 2023, 11, 1586. https://doi.org/10.3390/microorganisms11061586
Negrut RL, Cote A, Maghiar AM. Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review. Microorganisms. 2023; 11(6):1586. https://doi.org/10.3390/microorganisms11061586
Chicago/Turabian StyleNegrut, Roxana Loriana, Adrian Cote, and Adrian Marius Maghiar. 2023. "Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review" Microorganisms 11, no. 6: 1586. https://doi.org/10.3390/microorganisms11061586
APA StyleNegrut, R. L., Cote, A., & Maghiar, A. M. (2023). Exploring the Potential of Oral Microbiome Biomarkers for Colorectal Cancer Diagnosis and Prognosis: A Systematic Review. Microorganisms, 11(6), 1586. https://doi.org/10.3390/microorganisms11061586