Artificial Feeding of Ornithodoros fonsecai and O. brasiliensis (Acari: Argasidae) and Investigation of the Transstadial Perpetuation of Anaplasma marginale
Abstract
:1. Introduction
2. Material and Methods
2.1. Origin of Ticks and Maintenance of Colonies
2.2. Artificial Feeding of Nymphs
2.2.1. Acquisition of Anaplasma marginale-Infected Calf Blood Samples
2.2.2. Rabbit Blood + A. marginale-Infected Bovine Erythrocytes
2.2.3. Semi-Nested PCR for A. marginale Based on the msp1α Gene and Confirmation of Transstadial Perpetuation
2.2.4. Purification, Sequencing of Amplified Products, and Analysis of Consensus Sequences Based on the msp1α Gene
2.2.5. Classification of A. marginale Genotypes
3. Statistical Analysis
4. Results
4.1. Nymphs Artificially Fed on Blood from Calves Naturally Infected with A. marginale
4.2. Nymphs Artificially Fed on Rabbit Blood Added to A. marginale-Infected Bovine Erythrocytes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burgdorfer, W.; Varma, M.G.R. Trans-stadial and transovarial development of disease agents in arthropods. Annu. Rev. Entomol. 1967, 12, 347–376. [Google Scholar] [CrossRef] [PubMed]
- Rar, V.; Tkachev, S.; Tikunova, N. Genetic diversity of Anaplasma bacteria: Twenty years later. Infect. Genet. Evol. 2021, 91, 104833. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S.A. The natural history of Anaplasma marginale. Vet. Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Dergousoff, S.J.; Galloway, T.D.; Lindsay, L.R.; Curry, P.S.; Chilton, N.B. Range expansion of Dermacentor variabilis and Dermacentor andersoni (Acari: Ixodidae) near their northern distributional limits. J. Med. Entomol. 2013, 50, 510–520. [Google Scholar] [CrossRef]
- Ben Said, M.; Belkahia, H.; Messadi, L. Anaplasma spp. in North Africa: A review on molecular epidemiology, associated risk factors and genetic characteristics. Ticks Tick Borne Dis. 2018, 9, 543–555. [Google Scholar] [CrossRef]
- Holmes, C.J.; Dobrotka, C.J.; Farrow, D.W.; Rosendale, A.J.; Benoit, J.B.; Pekins, P.J.; Yoder, J.A. Low and high thermal tolerance characteristics for unfed larvae of the winter tick Dermacentor albipictus (Acari: Ixodidae) with special reference to moose. Ticks Tick-Borne Dis. 2018, 9, 25–30. [Google Scholar] [CrossRef]
- Socolovschi, C.; Kernif, T.; Raoult, D.; Parola, P. Borrelia, Rickettsia, and Ehrlichia species in bat ticks, France, 2010. Emerg. Infect. Dis. 2012, 18, 1966. [Google Scholar] [CrossRef]
- Lafri, I.; El Hamzaoui, B.; Bitam, I.; Leulmi, H.; Lalout, R.; Mediannikov, O.; Chergui, M.; Karakellah, M.; Raoult, D.; Parola, P. Detection of relapsing fever Borrelia spp., Bartonella spp. and Anaplasmataceae bacteria in argasid ticks in Algeria. PLoS Neglect. Trop. Dis. 2017, 11, e0006064. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Leal, S.; Lopes, M.G.; Marcili, A.; Martins, T.F.; González-Acuña, D.; Labruna, M.B. Anaplasmataceae, Borrelia and Hepatozoon agents in ticks (Acari: Argasidae, Ixodidae) from Chile. Acta Trop. 2019, 192, 91–103. [Google Scholar] [CrossRef]
- Ikeda, P.; Torres, J.M.; Placa, A.J.V.; Mello, V.V.C.D.; Lourenço, E.C.; Herrera, H.M.; de Oliveira, C.E.; Hemsel, C.; Titball, R.W.; Machado, R.Z.; et al. Molecular survey of Anaplasmataceae agents and Coxiellaceae in non-hematophagous bats and associated ectoparasites from Brazil. Parasitologia 2021, 1, 197–209. [Google Scholar] [CrossRef]
- Guillemi, E.C.; De La Fourniere, S.; Orozco, M.; Pena Martinez, J.; Correa, E.; Fernandez, J.; Arias, L.L.; Paoletta, M.; Corona, B.; Pinarello, V.; et al. Molecular identification of Anaplasma marginale in two autochthonous South American wild species revealed an identical new genotype and its phylogenetic relationship with those of bovines. Parasites Vectors 2016, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, N.B.; Taus, N.S.; Johnson, W.C.; Mira, A.; Schnittger, L.; Valente, J.D.; Vidotto, O.; Masterson, H.E.; Vieira, T.S.; Ueti, M.W.; et al. First report of Anaplasma marginale infection in goats, Brazil. PLoS ONE 2018, 13, e0202140. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, I.C.; André, M.R.; do Amaral, R.B.; Valente, J.D.; Vasconcelos, P.C.; Oliveira, C.B.J.; Jusi, M.M.G.; Machado, R.Z.; Vieira, T.S.W.J.; Ueti, M.W.; et al. Anaplasma marginale in goats from a multispecies grazing system in northeastern Brazil. Ticks Tick Borne Dis. 2021, 12, 101592. [Google Scholar] [CrossRef]
- Dikmans, G. The transmission of anaplasmosis. Am. J. Vet. Res. 1950, 11, 5–16. [Google Scholar]
- Kocan, K.M. Development of Anaplasma marginale in Ixodid Ticks: Coordinated Development of a Rickettsial Organism and Its Tick Host. In Morphology, Physiology and Behavioral Ecology of Ticks; Sauer, J.R., Hair, J.A., Eds.; Ellis Horwood Ltd.: Chichester, UK, 1986; pp. 472–505. [Google Scholar]
- Kocan, K.M.; de la Fuente, J. Co-feeding studies of ticks infected with Anaplasma marginale. Vet. Parasitol. 2003, 112, 295–305. [Google Scholar] [CrossRef]
- Kocan, K.M.; de La Fuente, J.; Blouin, E.F.; Garcia-Garcia, J.C. Anaplasma marginale (Rickettsiales: Anaplasmataceae): Recent advances in defining host–pathogen adaptations of a tick-borne rickettsia. Parasitology 2004, 129, S285–S300. [Google Scholar] [CrossRef]
- Stich, R.W.; Kocan, K.M.; Palmer, G.H.; Ewing, S.A.; Hair, J.A.; Barron, S.J. Transstadial and attempted transovarial transmission of Anaplasma marginale by Dermacentor variabilis. Am. J. Vet. Res. 1989, 50, 1377–1380. [Google Scholar]
- Hindle, E.; Merriman, G. The sensory perceptions of Argas persicus (Oken). Parasitology 1912, 5, 203–216. [Google Scholar] [CrossRef]
- Rodhain, J.; Pons, C.; Vandenbranden, J.; Bequaert, J. Contribution towards the transmission mechanism of trypanosomes by glossines. Arch. Fur Schiffs-Und Trop. Hyg. 1912, 16, 732–739. [Google Scholar]
- Butler, J.F.; Hess, W.R.; Endris, R.G.; Holscher, K.H. In vitro feeding of Ornithodoros ticks for rearing and assessment of disease transmission. In Proceedings of the 6th Congress of Acarology, Edinburgh, UK, 5–11 September 1982; Griffiths, D.A., Bouman, C.E., Eds.; E. Horwood: Chichester, UK, 1984; pp. 1075–1081. [Google Scholar]
- Schwan, E.V.; Hutton, D.; Shields, K.J.B.; Townson, S. Artificial feeding and successful reproduction in Ornithodoros moubata moubata (Murray, 1877) (Acarina: Argasidae). Exp. Appl. Acarol. 1991, 13, 107–115. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Levy, M.G.; Breitschwerdt, E.B. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J. Clin. Microbiol. 2003, 41, 4172–4177. [Google Scholar] [CrossRef] [Green Version]
- Carelli, G.; Decaro, N.; Lorusso, A.; Elia, G.; Lorusso, E.; Mari, V.; Ceci, L.; Buonavoglia, C. Detection and quantification of Anaplasma marginale DNA in blood samples of cattle by real-time PCR. Vet. Microbiol. 2007, 124, 107–114. [Google Scholar] [CrossRef]
- Black, W.C.; Piesman, J. Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 10034–10038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañeda-Ortiz, E.J.; Ueti, M.W.; Camacho-Nuez, M.; Mosqueda, J.J.; Mousel, M.R.; Johnson, W.C.; Palmer, G.H. Association of Anaplasma marginale strain superinfection with infection prevalence within tropical regions. PLoS ONE 2015, 10, e0120748. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Ewing, C.A.; Rumsey, D.H.; Langberg, A.F.; Sandler, S.G. Immunoprophylaxis using intravenous Rh immune globulin should be standard practice when selected D-negative patients are transfused with D-positive random donor platelets. Immunohematology 1998, 14, 133–137. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Rapp, B.A.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2002, 30, 17–20. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Naranjo, V.; Acevedo-Whitehouse, K.; Mangold, A.J.; Kocan, K.M.; de la Fuente, J. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biol. 2009, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, J.; Ruybal, P.; Mtshali, M.S.; Naranjo, V.; Shuqing, L.; Mangold, A.J.; Rodríguez, S.D.; Jiménez, R.; Vicente, J.; Moretta, R.; et al. Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. Vet. Microbiol. 2007, 119, 382–390. [Google Scholar] [CrossRef]
- Catanese, H.N.; Brayton, K.A.; Gebremedhin, A.H. RepeatAnalyzer: A tool for analysing and managing short-sequence repeat data. BMC Genom. 2016, 17, 422. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.B.; Cabezas-Cruz, A.; Fonseca, A.H.; Barbosa, J.D.; de la Fuente, J. Infection of water buffalo in Rio de Janeiro Brazil with Anaplasma marginale strains also reported in cattle. Vet. Parasitol. 2014, 205, 730–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.B.; Fonseca, A.H.; Barbosa, J.D.; Cabezas-Cruz, A.; de La Fuente, J. Low genetic diversity associated with low prevalence of Anaplasma marginale in water buffaloes in Marajó Island, Brazil. Ticks Tick Borne Dis. 2014, 5, 801–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Santiago, A.C.; Simons, S.M.; Lima-Duarte, L.; Camargo, J.V.; Machado, R.Z.; André, M.R.; Barros-Battesti, D.M. Artificial feeding of Ornithodoros fonsecai (Acari: Argasidae) with the anticoagulant Alsever. Entomol. Commun. 2021, 3, ec03047. [Google Scholar] [CrossRef]
- Hokama, Y.; Lane, R.S.; Howarth, J.A. Maintenance of adult and nymphal Ornithodoros coriaceus (Acari: Argasidae) by artificial feeding through a parafilm membrane. J. Med. Entomol. 1987, 24, 319–323. [Google Scholar] [CrossRef]
- Ben-Yakir, D.; Galun, R. Comparative study of two argasid tick species: Feeding response to phagostimulants. Isr. J. Zool. 1993, 39, 169–176. [Google Scholar]
- Lewis, C.E.; Bartholomay, L.C.; Blanchong, J.A. Feeding of adult Ornithodoros tartakovskyi ticks using a modified artificial membrane feeding system. J. Med. Vet. Entomol. 2020, 34, 123–126. [Google Scholar] [CrossRef]
- Zheng, H.; Li, A.Y.; Teel, P.D.; de León, A.A.P.; Seshu, J.; Liu, J. Biological and physiological characterization of in vitro blood feeding in nymph and adult stages of Ornithodoros turicata (Acari: Argasidae). J. Insect Physiol. 2015, 75, 73–79. [Google Scholar] [CrossRef]
- Howarth, J.A.; Hokama, Y. Artificial feeding of adult and nymphal Dermacentor andersoni (Acari: Ixodidae) during studies on bovine anaplasmosis. J. Med. Entomol. 1983, 20, 248–256. [Google Scholar] [CrossRef]
- Kocan, K.M.; Yoshioka, J.; Sonenshine, D.E.; de La Fuente, J.; Ceraul, S.M.; Blouin, E.F.; Almazán, C. Capillary tube feeding system for studying tick-pathogen interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale (Rickettsiales: Anaplasmataceae). J. Med. Entomol. 2005, 42, 864–874. [Google Scholar] [CrossRef]
- Vimonish, R.; Johnson, W.C.; Mousel, M.R.; Brayton, K.A.; Scoles, G.A.; Noh, S.M.; Ueti, M.W. Quantitative analysis of Anaplasma marginale acquisition and transmission by Dermacentor andersoni fed in vitro. Sci. Rep. 2020, 10, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, R.S.; Manweiler, S.A. Borrelia coriaceae in its tick vector, Ornithodoros coriaceus (Acari: Argasidae), with emphasis on transstadial and transovarial infection. J. Med. Entomol. 1988, 25, 172–177. [Google Scholar] [CrossRef] [PubMed]
Blood | Replication | Species | N | Molt | N | Time after Molt (Days) | Quantification | ||
---|---|---|---|---|---|---|---|---|---|
Exposed | Fed | N | Positive | Negative | |||||
Calf | 1st | O. fonsecai | 15 N3 | 9 N3 | 4 N4, 1F, 1M | - | 4 N4, 1F, 1M | 48 | - |
O. brasiliensis | 15 N3 | 3 N3 | - | - | - | - | - | ||
2nd | O. fonsecai | 15 N3 | 13 N3 | 8 N4 | 8 N4 | - | 34 | 103–104 | |
O. brasiliensis | 15 N3 | 15 N3 | 12 N4 | 7 N4 | 5 N4 | 31 | 101 | ||
3rd | O. fonsecai | 15 N3 | 12 N3 | - | - | - | - | - | |
O. brasiliensis | 15 N3 | 13 N3 | 10 N4 | 6 N4 | 4 N4 | 31 | 102 | ||
Rabbit | 1st | O. fonsecai | 15 N3 | 7 N3 | 7 N4 | - | 7 N4 | 43 | - |
O. brasiliensis | 15 N3 | 9 N3 | 9 N4 | 3 N4 | 6 N4 | 40 | 102 | ||
2nd | O. fonsecai | 15 N3 | 9 N3 | - | - | - | - | - | |
O. brasiliensis | 15 N3 | 10 N3 | 10 N4 | 4 N4 | 6 N4 | 40 | 102 | ||
3rd | O. fonsecai | 15 N3 | 6 N3 | 2 N4, 1F | 2 N4, 1F | - | 37 | 101 | |
O. brasiliensis | 15 N3 | 7 N3 | 6 N4, 1F | 6 N4, 1F | - | 33 | 102–103 | ||
Control | O. fonsecai | 15 N3 | 15 N3 | 15 N4 | - | - | - | - | |
O. brasiliensis | 15 N3 | 14 N3 | 14 N4 | - | - | - | - |
BLASTn | |||||||
---|---|---|---|---|---|---|---|
Blood | Replication | Species | Number of Nymphs | Similarity | Coverage | Sequence | References |
Calf | 1st | O. fonsecai | 2 N4 | 96–96.9% | 100% | Anaplasma marginale (KJ575590) and (KJ575560) | [34] |
Rabbit | 3rd | O. brasiliensis | 3 N4 | 96.4–100% | 100% | Anaplasma marginale (KJ626203) and (CP023731) | [35] |
Blood | Replication | Species | Sample | Absolute Rickettsemia (msp1β/μL) | Genotype | Strain |
---|---|---|---|---|---|---|
Calf | 1st | O. fonsecai | 1 N4 | 2.79 × 103 | * | Is9, 78 24-2 25 |
1 N4 | 6.9 × 104 | F | Is9, 78 24-2 25 | |||
Rabbit | 3rd | O. brasiliensis | 1 N4 | 1.42 × 102 | H | 23 |
1 N4 | 6.17 × 102 | H | α β |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Santiago, A.C.; Lima-Duarte, L.; Camargo, J.V.; De Almeida, B.R.; Simons, S.M.; Mathias, L.A.; Bassini-Silva, R.; Machado, R.Z.; André, M.R.; Barros-Battesti, D.M. Artificial Feeding of Ornithodoros fonsecai and O. brasiliensis (Acari: Argasidae) and Investigation of the Transstadial Perpetuation of Anaplasma marginale. Microorganisms 2023, 11, 1680. https://doi.org/10.3390/microorganisms11071680
Castro-Santiago AC, Lima-Duarte L, Camargo JV, De Almeida BR, Simons SM, Mathias LA, Bassini-Silva R, Machado RZ, André MR, Barros-Battesti DM. Artificial Feeding of Ornithodoros fonsecai and O. brasiliensis (Acari: Argasidae) and Investigation of the Transstadial Perpetuation of Anaplasma marginale. Microorganisms. 2023; 11(7):1680. https://doi.org/10.3390/microorganisms11071680
Chicago/Turabian StyleCastro-Santiago, Ana Carolina, Leidiane Lima-Duarte, Jaqueline Valeria Camargo, Beatriz Rocha De Almeida, Simone Michaela Simons, Luis Antonio Mathias, Ricardo Bassini-Silva, Rosangela Zacarias Machado, Marcos Rogério André, and Darci Moraes Barros-Battesti. 2023. "Artificial Feeding of Ornithodoros fonsecai and O. brasiliensis (Acari: Argasidae) and Investigation of the Transstadial Perpetuation of Anaplasma marginale" Microorganisms 11, no. 7: 1680. https://doi.org/10.3390/microorganisms11071680
APA StyleCastro-Santiago, A. C., Lima-Duarte, L., Camargo, J. V., De Almeida, B. R., Simons, S. M., Mathias, L. A., Bassini-Silva, R., Machado, R. Z., André, M. R., & Barros-Battesti, D. M. (2023). Artificial Feeding of Ornithodoros fonsecai and O. brasiliensis (Acari: Argasidae) and Investigation of the Transstadial Perpetuation of Anaplasma marginale. Microorganisms, 11(7), 1680. https://doi.org/10.3390/microorganisms11071680