The Combined Applications of Microbial Inoculants and Organic Fertilizer Improve Plant Growth under Unfavorable Soil Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Microbial Inoculants
2.2.1. Arbuscular Mycorrhizal Fungi
2.2.2. Kosakonia radicincitans
2.3. Experimental Design
2.4. Plant and Soil Analysis
2.4.1. Soil Sampling and Microbial Analyses
2.4.2. Soil Microbial Measurements
2.4.3. P-Solubilizing Bacteria
2.5. Statistical Analysis
3. Results
3.1. Crop yield and Nutrient Uptake
Effect on Soil Microbial Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Araújo, A.; Leite, L.; Iwata, B.; Lira Junior, M.; Xavier, G.; Figueiredo, M. Microbiological process in agroforestry systems. A review. Agron. Sustain. Dev. 2012, 32, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Vassileva, M.; Flor-Peregrin, E.; Malusa, E.; Vassilev, N. Towards Better Understanding of the Interactions and Efficient Application of Plant Beneficial Prebiotics, Probiotics, Postbiotics and Synbiotics. Front. Plant Sci. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Clark, C.; Zeto, S.; Zobel, R. Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biol. Biochem. 1999, 31, 1757–1763. [Google Scholar] [CrossRef]
- Haug, A. Molecular aspects of aluminum toxicity. CRC Crit. Rev. Plant Sci. 1983, 1, 345–373. [Google Scholar] [CrossRef]
- Eswaran, H.; Reich, P.; Beinroth, F. Global distribution of soils with acidity. In Plant-Soil Interactions at Low pH; Moniz, A.C., Furlan, A.M.C., Schaffert, R.E., Fageria, N.K., Rosolem, C.A., Cantarella, H., Eds.; Brazilian Soil Science Society, 1997; pp. 159–164. [Google Scholar]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular Approaches Unravel the Mechanism of Acid Soil Tolerance in Plants. Crop. J. 2013, 1, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Sinclair, F. Trees, Crops and Soil Fertility Concepts and Research Methods; CABI Publishing: Wallingford, UK, 2003; 451p. [Google Scholar]
- Foy, C. Physiological effects of hydrogen, aluminium and manganese toxicities in acid soil. In Soil Acidity and Liming, 2nd ed.; Pearson, R.W., Adams, F., Eds.; American Society of Agronomy: Madison, WI, USA, 1984; pp. 57–97. [Google Scholar]
- Hollier, C.; Reid, M. Agriculture Notes, Acid Soils. 2005. ISSN 1329-8062. Available online: http://wwwbeyondbolac.org./wp-content/uploads/2012/10/acid_soils_fact_sheet_2010.pdf (accessed on 6 April 2023).
- Vassileva, M.; Mendes, G.d.O.; Deriu, M.A.; Benedetto, G.d.; Flor-Peregrin, E.; Mocali, S.; Martos, V.; Vassilev, N. Fungi, P-Solubilization, and Plant Nutrition. Microorganisms 2022, 10, 1716. [Google Scholar] [CrossRef]
- Harley, J.; Smith, S. Mycorrhizal Symbiosis; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Barber, N.; Kiers, E.; Theis, N.; Hazzard, R.; Adler, L. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions. Ecol. Appl. 2013, 23, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, H.; Serfling, A.; Ordon, F. Impact of a vesicular arbuscular mycorrhiza symbiosis on biotic and abiotic stress tolerance of wheat. In Proceedings of the Berichte aus dem Julius Kühn-Institut, Young Scientists Meeting, Quedlinburg, Germany, 4–6 December 2012. [Google Scholar]
- Van der Heijden, M.G. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 2010, 91, 1163–1171. [Google Scholar] [CrossRef]
- Qiang-Sheng, W.; Ren-Xue, X.; Ying-Ning, Z. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Act. Physiol. Planta 2007, 29, 543–549. [Google Scholar]
- Figueiredo, M.; Seldin, L.; Araujo, F.; Mariano, R. Plant growth promoting rhizobacteria: Fundamentals and applications. In Plant Growth and Health Promoting Bacteria; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–42. [Google Scholar]
- Shilev, S.; Azaizeh, H.; Vassilev, N.; Georgiev, D.; Babrikova, I. Interactions in soil-microbe-plant system: Adaptation to stressed agriculture. In Microbial Interventions in Agriculture and Environment; Singh, D., Gupta, V., Prabha, R., Eds.; Springer: Singapore, 2019; pp. 131–171. [Google Scholar] [CrossRef]
- Gupta, A.; Gopal, M.; Tilak, K. Mechanism of plant growth promotion by rhizobacteria. Indian J. Exp. Biol. 2000, 38, 856–862. [Google Scholar]
- Glick, B. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, A.; Arshad, M.; Shaharoona, B.; Mahmood, T. Plant growth promoting rhizobacteria and sustainable agriculture. In Microbial Strategies for Crop Improvement; Khan, M.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; p. 133. [Google Scholar]
- Ramanjaneyulu, A.; Giri, G.; Kumar, S. Biofertilizers, nitrogen and phosphorus on yield and nutrient economy in forage sorghum affected by nutrient management in preceding mustard. Biores. Managem. 2010, 1, 66–68. [Google Scholar]
- Glick, B.; Todorovic, B.; Czarny, J.; Cheng, Z.; Duan, J.; McConkey, B. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 2005, 26, 227–242. [Google Scholar] [CrossRef]
- Etesami, H.; Hosseini, H.M.; Alikhani, H.A. Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol. Mol. Biol. Plants 2014, 20, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Kloepper, J.; Ryu, C.; Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus species. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, B. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 2003, 21, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Remus, R.; Ruppel, S.; Jacob, H.-J.; Hecht-Buchholz, C.; Merbach, W. Colonization behaviour of two enterobacterial strains on cereals. Biol. Fert. Soils 2000, 30, 550–557. [Google Scholar] [CrossRef]
- Scholz-Seidel, C.; Ruppel, S. Nitrogenase- and phytohormone activities of Pantoea agglomerans in culture and their reaction in combination with wheat plants. Zbl. Mikrobiol. 1992, 147, 319–328. [Google Scholar]
- Ruppel, S.; Merbach, W. Effects of different nitrogen sources on nitrogen fixation and bacterial growth of Pantoea agglomerans and Azospirillum spp. in bacterial pure culture: An investigation using 15N2 and acetylene incubation. Microbiol. Res. 1995, 150, 409–418. [Google Scholar] [CrossRef]
- Schilling, G.; Gransee, A.; Deubel, A.; Lezovic, G.; Ruppel, S. Phosphorous availability, root exudates, and microbial activity in the rhizosphere. J. Plant Nutr. Soil Sci. 1998, 161, 465–478. [Google Scholar]
- Ruppel, S.; Rühlmann, J.; Merbach, W. Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 2006, 286, 21–35. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. A field study with sweet corn. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Li, J.; Zhong, X.; Wang, F.; Zhao, Q. Effect of poultry litter and livestock manure on soil physical and biological indicators in a rice–wheat rotation system. Plant Soil Environ.–UZEI 2011, 57, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.; Chang, C.; Clayton, G.; Carefoot, J. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Eschrig, U.; Stahl, M.; Delincee, H.; Jürgen Schaller, H.; Röder, O. Electron seed dressing of barley-aspects of its verification. Eur. Food Res. Technol. 2007, 224, 489–497. [Google Scholar] [CrossRef]
- Heinemeyer, O.; Insam, H.; Kaiser, E.; Walenzik, G. Soil microbial biomass and respiration measurements—An automated technique based on infrared gas-analysis. Plant Soil 1989, 116, 191–195. [Google Scholar] [CrossRef]
- Bast, E. Mikrobiologische Arbeitsmethoden: Eine Einführung in Grundlegende Arbeitstechniken, Spektrum; Akad. Verl. GmbH: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Deubel, A. Einfluss Wurzelbürtiger Organischer Kohlenstoffverbindun-Gen auf Wachstum und Phosphatmobilisierungsleistung Verschiedener Rhizosphärenbakterien; Shaker: Aachen, Germany, 1996; 114p. [Google Scholar]
- Vassilev, N.; Malusá, E.; Requena, A.R.; Martos, V.; López, A.; Maksimovic, I.; Vassileva, M. Potential Application of Glycerol in the Production of Plant Beneficial Microorganisms. J. Ind. Microbiol. Biotechnol. 2017, 44, 735–743. [Google Scholar] [CrossRef]
- van Aarle, I.M.; Olsson, P.A.; Soderstrom, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 2002, 155, 173–182. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Zhao, Z.; Zhu, H.; Yao, Q. Acidic soil inhibits the functionality of arbuscular mycorrhizal fungi by reducing arbuscule formation in tomato roots. Soil Sci. Plant Nutr. 2020, 66, 275–284. [Google Scholar] [CrossRef]
- Marschner, H. Mechanisms of adaptation of plants to acid soils. Plant Soil 1991, 134, 1–20. [Google Scholar] [CrossRef]
- Kidd, P.; Proctor, J. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J. Exp. Bot. 2001, 52, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, S.; Fonteno, W. Changes in physical and chemical properties of a loamy sand soil when amended with composted poultry litter. J. Environ. Hortic. 1993, 11, 186–190. [Google Scholar] [CrossRef]
- Eghball, B.; Wienhold, B.; Woodbury, B.; Eigenberg, R. Plant availability of phosphorus in swine slurry and cattle feedlot manure. Agron. J. 2005, 97, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, P.; Demanet, R.; Palma, G. Effect of liquid cow manure on chemical and biological properties in an andisol. Rev. Cienc. Suelo Nutr. Veg. 2010, 10, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Daniell, T.; Husband, R.; Fitter, A.; Young, J. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 2001, 36, 203–209. [Google Scholar] [CrossRef]
- Eason, W.; Scullion, J.; Scott, E. Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agric. Ecosys. Environ. 1999, 73, 245–255. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggests functional redundancy in carbon mineralisation. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
pH | SOM | P | K | Mg | |
---|---|---|---|---|---|
Site 1 (Experiment 2017) | 5.8 | 2.27 | 6.27 | 7.40 | 14.10 |
Site 2 (Experiment 2018) | 4.9 | 2.23 | 2.87 | 4.51 | 23.26 |
Parameter | Experiment 1 | Experiment 2 |
---|---|---|
Dry substance | 54.11 | 86.00 |
pH (value) | 7.90 | 7.90 |
N | 2.20 | 3.40 |
P (as P2O5) | 1.50 | 2.02 |
K (as K2O) | 2.90 | 4.16 |
Mg (as MgO) | 1.03 | 1.03 |
Treatment | P | N | K | Mg |
---|---|---|---|---|
Ctrl | 0.89 a | 3.27 a | 0.87 a | 0.28 a |
MF | 1.83 d | 8.17 d | 1.78 b | 0.56 bc |
OF | 1.76 cd | 7.20 cd | 2.02 b | 0.61 c |
KR | 1.37 b | 5.50 b | 1.33 ab | 0.42 ab |
AMF | 1.40 bc | 5.49 b | 1.37 ab | 0.43 abc |
OF + KR | 1.60 bcd | 6.12 bc | 1.62 b | 0.52 bc |
OF + AMF | 1.50 bcd | 5.88 bc | 1.51 ab | 0.46 bc |
Treatment | P | N | K | Mg |
---|---|---|---|---|
Ctrl | 0.41 a | 1.80 a | 0.35 a | 0.14 a |
MF | 0.42 a | 2.25 ab | 0.37 a | 0.14 a |
OF | 0.48 ab | 2.30 ab | 0.44 ab | 0.17 ab |
KR | 0.42 a | 1.93 a | 0.36 a | 0.13 a |
AMF | 0.38 a | 1.99 a | 0.35 a | 0.13 a |
OF + KR | 0.75 b | 3.57 c | 0.65 b | 0.26 c |
OF + AMF | 0.68 ab | 3.32 bc | 0.59 ab | 0.24 bc |
Treatment | BR | SMB | MQ | PSB |
---|---|---|---|---|
Ctrl | 6.36 a | 130.8 a | 48 | 1.39 × 107 a |
OF | 7.23 a | 135.1 a | 53 | 1.47 × 107 a |
KR | 8.30 a | 122.1 a | 68 | 1.63 × 107 ab |
AMF | 8.22 a | 136.0 a | 60 | 1.42 × 107 a |
OF + KR | 7.40 a | 160.1 a | 46 | 2.85 × 107 b |
OF + AMF | 7.21 a | 156.8 a | 46 | 1.48 × 107 a |
Treatment | BR | SMB | MQ | PSB |
---|---|---|---|---|
Ctrl | 4.22 a | 70.5 a | 60 | 3.08 × 105 a |
OF | 5.11 a | 93.9 a | 54 | 4.92 × 105 a |
KR | 4.64 a | 77.2 a | 60 | 2.33 × 106 a |
AMF | 4.56 a | 70.1 a | 65 | 1.18 × 106 a |
OF + KR | 5.24 a | 101.5 a | 51 | 1.68 × 106 a |
OF + AMF | 5.98 a | 91.7 a | 65 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Methyeb, M.; Ruppel, S.; Eichler-Löbermann, B.; Vassilev, N. The Combined Applications of Microbial Inoculants and Organic Fertilizer Improve Plant Growth under Unfavorable Soil Conditions. Microorganisms 2023, 11, 1721. https://doi.org/10.3390/microorganisms11071721
Al Methyeb M, Ruppel S, Eichler-Löbermann B, Vassilev N. The Combined Applications of Microbial Inoculants and Organic Fertilizer Improve Plant Growth under Unfavorable Soil Conditions. Microorganisms. 2023; 11(7):1721. https://doi.org/10.3390/microorganisms11071721
Chicago/Turabian StyleAl Methyeb, Malek, Silke Ruppel, Bettina Eichler-Löbermann, and Nikolay Vassilev. 2023. "The Combined Applications of Microbial Inoculants and Organic Fertilizer Improve Plant Growth under Unfavorable Soil Conditions" Microorganisms 11, no. 7: 1721. https://doi.org/10.3390/microorganisms11071721
APA StyleAl Methyeb, M., Ruppel, S., Eichler-Löbermann, B., & Vassilev, N. (2023). The Combined Applications of Microbial Inoculants and Organic Fertilizer Improve Plant Growth under Unfavorable Soil Conditions. Microorganisms, 11(7), 1721. https://doi.org/10.3390/microorganisms11071721